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Abstract: This paper presents and compares approaches to the design of flight controllers
for quadrotor helicopters based on Linear Parameter-Varying (LPV) decoupling techniques.
It is shown that parameter-varying decoupling makes it possible to use SISO LTI control
design to address all degrees of motion freedom subject to high-speed maneuvers that require
large pitch and roll angles. Specifically a decoupling method based on local linearizations
(gain-scheduling decoupling) is compared to a global scheduling-dependent decoupling method
inspired by computed-torque control, where the scheduling is based on the tilt angels of the
drone. Based on an extensive simulation study, it is demonstrated that such a relatively simple
control architecture can achieve significantly better performance than LTI control. Conceptually,
the presented techniques can be used for the design of control schemes for aircraft and missiles.
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1. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have become
popular due to their maneuverability, relatively cheap de-
sign and increasing sensor and computational capabilities
to realize fully autonomous execution of tasks from trans-
portation to surveillance (Mellinger et al. (2012); Bachrach
et al. (2011); Mahony et al. (2012)). Quadrotors are a type
of UAV with four rotors placed on the tips of a cross-
shaped structure. Flight control design for quadrotors is
often based on linearized dynamics of the system around
hovering where all degrees of freedom of the body transla-
tion and pose become naturally decoupled. This makes it
possible to design single-input single-output (SISO) con-
trollers by standard loop-shaping and PID techniques to
achieve stabilization and motion control of the vehicle
(Mahony et al. (2012)). However, in case of aggressive ma-
neuvers where pitch and roll angels substantially deviate
from the hovering pose, non-linear coupling effects appear
which quickly deteriorate the performance of the flight
controller. To address this problem, various approaches
have been applied, starting from switched control architec-
tures (including gain-scheduling, (see e.g (Mellinger et al.
(2012)) where the local controllers are designed for a
specific operating envelope up to full-scale non-linear con-
trollers designed based on integral back-stepping (Bouab-
dallah and Siegwart (2007)) and sliding mode design (Xu

and Özgüner (2006)). While these approaches give elegant
mathematical solutions to the underlying control problem,
generally it is difficult to tune their performance in practice

? This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 714663).

and they require a significant step in implementation from
the simple decoupled linear architecture of standard flight
controllers.
To re-utilize advanced methods of performance shaping
available in the linear case, the underlying non-linearities
of the motion dynamics can also be captured in and rep-
resented by a linear parameter-varying (LPV) model (see
Tóth (2010)). In an LPV representation, the dynamical
mapping between inputs and outputs is linear while the
mapping itself depends on a time-varying and online mea-
surable scheduling variable. Thus, non-linearities in the
original system can be represented by variations in the
scheduling signal. In case of the quadrotor, such schedul-
ing variables can be constructed based on the non-linear
relationships introduced by the body pose in the motion
dynamics. In Cisneros et al. (2016); Serirojanakul and
Wongsaisuwan (2012); Rangajeeva and Whidborne (2011)
optimal LPV multi-input multi-output (MIMO) controllers
have been designed and applied to quadrotor motion con-
trol. While such approaches benefit from the toolchain of
optimal control design to assist performance tuning, they
require significant expertise to be applied.
In this paper, we would like to demonstrate the use of the
LPV concept for motion control of quadrotors from a dif-
ferent perspective, which can be seen as a direct extension
of the simplified decoupled LTI design, not requiring the
solution of an optimal MIMO synthesis problem. Specif-
ically, we compare two scheduling-dependent decoupling
methods that enable us to use decoupled PID control
of the dynamics. We develop a local linearizations based
decoupling of the dynamics and also a global decoupling
solution, which can be directly used with a controller
tuned for hovering conditions. Compared to various gain-
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scheduling solutions presented for quadrotors (Mellinger
et al. (2012)), we do not design a controller separately for
specific operating points, but our contribution is in the ex-
tension of the concept of LTI decoupling (Franklin (2015))
for non-linear systems represented by an LPV model. We
intend to show with this paper that LPV control can also
be applied in a simple manner to solve practical motion
control problems.
The paper is organized as follows: In Section 2, a non-linear
dynamic motion model of a quadrotor is derived and the
effects of coupling terms on the local linearizations of the
dynamics are highlighted. In Section 3, local and global
LPV decoupling schemes are introduced together with the
corresponding control structure and their implementation
is discussed. This is followed by a detailed simulation study
in Section 4, where the decoupling schemes are compared
and their performance during agile maneuvering is demon-
strated. Finally, conclusions on the presented results are
drawn in Section 5.

