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Abstract: A linear parameter varying (LPV) optimal L2 gain controller is designed with mixed-
sensitivity shaping to stabilize an inverted pendulum attached to a control moment gyroscope
(CMG). Swing-up of the pendulum is achieved by a start-up LPV controller for which the
reference is designed by an energy regulator. The LPV performance controller is enabled as
soon as the pendulum enters into its operating range of ±0.15 rad. Based on both simulation
and experimental results, it is demonstrated that stabilization of the pendulum is achieved for
varying gimbal angles and rotational speed of the flywheel.

Keywords: Linear parameter-varying, optimal control, control moment gyroscope, pendulum,
mixed sensitivity.

1. INTRODUCTION

Control moment gyroscopes (CMGs) are used in various
applications, e.g. for attitude control in spacecrafts (Kris-
tiansen et al. (2005)). From a dynamical aspect, CMGs
correspond to coupled nonlinear systems with challenging
rotational dynamics affected by friction and pose depen-
dent disturbances due to manufacturing imperfections.
Hence, they are often used as a test-bed for nonlinear
controller design, e.g., see Reyhanoglu and van de Loo
(2006). Attaching an inverted pendulum to one of the
gimbals makes the already nonlinear coupled CMG even
more complex, raising the question how a reliable non-
linear controller can be designed for this application in a
simple systematic manner.

Over the last decades, significant research has been de-
voted to the development of the linear parameter-varying
(LPV) system theory resulting in numerous publications
and case studies, see, e.g., Rugh and Shamma (2000),
Scherer (2001), Hoffmann and Werner (2015). The prin-
ciple idea behind of the LPV approach is to address non-
linear controller design in a systematic, linear framework.
This framework can be seen as an extension of the linear
time-invariant (LTI) system theory. The purpose of the
current paper is to demonstrate how LPV control can be
applied and implemented on the challenging stabilization
problem of the pendulum attached CMG and to analyse
the performance of the resulting controlled system using
both simulation and empirical studies.

Our work can be seen as a continuation of previous studies
of LPV control on the CMG which have shown signifi-
cant performance improvements compared to LTI control
methods, see Abbas et al. (2013), Abbas et al. (2014), and
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Theis et al. (2014). By our knowledge, application of LPV
control on the CMG with inverted pendulum has not been
investigated yet. Furthermore, compared to the previous
works, we propose a scheme in which the complex task
of swing-up and stabilization of a CMG-actuated inverted
pendulum is divided into simpler tasks to enable design
of simpler controllers, thereby improving tractability of
the synthesis conditions and achieving better performance
for this complex system. One LPV controller is designed
for swing-up with an energy based computation of its
reference trajectory. While for stabilization, a separate
high-performance LPV controller is synthesized. For LPV
controller synthesis, the LPVTools Toolbox for MATLAB
was used, Hjartarson et al. (2015).

The structure of the paper is as follows: in Section 2,
a description of the plant is given and it is explained
how its motion dynamics can be expressed with an LPV
model. In Section 3, the control objectives and the utilized
LPV controller design is explained. This is followed by
Section 4, where the performance of the control structure
is assessed and demonstrated in both simulation-based
and experimental studies. Finally in Section 5, concluding
remarks are briefly presented.

Notation: diag(A1, . . . , An) indicates a (block) diagonal
matrix with square matrix entries A1,. . .,An along the
diagonal. The notation A � 0 (A � 0) indicates that
A is symmetric and positive (semi)definite, while A ≺ 0
(A � 0) indicates that A is symmetric and negative
(semi)definite. The identity matrix of size N is denoted
by IN .

