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Incremental Gain of LTI Systems

P.J.W. Koelewijn and R. Tóth

I. INTRODUCTION

The incremental gain is a notion similar to, but stronger than, the L2-gain to characterize the stability of a dynamical system.
In this technical report we prove that for Linear Time Invariant (LTI) systems the L2-gain and incremental gain are equivalent,
whereas for nonlinear systems this is generally not the case [1]. Before we will give the proof, we first give the definitions of
the L2-gain and incremental gain.

Consider a dynamical system Σ: L nu
2 → L

ny

2 given by

y(t) = Σ(u(t))


ẋ(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Bu(t);

x(t0) = x0;

(1)

where x ∈ Cnx
1 with x0 ∈ X ⊆ Rnx is the state variable associated with the considered state-space representation of the

system, u ∈ L nu
2 taking values in U ∈ Rnu is the input, and y ∈ L

ny

2 taking values in Y ∈ Rny is the output of the system.

Definition I.1 (L2-gain). Σ, given by (1), is said to be L2-gain stable if for all u ∈ L nu
2 and x0 ∈ X , Σ(u) exists and there

is a finite γ ≥ 0 and a function ζ(x) ≥ 0 with ζ(0) = 0 such that

‖Σ(u)‖2 ≤ γ ‖u‖2 + ζ(x0). (2)

The induced L2-gain of Σ, denoted by ‖Σ‖2, is the infimum of γ such that (2) still holds.

Definition I.2 (Incremental gain [1], [2]). Σ, given by (1), is said to be incrementally L2-gain stable, from now on denoted
as Li2-gain stable, if it is L2-gain stable and, there exist a finite η ≥ 0 and a function ζ(x, x̃) ≥ 0 with ζ(0, 0) = 0 such that

‖Σ(u)− Σ(ũ)‖2 ≤ η ‖u− ũ‖2 + ζ(x0, x̃0), (3)

for all u, ũ ∈ L nu
2 and x0, x̃0 ∈ X . The induced Li2-gain of Σ, denoted by ‖Σ‖i2, is the infimum of η such that (3) holds.

II. MAIN RESULTS

Theorem II.1. For an (LTI) dynamical system given by (1) the L2-gain and Li2-gain as defined in Definition I.1 and Definition
I.2 are equivalent.

Proof. For the proof we use Theorem 2.7 from [3]. Therefore, formulate the following augmented difference system for the
LTI system in (1)

y∆ = Σ(u)− Σ(ũ) = Σ∆(u, ũ)



ẋ(t) = Ax(t) +Bu(t);
˙̃x(t) = Ax̃(t) +Bũ(t);

y∆(t) = (Cx(t) +Du(t))− (Cx̃(t) +Dũ(t)) ;

x(t0) = x0;

x̃(t0) = x̃0.

(4)

which has the state-space representation [
ẋ∆(t)
y∆(t)

]
=

[
A∆ B∆

C∆ D∆

] [
x∆(t)
u∆(t)

]
, (5)

where

x∆(t) =

[
x(t)
x̃(t)

]
, u∆(t) =

[
u(t)
ũ(t)

]
, A∆ =

[
A 0
0 A

]
, B∆ =

[
B 0
0 B

]
, C∆ =

[
C −C

]
, D∆ =

[
D −D

]
.

The differential dissipation inequality (DDI) is given by

∂xS(x(t))f(x(t), u(t)) ≤ w(u(t), y(t)), (6)
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where S(x) is a storage function, w(u, y) a supply function and f(x, u) the state equation. In our case, per Theorem 2.7 from
[3], as storage function we take (omitting time dependence for brevity)

S(x, x̃) = S(x∆) = (x− x̃)>P (x− x̃) = x>∆

[
P −P
−P P

]
︸ ︷︷ ︸

P̄

x∆, (7)

and as supply function we take
w∆(u, ũ, y∆) = η2 ‖u− ũ‖2 − ‖y∆‖2 . (8)

The state equation, based on (5), is given by

f(x∆, u∆) = A∆x∆ +B∆u∆. (9)

Combining (6)-(9) results in
2x>∆P̄ (A∆x∆ +B∆u∆) ≤ η2 ‖u− ũ‖2 − ‖y∆‖2 , (10)

which can be rewritten as[
x∆

u∆

]> [
I 0
A∆ B∆

]> [
0 P̄
P̄ 0

] [
I 0
A∆ B∆

] [
x∆

u∆

]
≤
[
x∆

u∆

]> [
0 I
C∆ D∆

]> [
H 0
0 −I

] [
0 I
C∆ D∆

] [
x∆

u∆

]
, (11)

which needs to hold for all x∆ and u∆ values over all t, with

H =

[
η2I −η2I
−η2I η2I

]
.

Next, (11) holds if and only if 
I 0
A∆ B∆

0 I
C∆ D∆


> 

0 P̄ 0 0
P̄ 0 0 0
0 0 −H 0
0 0 0 I



I 0
A∆ B∆

0 I
C∆ D∆

 � 0. (12)

Collapsing (12) gives 
M11 −M11 M12 −M12

−M11 M11 −M12 M12

M>
12 −M>

12 M22 −M22

−M>
12 M>

12 −M22 M22

 � 0, (13)

where
M11 = A>P + PA+ C>C,

M12 = PB + C>D,

M22 = D>D − η2I.

(14)

Introduce the non-singular

I =


In In 0 0
0 −In 0 0
0 0 Inu

0
0 0 −Inu

−Inu

 . (15)

By using I as a congruence transformation, (13) can equivalently be written as

I


0 0 0 0
0 M11 M12 0
0 M>

12 M22 0
0 0 0 0

 I> � 0. (16)

We can reduce (16) to 
0 0 0 0
0 M11 M12 0
0 M>

12 M22 0
0 0 0 0

 � 0, (17)

and to [
A>P + PA+ C>C PB + C>D

B>P +D>C D>D − η2I

]
� 0, (18)

which is equivalent with the bounded real lemma [4]. This shows that the L2-gain and Li2-gain are equivalent for LTI
systems.
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