IO realization of an LPV-SS form with static dependency

Technical report: TUE-CS-2015-001

Roland Tóth

I. Foreword

This note is about realization of a minimal linear parameter-varying (LPV) state-space (SS) form with static dependency as a input-output (IO) representation.

II. Realization

Consider an LPV-SS representation in the form of

$$
\begin{align*}
x_{k+1} & =A\left(p_{k}\right) x_{k}+B\left(p_{k}\right) u_{k}, \tag{1a}\\
y_{k} & \left.=C\left(p_{k}\right) x_{k}+D p_{k}\right) u_{k}, \tag{1b}
\end{align*}
$$

where $y: \mathbb{Z} \rightarrow \mathbb{R}^{n_{y}}$ is the output, $u: \mathbb{Z} \rightarrow \mathbb{R}^{n_{u}}$ is the input, $x: \mathbb{Z} \rightarrow \mathbb{R}^{n_{\mathrm{x}}}$ is the state variable and $p: \mathbb{Z} \rightarrow \mathbb{R}^{n_{\mathrm{p}}}$ is the scheduling signal respectively, while $A: \mathbb{R}^{n_{\mathrm{p}}} \rightarrow \mathbb{R}^{n_{\mathrm{x}} \times n_{\mathrm{x}}}, \ldots, D: \mathbb{R}^{n_{\mathrm{p}}} \rightarrow \mathbb{R}^{n_{\mathrm{y}} \times n_{\mathrm{u}}}$ are given bounded matrix functions. As a short hand notation we will use, e.g, $A_{k}:=A\left(p_{k}\right)$ to abbreviate the scheduling dependency.

The output relations can be written as follows:

$$
\begin{align*}
C_{k-n_{\mathrm{x}}+1} x_{k-n_{\mathrm{x}}+1} & =y_{k-n_{\mathrm{x}}+1}-D_{k-n_{\mathrm{x}}+1} u_{k-n_{\mathrm{x}}+1}, \tag{2a}\\
C_{k-n_{\mathrm{x}}+2} A_{k-n_{\mathrm{x}}+1} x_{k-n_{\mathrm{x}}+1}+C_{k-n_{\mathrm{x}}+2} B_{k-n_{\mathrm{x}}+1} u_{k-n_{\mathrm{x}}+1} & =y_{k-n_{\mathrm{x}}+2}-D_{k-n_{\mathrm{x}}+2} u_{k-n_{\mathrm{x}}+2}, \tag{2b}\\
& \vdots \tag{2c}\\
C_{k}\left(\prod_{i=k-n_{\mathrm{x}}+1}^{k-1} A_{i}\right) x_{k-n_{\mathrm{x}}+1}+\sum_{\ell=k-n_{\mathrm{x}}+1}^{k-1} C_{k}\left(\prod_{i=\ell+1}^{k-1} A_{i}\right) B_{\ell} u_{\ell} & =y_{k}-D_{k} u_{k} .
\end{align*}
$$

This can be written compactly as

$$
\begin{align*}
& \underbrace{\left[\begin{array}{ccccc}
D_{k-n_{\mathrm{x}}+1} & 0 & 0 & \cdots & 0 \\
C_{k-n_{\mathrm{x}}+2} B_{k-n_{\mathrm{x}}+1} & D_{k-n_{\mathrm{x}}+2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
C_{k}\left(\prod_{i=k-n_{\mathrm{x}}+2}^{k-1} A_{i}\right) B_{k-n_{\mathrm{x}}+1} & C_{k}\left(\prod_{i=k-n_{\mathrm{x}}+3}^{k-1} A_{i}\right) B_{k-n_{\mathrm{x}}+2} & \cdots & \cdots & D_{k}
\end{array}\right]}_{\mathcal{T}_{n_{\mathrm{x}}(k)}} \underbrace{\left[\begin{array}{c}
u_{k-n_{\mathrm{x}}+1} \\
\vdots \\
u_{k}
\end{array}\right]}_{\mathcal{U}_{n_{\mathrm{x}}}(k)} \tag{3}
\end{align*}
$$

R. Tóth is with the Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB , Eindhoven, The Netherlands, email: r.toth@tue.nl.
where $\mathcal{O}_{n_{\mathrm{x}}}(k)$ is the n_{x}-step observability matrix of (1). Now, under the assumption of complete observability, there exists a $\mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k)$ such that $\mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{O}_{n_{\mathrm{x}}}(k)=I$ for all $p \in\left(\mathbb{R}^{n_{\mathrm{P}}}\right)^{\mathbb{Z}}$ with left compact support and $k \in \mathbb{Z}$ defined on that support. Then, it follows that

$$
\begin{equation*}
x_{k-n_{\mathrm{x}}+1}=\mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{Y}_{n_{\mathrm{x}}}(k)-\mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{T}_{n_{\mathrm{x}}}(k) \mathcal{U}_{n_{\mathrm{x}}}(k) \tag{4}
\end{equation*}
$$

By using (2a), this gives

$$
\begin{equation*}
y_{k-n_{\mathrm{x}}+1}=C_{k-\mathrm{x}+1} \mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{Y}_{n_{\mathrm{x}}}(k)-C_{k-\mathrm{x}+1} \mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{T}_{n_{\mathrm{x}}}(k) \mathcal{U}_{n_{\mathrm{x}}}(k)-D_{k-n_{\mathrm{x}}+1} u_{k-n_{\mathrm{x}}+1} \tag{5}
\end{equation*}
$$

Let us define $n_{\mathrm{a}}=n_{\mathrm{b}}=n_{\mathrm{x}}$ and introduce a partitioning of the above defined matrices as

$$
\begin{aligned}
-C_{k-\mathrm{x}+1} \mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) & =\left[\begin{array}{lll}
\hat{A}_{n_{\mathrm{a}}-1}(k) & \cdots & \hat{A}_{0}(k)
\end{array}\right] \\
-C_{k-\mathrm{x}+1} \mathcal{O}_{n_{\mathrm{x}}}^{\dagger}(k) \mathcal{T}_{n_{\mathrm{x}}}(k) & =\left[\begin{array}{llll}
\hat{B}_{n_{\mathrm{b}}}(k)+D_{k-n_{\mathrm{x}}+1} & \hat{B}_{n_{\mathrm{b}}-1}(k) & \cdots & \hat{B}_{0}(k)
\end{array}\right],
\end{aligned}
$$

and define $\hat{A}_{n_{\mathrm{a}}}=I$. Note that the above given matrices have polynomial dynamic dependency on the backward shifted values of p. We will denote by \diamond the evaluation of such a dynamic dependency w.r.t. a given trajectory of p. This gives the LPV-IO realization of (1) as

$$
\begin{equation*}
\left(\hat{A}_{0} \diamond p\right)(k) y_{k}+\sum_{i=1}^{n_{\mathrm{a}}}\left(\hat{A}_{i} \diamond p\right)(k) y_{k-i}=\sum_{j=0}^{n_{\mathrm{b}}}\left(\hat{B}_{j} \diamond p\right)(k) u_{k-j} . \tag{6}
\end{equation*}
$$

Note that it is often desired to have a monic representation, i.e. to guarantee that y_{k} is with a coefficient being the identity matrix. This can be achieved by multiplying the whole equation from the left with the inverse of \hat{A}_{0} if it exists for all p trajectories (otherwise we can only achieve representation of the original solution set of (1) in an almost everywhere sense). The resulting form will have rational dynamic dependency in general.