2. PLANT MODEL

2.1 Plant description

The plant that is used is an ECP model 750 CMG,
(Educational Control Products (1999)), with the A51 in-
verted pendulum accessory, (Educational Control Prod-
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Fig. 1. Schematics of the CMG with the inverted pendulum
attachment.

ucts (2003)). This system is modelled in terms of bodies
A, B, C, D, X and Y, see Fig. 1. Body D is a disk (flywheel)
with rotation angle q1 around the y-axis in frame Fd. This
disk is actuated by a motor with an applied torque τ1
aligned with the positive direction of q1. Body C with
a rotation angle q2 around the x-axis in frame Fc is the
gimbal encompassing the disk. Body C is also actuated in
terms of a motor with generated torque τ2 applied in the
positive direction of q2. Body B is the gimbal encompassing
gimbal C which is locked in the position shown in Fig. 1
(i.e. q3 ≡ 0) for this setup; this is necessary, since the
encoder of the pendulum replaces the encoder of body B.
Body A is the gimbal encompassing body B with rotation
q4 in the positive direction around the z-axis in frame Fa.
Body Y is the attached plate of the inverted pendulum and
is modelled as an inertia attached to body A. The frames of
references for bodies A, B, C, D and Y are all centred at the
middle of body A, but attached to their respective body.
Finally, body X is the inverted pendulum attached to body
A with rotation qx in the positive direction around the y-
axis in frame Fx. Frame Fx is attached to the pendulum.
The angular velocities of the disk, gimbals and pendulum
are denoted by ω1, ω2, ω4 and ωx respectively. The friction
can be assumed to be viscous between all the different
connected axis in the form of fv,∗ω∗. All rotational angles
are measured by incremental encoders.

2.2 Nonlinear model

Due to the complex dynamics of both the CMG and
the inverted pendulum, it was chosen to use the Neweul-
M2 software package for MATLAB, Kurz et al. (2010),
to model the system. Using Neweul-M2 the equations of
motion can be generated which are of the form

M(q, t)q̈(t) + K(q, q̇, t) = F(q, q̇, t) + Bu(t) (1)

where q = [q1 q2 q3 q4 qx]
T

, u = [τ1 τ2]
T

, M is the
generalized mass matrix, K is the vector of the generalized
Coriolis, centrifugal, and gyroscopic forces, F is the vector
of generalized forces, and B is the input matrix. Equation
(1) can be rewritten as a nonlinear state-space model:

ẋ(t) = f(x(t), u(t)), (2)

where x =
[
qT q̇T

]T
is the state, u is the input and

f(x(t), u(t)) =

[
q̇(t)

M−1(x(t))
(
F(x(t))−K(x(t)) + Bu(t)

)
]
.

The physical parameters of the system, such as inertias
and frictions, were experimentally identified in Abbas

Table 1. Parameters of the inverted pendulum.

Parameter: Friction coefficient Pendulum mass
Variable: fv,x Mx

Value: 1.87e-4 0.143
Unit: Nm·(rad/s)−1 kg

Parameter: Pendulum arm length Distance Fa to Fx

Variable L R
Value: 0.267 0.380
Unit m m

et al. (2013). The inertias of the inverted pendulum were
obtained from Educational Control Products (2003), other
parameters of the pendulum were either experimentally
identified or measured and are given in Table 1.

2.3 LPV model

To develop an LPV model of the nonlinear equations (2),
a local modelling method is applied via a first order Taylor
series expansion around the moving operating point of (2),
the same method is applied in Abbas et al. (2013) and Ab-
bas et al. (2014) for the CMG without inverted pendulum.
Neweul-M2 can directly compute such a linearisation over
(x, u). Based on (2), it follows that the linearisation is only
dependent on:

ρ = [q2 qx ω1 ω2 ω4 ωx]
T
,

a subset of the variables in (x, u), and due to its analytical
form, it can be directly used to approximate (2) as

ẋ(t)≈A(ρ(t))x(t) +B(ρ(t))u(t). (3)

The high scheduling order of the LPV model in (3) leads to
intractability of gridding-based controller synthesis for (3).
In Abbas et al. (2014) a similar LPV model was derived
and validated for the same CMG, albeit without inverted
pendulum, and was used for LPV controller design. The
LPV model in Abbas et al. (2014) uses as scheduling
variables ω1, q2 and q3 (recall that q3 = 0 in this set-up).
Various combinations of scheduling variables other than
only q2 and ω1 were also investigated, but these did not
result in significant changes in the singular value plots of
frequency responses of the model for frozen values of ρ.