2. QUADROTOR MOTION MODEL

2.1 System Dynamics

Fig. 1 shows the drone configuration that is considered in
this paper. The state and input variables are defined as

X = [x y z Vx Vy Vz φ θ ψ p q r]
>, (1a)

u = [T τx τy τz]
>. (1b)

x, y, z, Vx, Vy, Vz are the positions and velocities in
the inertial frame; φ, θ, ψ are the Tait-Bryan rotational
angles; p, q, r are the rotational velocities of the body.
The equations of motion are given by (2) as derived in
Mahony et al. (2012); Kiriouchine (2017):

Ẋ =



ẋ
ẏ
ż

V̇x
V̇y
V̇z
φ̇

θ̇

ψ̇
ṗ
q̇
ṙ



=



Vx
Vy
Vz

−(sinφ · sinψ + cosφ · cosψ · sin θ) Tm
−(cosφ · sinψ · sin θ − cosψ · sinφ) Tm

−(cosφ · cos θ) Tm + g
p+ sinφ · tan θ · q + cosφ · tan θ · r

cosφ · q − sinφ · r
sinφ
cos θ · q + cosφ

cos θ · r
Iy−Iz
Ix
· q · r + τx

Ix
Iz−Ix
Iy
· p · r +

τy
Iy

Ix−Iy
Iz
· p · q + τz

Iz



,

(2)
where T denotes the overall thrust (in z-direction), τi and
Ii the applied torque and the moment of inertia around
axis i ∈ {x, y, z}. Note that an isomorphic mapping f is
used for the conversion of torque to propeller thrust, i.e.
f : τi

∼−→ {Tj}, j ∈ {1, 2, 3, 4}.

2.2 Linearized State-Space Model

The non-linear dynamics of (2) can be linearized around
chosen operating points by making use of a first order
Taylor expansion:

Ẋ = f(X,u) ≈ f(X0, u0) +A (X−X0) +B (u−u0), (3)

where the state-space matrices A and B are defined as

A =
∂f

∂X

∣∣∣
X=X0,u=u0

and B =
∂f

∂u

∣∣∣
X=X0,u=u0

. (4)

x

yz

T1 T2

T4 T3

l

Fig. 1. Top view of the considered quadrotor drone layout.
All rotors are placed at equal distance l from the
center of gravity and exert a thrust force Ti. The ori-
gin of the Cartesian, right-rotating (body) coordinate
system lies at the center of gravity of the drone.

The desired state X0 is always chosen to be stationary:

X0 = [x0 y0 z0 0 0 0 φ0 θ0 ψ0 0 0 0]> = IR12. (5)

Note that this choice causes f(X0, u0) in (3) to become
0. Furthermore, the linearization in terms of the obtained
matrices A and B is not dependent on x0, y0, z0, but
only on φ0, θ0, ψ0. To maintain the stationary point, the
control torques u0 cannot cause a change in attitude and
the overall thrust needs to compensate for gravity, thus

u0 =
[ mg

cos(φ) cos(θ)
0 0 0

]>
. (6)

For an output equation, we define C such that y contains
the state variables corresponding to the measurable alti-
tude and body pose:

y = [z φ θ ψ]>. (7)

The linearized state-space model of the plant G is then

G

{
Ẋ(t) = A X(t) +B u(t)
y(t) = C X(t)

. (8)

Expressions for state-space matrices A, B and C can be
found in Appendix A. Note that the system is a general
rotational robotic system of the form

D(q)q̈ + C(q, q̇)q̇ +K(q)q = τ, (9)

where q denotes the vector of state variables and τ is the
actuation input.

2.3 Coupling

A local and a global LPV decoupling scheme are presented
as alternatives for the more common LTI approach. When
the LTI system is linearized around hover, it follows from
inspection of (A.1)-(A.8) that the resulting system is
locally decoupled. Decoupling means that each input u
only influences its corresponding degree of freedom (DOF).
Hence, the 4 input, 4 output MIMO system then reduces
to 4 separate SISO systems, which greatly simplifies the
controller design. When deviating from hover, coupling
effects manifest and the performance of a LTI decoupled
design based controller (often just tuned for hovering)
deteriorates. Local and global LPV schemes will likely
perform better under these conditions where the controller
is capable to adopt the changes in dynamics. For this
reason, the comparison of Section 4 focuses on the coupled
regime. Table 1 displays where the coupling between DOFs
occurs. The results are obtained by analyzing Bode plots
of different linearizations of the 4 input, 4 output MIMO
system. Besides the trivial coupling (o) on the main
diagonal, coupling exists between:
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Table 1. Coupling between the DOFs.

T τx τy τz

z o b/c c c

φ o c a/c

θ o b/c

ψ c o

a) τz-φ (pure roll, φ)
b) τx-z / τz-θ (pure pitch, θ)
c) τx-z / τy-z, φ, ψ / τz-z, φ, θ (combined pitch and

roll)

Comparing tests can be conducted under the following
conditions. Influence of change of

(1) τx on z (θ 6= 0)
(2) τy on z, φ and ψ (φ 6= 0 ∧ θ 6= 0)
(3) τz on z, φ and θ (φ 6= 0 ∧ θ 6= 0)

In order to deal with these coupling effects, we will utilize
two types of LPV decoupling schemes. A traditional gain-
scheduling based local LPV scheme (LLPV) which uses
only angles in the linearization. Hence, angular rates
and transient dynamics between the stationary points are
ignored. Also, we propose a novel scheme based on a
global LPV (GLPV) method that takes into account both
angles and angular rates. To make a fair comparison of the
introduced GLPV and LLPV schemes, simulation studies
are carried out for both small and large steps in the angles.
For large angle steps, the angular rates are higher and
thus differences between GLPV and LLPV methods should
become apparent.

3. LPV DECOUPLING SCHEMES

3.1 Gain-Scheduling Based Local Decoupling

The method of gain-scheduling is used to construct the
local LPV scheme. From the known local state-space
representation in (8), an equivalent transfer matrix G(s)
can be calculated as

G(s) =
X(s)

U(s)
= C(sI −A)−1B, (10)

where s ∈ C is the Laplace variable and X(s), U(s) are the
Laplace transforms of X and u. Note that G(s) is a 4x4
matrix of transfer functions that maps each input variable
(T , τx, τy, τz) to one or more output state variables (z, φ,
θ, ψ). In the ideal decoupled case, each input corresponds
to only one output, T−z, τx−φ, τy−θ, τz−ψ. The MIMO
system can then be reduced to 4 separate SISO systems.
However, due to the characteristics of the system, this is
not the case when φ0, θ0, ψ0 are not zero. For example,
altitude is lost when changing pitch or roll; see Table 1.

The transfer matrix in (10) only consists of second and
fourth-order integrators, and can therefore be written as

Gp(s) = M1(α)
1

s2
+M2(α)

1

s4
, (11)

with M1(α) and M2(α) constant gain matrices dependent
on the scheduling variable α = [φ0, θ0]>. Note that for the

chosen output (7), the resulting dynamics of ż, φ̇, θ̇ and ψ̇
do not depend on ψ. Hence ψ0 is not used as a scheduling

variable. To achieve perfect decoupling, we would like to
map the 4x4 MIMO system (11) to 4 double integrator
SISO systems and scale the control signals to account for
the thrust mapping in the actual plant. To this end, the
decoupling filter Tp(s) is defined as

Tp(s) = T1(α) +
1

s2
T2(α), (12)

with T1(α) and T2(α) again constant matrices depending
on α. We now impose that

Gp(s) Tp(s) = I
1

s2
, (13)

which leads to the following system of matrix equations[
M1(α) 0
M2(α) M1(α)

0 M2(α)

]
︸ ︷︷ ︸

M̃p

[
T1(α)
T2(α)

]
︸ ︷︷ ︸

T̃p

=

[
I
0
0

]
︸︷︷︸
S̃

. (14)

The scaling matrices T1 and T2 can now be calculated by
solving the system of matrix equations in (14):

T̃p = (M̃>p M̃p)
−1M̃>p S̃. (15)

The proposed feedback control loop based on the decou-
pling filter Tp(s) is displayed in Fig. 2. Note that the
matrices T1(α) and T2(α) are selected online from a lookup
table based on the current operating point of the system.
The controllers addressing the decoupled SISO dynamics
can be of any desired type and are designed according
to standard feedback controller design methods, see e.g.
Franklin (2015). In this paper, a simple PID controller is
used.