In line with the above given observations two different
LPV models of the plant are now given: one used for
synthesis of a swing-up controller and one for the design
of a stabilizing controller (see Section 3 for the control
structure). Because the states corresponding to the angles
q1 and q2 do not influence the IO map, they can be
truncated from the system.

Both LPV models are of the following form

ẋ∗(t) = A∗(ρ(t))x(t) +B∗(ρ(t))u(t)

y∗(t) = C∗x(t),
(4)

where, in the case of the stabilizing controller,

xst = [q4 qx ω1 ω2 ω4 ωx]
T
,

u = [τ1 τ2]
T
, ρst = [q2 ω1]

T
, Cst =

[
I3 0 0
0 0 I2

]
,

and for the swing-up controller,

xsw = [q4 ω1 ω2 ω4]
T
,

u = [τ1 τ2]
T
, ρsw = [q2 ω1]

T
, Csw =

[
I2 0 0
0 0 1

]
.
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Fig. 2. Control structure: G is the plant, S is the switching
logic, Cst is the LPV controller for stabilization, Csw is
the LPV controller for swing-up, and Ce is the energy-
based regulator used during swing-up.

For the LPV controller used during swing-up, it is implic-
itly assumed that the effect of the pendulum on the dy-
namics of the CMG is negligible. Effects of the pendulum
will now act as a disturbance on the system which can,
to an extent, be taken care of by appropriate controller
design. Both LPV models contain angular velocities in the
output that are not directly measured in the real plant.
These angular velocities are obtained via an appropriately
designed differentiation filter.

3. CONTROLLER DESIGN

3.1 Control structure

The used control structure to achieve swing-up and sta-
bilization consists of two separate control loops, one for
swing-up and one for stabilization, in order to achieve bet-
ter performance, especially for stabilization. The control
structure is as follows:

• Swing-up is achieved by using a cascaded structure.
The outer loop is based on an energy-based regulator
Ce which computes the necessary angular acceleration
ω̇4 to swing-up the pendulum. This reference signal
is integrated to compute a reference angular velocity
(ω4,d) which is fed to the inner velocity LPV con-
troller Csw. An LPV controller is needed for this loop
because these dynamics still depend on the gimbal
angle q2 and the angular velocity of the disk ω1.
• Near the unstable equilibrium position, qx = 0, a

switching logic S switches control authority to a
stabilizing controller Cst whose task it is to stabilize
the pendulum and reject possible disturbances.

Linear switching strategies similar to the one used here
have been used for a long time (Malmborg et al. (1996))
and have become a standard method for swing-up and
stabilization of inverted pendulums. However, due to the
complex nature of the CMG, a more advanced LPV
extension of these control strategies is necessary for swing-
up and stabilization. The chosen controller structure can
be seen in Fig. 2. Note, for implementation the measured
signal qx was wrapped to [−π, π].

First the general LPV controller design used for both
the swing-up and stabilizing LPV controllers is explained,
including individual design decisions for the swing-up and
stabilizing LPV controllers. After that, the energy-based
regulator is explained, and finally, the switching logic is
shortly discussed.
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Fig. 3. General mixed sensitivity design used for both
swing-up and stabilizing LPV controller synthesis.

3.2 LPV controller design

The synthesis of the LPV output feedback controller used
for both swing-up and stabilizing LPV controller design is
based on the method detailed in Wu (1995).

Considering a generalized plant of the form
[
η̇
z
v

]
=



A(ρ) Bw(ρ) Bu(ρ)
Cz(ρ) Dzw(ρ) Dzu(ρ)
Cv(ρ) Dvw(ρ) 0



[
η
w
u

]
(5)

where z is the performance channel, w the disturbance
channel, u the control input, v the measured outputs,
η the state vector and ρ the scheduling variable. Using
the synthesis method in Theorem 4.3.2 of Wu (1995) a
stabilizing controller can then be found of the form[

ξ̇
u

]
=

[
AK(ρ, ρ̇) BK(ρ, ρ̇)
CK(ρ, ρ̇) DK(ρ, ρ̇)

] [
ξ
v

]
. (6)

Both LPV controllers are designed using the four-block
mixed-sensitivity loop shaping technique (Sefton and
Glover (1990)). The generalized plant for the design

can be seen in Fig. 3, where Ĝ is the scaled plant
(scaled according to maximum allowable or expected in-
put/output changes). The scaling for the input follows
from the maximum torque the motors can deliver which
is 0.666 Nm for τ1 and 2.44 Nm for τ2. In addition to
weighting filters to describe the expected behaviour of
the disturbances for improved disturbance rejection and
robustness, a two degree of freedom structure was chosen
to achieve improved tracking performance. For both the
swing-up and the stabilizing LPV controller, the schedul-
ing region is considered to be: q2 ∈ [−60◦, 60◦] and ω1 ∈
[30 rad/s, 60 rad/s] and with the rate bound q̇2 ∈
[−2 rad/s, 2 rad/s] and ω̇1 ∈ [−10 rad/s

−2
, 10 rad/s

−2
].

Swing-up controller: For the LPV controller Csw used
during swing-up, the outputs ω4 and ω1 (signal y1 in
Fig. 3) are scaled with 1.5 rad/s and 10 rad/s respectively

(Ĝ in Fig. 3). The shaping filters are chosen as W1 =
diag(Wω1 ,Wω4), with each W∗ having low pass character-
istics thereby ensuring integral action and good tracking
performance at low frequencies. For W2 = diag(Wτ1 ,Wτ2),
filters with high pass characteristics are chosen to enforce
roll-off at high frequencies. The output of the generalized
plant is augmented with y2 = q4 in order to regulate the
angle q4 to the neutral position in the swing-up phase.
The disturbance filters are taken as constants Wdi =
diag(0.5, 1.5) and Wdo = 0.1I3. Fig. 4 shows the sensitivity
and control sensitivity plots for various frozen values of ρ
in the scheduling region together with the inverse shaping
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Fig. 4. Inverse weighting filters (dashed) and the frozen
closed loop output sensitivity and control sensitivity
magnitude plots (solid) for the individual channels of
the swing-up LPV controller.

filters for the LPV controller Csw. Synthesizing the LPV
controller using these weighting filters results in a L2-gain
of 10.5, this large gain is due to the inclusion of q4 in
the output. As it can be seen in Fig. 4, the corresponding
closed-loop output sensitivities and control sensitivities are
close to the weighting filters.

Stabilizing controller: For the stabilizing controller Cst,
the outputs q4, qx and ω1 (signal v1 in Fig. 3) are scaled

with 45◦, 10◦ and 10 rad/s respectively (Ĝ in Fig. 3). In
order to add damping to the closed-loop response, the out-
put of the generalized plant is augmented such that v2 =

[ω4 ωx]
T

. Note that these signals are not part of the per-
formance channel and are therefore not considered for the
tracking objective. In this case, W1 = diag(Wq4 ,Wqx ,Wω1)
and W2 shares the structure of the swing-up controller
design. The disturbance filters are once again chosen con-
stant, Wdi = diag(0.5, 1) and Wdo = 0.1I5. Fig. 5 depicts
the inverse shaping filters W1, W2 together with the re-
sulting sensitivity and control sensitivity for various frozen
values of ρ in the scheduling region. Synthesizing the LPV
controller using these weighting filters results in a L2-gain
of 1.47.

In order to synthesize the controllers, the LPVTools MAT-
LAB toolbox, Hjartarson et al. (2015) was used. A gridded
method was used to solve the synthesis problem where
the scheduling parameters are gridded in a 5 × 7 grid
on q2 and ω1. For synthesis, the functional dependency
of the parameter dependent matrices X and Y , charac-
terizing the quadratic performance/stability, needs to be
chosen. An affine dependency was chosen for simplicity
for both the swing-up and stabilizing controller synthesis:
X(ρ) = X0 +X1ω1 +X2q2 and Y (ρ) = Y0 + Y1ω1 + Y2q2.