NLPID
+

-

r

T1

T2

+

+

PV Decoupling

Scheduling map  

System

X

y

Fig. 2. Local LPV decoupling using gain-scheduling. The
controller consists of four PID-controllers, all designed
for a 1

s2 system with standard loop shaping tech-
niques. The blocks T1 and T2 denote the parameter-
varying decoupling. The scheduling map selects the
appropriate values depending on the scheduling vari-
able α.

3.2 Parameter-Varying Global Decoupling

The disadvantage of the presented LLPV decoupling
scheme is that it ignores non-linear dynamics between
changing operating points. Additionally, the lookup table
may require dedicated memory. To overcome these issues,
a signal substitution based scheme in a form similar to
computed torque control (CTC) is proposed to construct
a global LPV decoupling. The system in (10) can be
rewritten to

u = M(η)η̈ + V (η, η̇), (16)
where u is the vector of actuation inputs, and η is the part
of the state X:

η = [z φ θ ψ]>. (17)
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Fig. 3. Global LPV decoupling based on computed
torque control. The controller consists of four PID-
controllers, all designed for a 1

s2 system. The block
TNL denotes the global LPV decoupling.

For the particular system at hand, the dynamics can be
written as

u = M(β)η̈ + V (β, β̇), (18)

with β a scheduling variable defined as

β = [φ θ ψ]>. (19)

A linearizing transformation of the system in (18) is now
given by

u = M(β)ũ+ V (β, β̇), (20)

with ũ the unscaled control signal resulting from the 4
SISO PID controllers. By applying (20) on (18), the system
becomes linear and decoupled, resulting in

ũ = η̈. (21)

In Kiriouchine (2017), a full derivation of the matrices

M(β) and V (β, β̇) is given for the quadrotor drone system
of (2). The obtained global LPV decoupling based control
structure is displayed in Fig. 3.

4. SIMULATION STUDY

4.1 General remarks

The presented decoupled system descriptions have been
constructed and implemented in Matlab/Simulink. For
comparison purposes, pure LTI control was also imple-
mented by taking the LLPV scheme and setting the
scheduling variable α = [0 0]>. In terms of implemen-
tation, the following remarks are in place:

• Parameter values are chosen to match those of the
Parrot AR Drone 2.0 and can be found in Table 2;
• The control input is saturated to the maximum avail-

able thrust and torque of this platform;
• Inspection of the transfer matrices showed that fourth

order integrator terms are not present for yaw. In
order to avoid superfluous integrators for yaw in the
local LPV decoupling, this channel is set to zero;
• A saturation of +/- 2 is placed on the second order

integrator of the T2 channel of Fig. 2;
• Gravity feedforward is already accounted for in the

GLPV scheme. For LTI and LLPV, it is added to the
control loop according to (6).

This section summarizes all simulation results by means
of tracking plots, root-mean square error (RMS) values,
and maximum tracking error. The chosen reference input
are step responses for the angles corresponding to the
input torques considered. Both large and small steps
are considered. All numerical results are summarized in
tabular form. Note that the first six seconds of each
simulation are used to attain the starting angles and to

Table 2. Parameters of the Parrot AR
Drone 2.0 (Jeurgens (2017)).