Given that the LPV output feedback controllers depend

both on ρ = [q2 ω1]
T

and ρ̇ = [ω2 ω̇1]
T

and because
ω1 is already obtained through a differentiating filter,
dependency on ω̇1 is dropped to avoid issues arising from
further differentiation of the signals. On the other hand,
ω2 is obtained by using the aforementioned differentiation

S

KS

Fig. 5. Inverse weighting filters (dashed) and the frozen
closed loop output sensitivity and control sensitivity
magnitude plots (solid) for the individual channels of
the stabilizing LPV controller.

filter on q2. For the differentiation filters the cutting
frequency was set to 30 Hz.

3.3 Energy-based regulator

As previously explained, in order to do the swing-up of
the inverted pendulum, a cascaded structure is chosen
consisting of an outer energy-based regulator Ce and an
inner velocity LPV controller Csw. The energy-based reg-
ulator computes the required angular acceleration, ω̇4,
to decrease the total energy of the pendulum subsystem
(i.e. to swing-up the pendulum), this signal is then inte-
grated to obtain a reference for ω4 for the swing-up LPV
controller to track. The energy-based regulator is based
on Åström and Furuta (2000) and designed as follows:
using the Lagrange method, the equations of motion of
the pendulum subsystem can be derived to be

MxL
2ω̇x −MxLRω̇4 cos(qx)−MxgL sin(qx) = 0, (7)

where Mx denotes the mass of the pendulum, L is the
length of the pendulum arm, R is the radius from the pen-
dulum to the centre of the CMG, and g is the gravitational
acceleration. The total energy of the pendulum is given by

E =
1

2
MxL

2ω2
x +MxgL(cos(qx)− 1). (8)

To control this energy, the Lyapunov function candidate

V =
1

2
(E − E0)2, (9)

is chosen, where E0 is the total energy in the upright
position. Computing the time derivative of the Lyapunov
function results in

V̇ = (E − E0)ωxMxLRω̇4 cos(qx), (10)

which should be negative so that V → 0 and E → E0.
Assuming we can control ω̇4, choosing it equal to

ω̇4 = k1(E − E0)ωx cos(qx), (11)

where k1 is a tuning parameter, yields that

V̇ = k1MxLR ((E − E0)wx cos(qx)))
2
, (12)

which is always negative for k1 < 0. The energy in the
upright position of the pendulum is equal to zero, therefore
E0 = 0.
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Fig. 6. Behaviour of the gimbal and pendulum angles
during swing-up and stabilization; reference,
experimental result, and simulation using the
control structure in Fig. 2.

Due to limited bandwidth of Csw, the output of the energy-
based regulator is not tracked perfectly. The energy of the
pendulum subsystem is, in reality, not exactly described by
(8). This causes the pendulum not to swing-up completely
using the described structure. In order to compensate for
this discrepancy, a tuning parameter (k2) was added to the
calculation of the kinetic energy (8) resulting in

E = k2
1

2
MxL

2ω2
x +MxgL(cos(qx)− 1). (13)

Where k2 (in combination with k1) was then used to fine
tune how fast and how far the pendulum would swing-up,
making sure it would not overshoot, but get sufficiently
close to the upright position. For the simulation studies,
these tuning parameters were set to k1 = −4 and k2 =
1.03; for the experiment, k1 = −4 and k2 = 1 were used.

3.4 Switching logic

In order to stabilize the pendulum in the upright position,
control authority needs to switch from the cascaded loop
(using the energy-based regulator and LPV velocity con-
troller) to the stabilizing LPV controller. To accomplish
this, a switching logic was implemented which smoothly
switches the system to the stabilizing controller when the
angle of the pendulum is close to zero. The angle at which
the switch happens, |qx| < 0.15 rad, was found by heuris-
tically tuning the switching angle until a desired response
was achieved. Smooth transition is achieved by using a
ramp weighting of the output of both controllers. This
is done by taking a convex combination of control input
of both the swing-up and the stabilizing LPV controller
during the transition. To avoid wind-up effects in the
controller states, the controller is switched off and its states
are reset when not being used. More advanced switching
strategies, such as bumpless switching, could be used to
lessen the effects of switching between two control loops.

4. SIMULATION AND EXPERIMENTAL RESULTS

To demonstrate the performance of the above detailed
control structure and the designed controller, both simula-
tion based and experimental studies have been conducted,
which will be presented and discussed in this section.

For the experimental study, the disk was first sped up
to 45 rad/s using a PI controller. After that, a small

Fig. 7. Behaviour of the angular velocities of the gimbal
and the pendulum during swing-up and stabilization;

reference, experimental result, and
simulation using the control structure in Fig. 2.

Fig. 8. Control input signals during swing-up and stabi-
lization; experimental result, and simulation
using the control structure in Fig. 2.

Fig. 9. Reference generated by the energy-based regulator
and measured ω4; reference, actual ω4 using
the control structure in Fig. 2 during swing-up.

pulse is given to the swing-up controller in order to make
the pendulum velocity larger than zero (otherwise (11)
would stay zero and swing-up would not start). Then the
system is switched to the described control structure to
initiate swing-up and stabilization. In both simulation and
experiment, a sampling time of 0.884 ms was used, which is
the default sampling time of the CMG set-up. In Fig. 6 to
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Fig. 9, the behaviour of the gimbal and pendulum angles
and their angular velocities with the generated control
inputs is depicted during swing-up and stabilization in
both simulation and experiment.

In the figures, it can be seen that in the simulation and
during the experiment, swing-up and stabilization was
achieved. The swing-up is achieved in both cases in approx-
imately 10 seconds. Similar behaviour for swing-up and
stabilization has been observed both in simulation and in
experiment. A noteworthy difference between experiment
and simulation is the fact that q2 does not stay close to
zero in the experiment (cf. Fig. 6). This is likely caused
by unmodeled friction effects not captured in the simu-
lation model coupled with the fact that the state q2 was
eliminated from the state vector for both LPV controllers
and is, therefore, not being regulated. One potential neg-
ative effect of not regulating q2 is that it could leave the
specified parameters bounds, thereby potentially causing
instability. This was however never seen while carrying out
the experiments.

Fig. 7 shows that there is a drop in ω1 when the pendulum
stabilizes, this is caused switching from the swing-up to
the stabilizing LPV controller. Implementing bumpless
switching between the swing-up and the stabilizing LPV
controller could alleviate this issue, but it was not im-
plemented in this study. Having the velocity controlled
externally could also compensate for this, although this
would not bring the benefits of also controlling τ1. Note
that ω1 has a relatively large steady-state error. This is
due to allowing large deviations in order to give ω1 more
freedom, because tighter control of ω1 would allow ω1 to
deviate less, therefore worsening disturbance rejection and
swing-up speed. Given that ω1 is a scheduling parameter,
the exact control of the disk speed is also not required.

Looking at the generated control inputs by the controllers
in Fig. 8 it can be seen that for both simulation and
experiment, the requested torques from the motors do
not saturate, indicating an appropriate tuning of the
control sensitivity. In Fig. 9, the reference generated by
the energy-based regulator is depicted and the resulting
ω4 due to the tracking of the swing-up controller. It can
be seen that, for both the simulation and the experimental
study, ω4 is tracked, albeit with a delay.

Video footage of the experiment can be found at
https://youtu.be/vytjdqNpGUM, where swing-up, stabi-
lization and disturbance rejection are demonstrated.

5. CONCLUSION

This paper shows a scheme to achieve swing-up and
stabilization of a CMG-actuated inverted pendulum. It is
shown how a divide and conquer approach, by splitting
the task of swing-up and stabilization, is able to achieve
the task of controlling this complex nonlinear system using
relatively simple LPV controllers. Further work concerns
the investigation how the choice of LPV representation of
the nonlinear system influences the controller design, and
how this can be incorporated into the controller synthesis
itself. The effects of more robust switching techniques on
the system is also a topic open for research.
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