Parameter Symbol Value Unit

mass m 0.429 kg

inertia x-axis Ix 0.00224 kg m2

inertia y-axis Iy 0.00299 kg m2

inertia z-axis Iz 0.00480 kg m2

max. total thrust Tmax 7.76 N

max. torque x-axis τx,max 0.43 Nm

max. torque y-axis τy,max 0.43 Nm

max. torque z-axis τz,max 0.11 Nm

max. angles to just com-
pensate for gravity

√
φ2 + θ2

max
57 ◦

reach steady-state. The lookup tables T1(α) and T2(α) of
the local LPV scheme have a resolution of 1◦ (although all
resolutions below 5◦ yield similar results). Plots are only
given for variables displaying interesting behavior. Small
step plots are omitted since the behavior is qualitatively
seen similar to the large steps; quantitative results can be
found in the supplied tables. The angular controllers are
simple PD-controllers with bandwidth of approximately
50, 40 and 10 Hz for φ, θ and ψ respectively. For the height
controller, the bandwidth is roughly 7 Hz and an integrator
is added. To make a fair comparison, all three schemes use
the same controller tuning.

4.2 Decoupling of τx-z

For pitch angle θ = 40◦, the decoupling of z with τx is
investigated. The trajectory of φ can be seen in Fig. 4.
Roll tracking behavior is nearly identical for the local and
global LPV schemes. The standard LTI controller displays
a constant offset. LLPV and GLPV show good tracking
performance. The tracking of z for the roll trajectory of
Fig. 4 can be seen in Fig. 5. The LLPV method gives a
smaller tracking error than LTI. However, the GLPV per-
forms significantly better than LLPV. Pitch and yaw are
unaffected by a change in τx as highlighted in Table 1. The
experiment has been repeated for a small step trajectory,
which makes steps of +5◦, -5◦, -5◦, +5◦ at the same time
instances as the large step trajectory in Fig. 4. Tables 3
and 4 summarize the results of the decoupling of τx-z.
The tables compare the ratios of both RMS and maximum
error of different controllers; columns compare GLPV-
LTI, GLPV-LLPV and LLPV-LTI respectively. The most
advanced decoupling strategy is always in the numerator.
A value smaller than one thus denotes that the advanced
scheme results in better performance. GLPV yields better
performance than LTI and LLPV. The larger the steps, the
better the performance of GLPV compared to LLPV be-
cause the non-linearities w.r.t. the angular rates are taken
into account. LLPV gives better results than nominal LTI
based control; for small steps, the performance difference is
largest. As a conclusion, GLPV is the preferred decoupling
scheme. LLPV and LTI yield similar performance.

4.3 Decoupling of τy - z, φ, ψ

For φ = 40◦, the coupling of z, φ and ψ with τy is
investigated. The trajectory of θ is the same as for φ.
Pitch tracking behavior is virtually identical to Fig. 4,
hence the plot is omitted. The tracking of z, φ and ψ
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Fig. 4. Large step φ trajectory for
analyzing the influence of τx.
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Fig. 5. z tracking behavior for the
roll trajectory of Fig. 4.
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Fig. 6. z tracking for the pitch tra-
jectory similar to Fig. 4.
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Fig. 7. φ tracking for the pitch tra-
jectory similar to Fig. 4.
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Fig. 8. ψ tracking for the pitch tra-
jectory similar to Fig. 4.
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Fig. 9. Large step ψ trajectory for
analyzing the influence of τz.
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Fig. 10. z tracking for the yaw tra-
jectory of Fig. 9.
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Fig. 11. φ tracking for the yaw tra-
jectory of Fig. 9.
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Fig. 12. θ tracking for the yaw tra-
jectory of Fig. 9.

for the pitch trajectory similar to Fig. 4 can be seen in
Fig. 6, 7, and 8 respectively. The same procedure has
been repeated for small steps, similar to the decoupling of
τx−z. Tables 5 and 6 summarize the results of the coupling
analysis τy-z, φ, ψ. GLPV based decoupling generally gives
better results than the LLPV scheme in terms of average
error and in terms of maximum error. Both the GLPV
and the LLPV schemes give better performance than the
nominal LTI scheme.

4.4 Decoupling of τz - z, φ, θ

For φ = θ = 40◦, the coupling of z, φ, θ and z with
τz is investigated. The trajectory of ψ can be seen in
Fig. 9. Yaw tracking behavior is nearly identical for all
controllers. The tracking of z, φ and θ for the yaw
trajectory of Fig. 9 can be seen in Fig. 10, 11, and 12
respectively. The same procedure has been repeated for
small steps, similar to the previous sections. Tables 7 and 8
summarize the results of the coupling τz-z, φ, θ. The global
LPV scheme yields significantly better results than LTI.
Also w.r.t. LLPV, GLPV yields better performance. The
LLPV scheme has fluctuating performance improvement
w.r.t. the LTI approach; for some DOFs LLPV is better,

for others LTI is preferred. No clear preference between
nominal LTI control and local LPV decoupling based
control can be stated. As an overall conclusion, the GLPV
scheme is preferred.

4.5 Model Sensitivity

Since the presented decoupling schemes are based on a
dynamic model and the corresponding model parameters,
it is useful to assess the sensitivity of the controller per-
formance to parameter deviations. In the equations of
motion in (2), one can see that only the mass and the
moments of inertia play a role in the model. Therefore,
our sensitivity analysis will only consider m, Ix, Iy and Iz.
It is relatively simple to accurately determine the mass,
hence only small deviations of -10, +10 and +20% are
considered. Inertia is investigated for bigger deviations
of -20, +20 and +100% as it is more difficult to obtain
an accurate estimate. Note that +0% denotes a perfect
match between model and reality; +10% denotes that the
actual parameter value is 10% higher than the modeled
value. The percentage change thus always denotes how
the actual value changed w.r.t. the modeled value. It is
investigated how the RMS average error ratios in Tables
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Table 3. Average coupling error τx-z.

Step DOF
RMSGLPV
RMSLTI

RMSGLPV
RMSLLPV

RMSLLPV
RMSLTI

small z 0.22 0.53 0.43

large z 0.22 0.33 0.67

Table 4. Maximum coupling error τx-z.

Step DOF
emax,GLPV

emax,LTI

emax,GLPV

emax,LLPV

emax,LLPV

emax,LTI

small z 0.16 0.48 0.32

large z 0.21 0.30 0.68

Table 5. Average coupling error τy-z, φ, ψ.

Step DOF
RMSGLPV
RMSLTI

RMSGLPV
RMSLLPV

RMSLLPV
RMSLTI

small z 0.49 0.65 0.76
φ 0.00 0.23 0.02
ψ 0.55 0.49 1.12

large z 0.38 0.43 0.89
φ 0.33 0.96 0.35
ψ 1.00 0.93 1.08

Table 6. Maximum coupling error τy-z, φ, ψ.

Step DOF
emax,GLPV

emax,LTI

emax,GLPV

emax,LLPV

emax,LLPV

emax,LTI

small z 0.46 0.63 0.73
φ 0.01 0.48 0.02
ψ 0.45 0.55 0.81

large z 0.35 0.41 0.86
φ 0.86 1.28 0.68
ψ 0.89 1.00 0.89

Table 7. Average coupling error τz-z, φ, θ.

Step DOF
emax,GLPV

emax,LTI

emax,GLPV

emax,LLPV

emax,LLPV

emax,LTI

small z 0.48 0.21 2.31
φ 0.04 0.48 0.08
θ 0.84 0.50 1.68

large z 0.07 0.07 1.09
φ 0.15 0.43 0.34
θ 0.39 0.54 0.72

Table 8. Maximum coupling error τz-z, φ, θ.

Step DOF
emax,GLPV

emax,LTI

emax,GLPV

emax,LLPV

emax,LLPV

emax,LTI

small z 0.56 0.22 2.58
φ 0.13 0.52 0.25
θ 1.04 0.56 1.85

large z 0.09 0.09 1.08
φ 0.28 0.66 0.42
θ 0.74 0.82 0.90

3, 5 and 7 change upon changing the model parameters. In
line with previous findings, the performance of pure LTI
control is significantly worse than global LPV decoupling
based control, and generally speaking worse than local
LPV decoupling. Therefore, the results for LTI control
are omitted and we will only consider the ratio of GLPV-
LLPV. Fig. 13 displays the ratio RMSGLPV

RMSLLPV
w.r.t. bench-

mark data in which model parameters correspond to the
actual parameter values. A value lower than 1 denotes
that the global decoupling based controller performs better
than the local LPV scheme for the DOF corresponding
to the data point. For each data point, it is indicated
whether the ratio increased, decreased or remained the
same w.r.t. the benchmark data. The smaller the ratio, the
better the performance of the global LPV scheme w.r.t. the
local method. An increased data point value means the
corresponding DOF is more sensitive to modeling errors
for the global scheme than for the local one.

From Fig. 13, one can conclude that GLPV yields better
performance than LLPV for almost all considered DOFs,
even in circumstances where the mass and the moments
of inertia are respectively between -10 and +20% and -
20 and +100% off from the real value. On average, the
global LPV based decoupling scheme results in a factor
2 performance improvement w.r.t. the local scheme. The
cases where LLPV yields better performance than GLPV
are caused by dynamical variations of the system that are
critical in the cancellation scheme of (20). Since the global
scheme relies on more accurate model information than
the local scheme to improve performance, it loses ground
w.r.t. the local scheme as the variations increase. There
are critical combinations for which the global scheme even
performs worse than the local one. As a rule of thumb,
the global decoupling scheme is advised in case of no more
than ±20% of nominal parameter uncertainty.
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Fig. 13. Sensitivity analysis results for the relative RMS
of the GLPV and LLPV decoupling schemes. The
columns correspond to variations of m, Ix, Iy and Iz
respectively. Separate points denote individual rela-
tive RMS data points, similar to the ones given in the
second column of Tables 3, 5 and 7.

5. CONCLUSION

In this paper, simple theoretical concepts and detailed
simulation results for LPV decoupling based control of a
quadrotor drone are presented. Both the proposed local
and the global LPV schemes are designed with the pur-
pose of eliminating the coupling between input torques
and output DOFs in the system. General analysis of the
coupling between degrees of freedom showed that both
the global and the local LPV decoupling schemes can
improve the performance of a quadrotor drone. Global
LPV is generally seen the preferred decoupling scheme.
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The model sensitivity analysis showed that even under
uncertainty of model parameters, GLPV still performs
better than LLPV in most considered circumstances and
provides stable operation of the system. In case GLPV is
unfeasible for the system at hand, LLPV could be used to
improve the performance w.r.t. a LTI-based approach.
The provided decoupling schemes allow the extension of
previous designs of flight controllers to address agile ma-
neuvering in drone applications. Conceptually, the pro-
posed technique can be used for a much wider range of ap-
plications from motion systems flight and missile control.
The hypothesis is that the proposed decoupling technique
is applicable to general rotation systems having the form
of (9). However, more research is required to verify this
hypothesis.
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Appendix A. STATE-SPACE EQUATIONS

A =

03x3 I3x3 03x3 03x3
03x3 03x3 A23 03x3
03x3 03x3 A33 A34

03x3 03x3 03x3 A44

 , (A.1)

A33 =

q cφtθ − r sφtθ q sφ
1
c2
θ

+ r cφ
1
c2
θ

0

−r cφ − q sφ 0 0
q
cφ
cθ
− r sφ

cθ
r
cφsθ
c2
θ

+ q
sφsθ
c2
θ

0

 , (A.2)

A34 =

1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

 , (A.3)

A44 =

 0 r
Iy−Iz
Ix

q
Iy−Iz
Ix

r Iz−Ix
Iy

0 p Iz−Ix
Iy

q
Ix−Iy
Iz

p
Ix−Iy
Iz

0

 , (A.4)

A23 =

[
(A.6b) (A.6a) (A.6d)
(A.6f) (A.6c) (A.6h)
(A.6e) (A.6g) 0

]
, (A.5)

with

−cφcθcψ ·
T

m
, (A.6a) −(cφsψ − sφcψsθ) ·

T

m
, (A.6b)

−cφcθsψ ·
T

m
, (A.6c) −(sφcψ − sψcφsθ) ·

T

m
, (A.6d)

sφcθ ·
T

m
, (A.6e) (sφsθsψ + cφcψ) · T

m
, (A.6f)

cφsθ ·
T

m
, (A.6g) −(cφsθcψ + sψsφ) · T

m
. (A.6h)

Furthermore,

B =



0 0 0 0
0 0 0 0
0 0 0 0

−(sφsψ + cφsθcψ) · 1
m 0 0 0

−(cφsθsψ − sφcψ) · 1
m 0 0 0

−(cφcθ) · 1
m 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz



. (A.7)

Finally,

C =

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

 . (A.8)
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