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Abstract

Least-Squares Support Vector Machines (LS-SVM’s), originating from statistical learning theory, represent a promising ap-
proach to identify nonlinear systems via nonparametric estimation of nonlinearities in a computationally and stochastically
attractive way. However, application of LS-SVM’s in the identification context is formulated as a linear regression aiming
at the minimization of the ℓ2 loss in terms of the prediction error. This formulation corresponds to the assumption of an
auto-regressive noise structure, which, especially in the nonlinear context, is often found to be too restrictive in practical
applications. In this paper, Instrumental Variable (IV) based estimation is integrated into the LS-SVM approach providing,
under minor conditions, a consistent identification of nonlinear systems in case of a noise modeling error. It is shown how
the cost function of the LS-SVM is modified to achieve an IV-based solution. Although, a practically well applicable choice
of the instrumental variable is proposed for the derived approach, optimal choice of this instrument in terms of the estimates
associated variance still remains to be an open problem. The effectiveness of the proposed IV based LS-SVM scheme is also
demonstrated by a representative example based on a Monte Carlo study.

Key words: support vector machines; instrumental variables; nonlinear identification; machine learning; non-parametric
estimation.

1 Introduction

Support vector machines (SVM’s) have been originally
developed as a class of supervised learning methods in
stochastic learning theory. Their original purpose was
to provide efficient tools for data analysis and pattern
recognition in classification problems and regression
analysis [1,2]. SVMs have had a paramount impact on
the machine learning field since their extension as a
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theoretical framework in that setting [3]. These meth-
ods also offer an attractive, so-called non-parametric
way of data-driven dynamic modeling, i.e., system iden-
tification, especially in the nonlinear context. In that
context, these approaches are part of the data-driven
model learning avenue [4,5], focusing on the paradigm
of estimation of the targeted system without posing
prior assumptions on their dynamical nature or the
non-linearities involved. Most of the research interest re-
garding identification with SVM’s has been dedicated to
nonlinear block models so far, using various least-square
SVM (LS-SVM) approaches where the original nonlin-
ear estimation problem is posed as a linear regression
[6–8]. In general, LS-SVM’s are particular variations of
the original support vector machine approach using an
ℓ2 loss function on the prediction error of the model.
They also have lot of similarities to Gaussian Processes
where identification of nonlinear models have been also
considered recently in a linear regression setting. Par-
ticular advantages of these approaches are the convex
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nature of the corresponding optimization problem and
an attractive trade-off between regularization bias and
variance of the estimates [7].

Given the large number of parameters typically in-
volved in LS-SVM’s, these approaches can also be seen
as so-called over-parametrization methods in the non-
linear framework [9,10]. However, due to the existence
of powerful regularization methods for SVM’s [1,2], the
variance of the estimated nonlinear functions is signifi-
cantly lower than in the classical over-parametrization
approaches [7]. On the other hand, LS-SVM’s also of-
fer the possibility of incorporating a model structure
and prior knowledge on the nonlinearities unlike other
nonparametric methods (e.g., [11]). The latter is an
important property, providing perspectives of joining
structural information handling and the power of prior-
free modeling – a much need improvement in system
identification as pointed out in [12] –.

A particular handicap of the variants of LS-SVM’s (and
also GP’s) is that the used linear regression form under
the ℓ2 loss function corresponds to the assumption of an
auto-regressive noise structure, which, especially in the
nonlinear context, is often found to be too restrictive in
practical applications. In the classical identification lit-
erature, significant research efforts have been devoted
to achieve consistent estimation in case of rather gen-
eral noise assumptions corresponding to the situations
commonly encountered in practice [13]. To introduce
the same generality of noise structures, some steps have
been taken in the LS-SVM context such as the recur-
rent LS-SVM developed in [14] and the linear paramet-
ric noise model equipped SVM derived in [15]. However,
the classical results in identification highlight that the
chosen noise model, i.e., the prejudice on the assumed
noise, plays an important role in the consistency of the
estimates. Therefore, in the light of a non-parametric
prior-free modeling objective, the question rises why we
should bound ourself to a priori specified noise assump-
tion, especially in the general nonlinear context. By turn-
ing to the classical results, we can find that variants of
linear regression based methods, e.g., instrumental vari-
able (IV) approaches, have been developed to cope with
realistic assumptions on the noise without specifying a
direct parametrization or structure [13,16]. The strength
of IV methods in the LTI case has been found in deliv-
ering consistent estimates independently on the chosen
noise model assumption in a computationally attractive
way [17]. Consequently, in order to take the next step on
the data-driven model learning avenue, it is required to
mitigate our prior assumptions on the noise.

To achieve this objective, in this paper we consider the
idea of introducing the IV scheme into the LS-SVM re-
gression structure, which was first proposed in[18]. As a
significant improvement of the initial scheme described
in [18], in this paper, we provide a rigorous treatment
of instrumental variables based LS-SVM’s, showing that

an instrumental LS-SVM (IV-SVM) method can be de-
rived via the dual solution of the IV optimization prob-
lem [19,13]. Furthermore, this contribution not only pre-
serves the computationally attractive feature of the orig-
inal approach by satisfying the Mercer conditions, but
also provides unbiased estimates for general noise model
structures/conditions; opening a large set of application
areas for data-driven model learning.

The paper is organized as follows: the considered identi-
fication problem setting is introduced in Section 2. This
is followed in Section 3 by the derivation of the primal
and dual solutions for the ℓ2 optimization problem asso-
ciated with LS-SVM methods, pointing out the stochas-
tic shortcoming of this scheme under general noise con-
ditions. In Section 4, the IV-based estimation associated
optimization problem is introduced and solutions are de-
rived both in the primal and dual forms leading to the
core result of the IV-SVM approach. This is followed by
integrating the dual IV solution into the LS-SVM esti-
mation scheme for nonlinear dynamic systems resulting
in the IV-SVM method. In Section 5, implementation
of the proposed estimation scheme is discussed together
with the selection of kernel functions and tuning of the
hyper parameters. To demonstrate the advantages of the
IV-SVM, a Monte Carlo study in Section 6 is provided
in which the identification of a nonlinear system with a
colored noise is analyzed. Finally, conclusions and some
future directions of research are given in Section 7.

2 Problem description

In order to set the stage for the upcoming discus-
sion, the considered identification problem is defined
in this section, showing what advantages are enjoyed
by non-parametric approaches in contrast to over-
parametrization based methods.

2.1 The data-generating system

As an objective of the identification scenario, the data-
driven estimation of a rather general nonlinear discrete-
time system So with affine nonlinearities is considered.
For the sake of simplicity regarding the upcoming deriva-
tions, the system So is assumed to be single-input single-
output (SISO). The behavior of So is described by the
following difference equation

y(k) =

na∑

i=1

fo
i

(
y(k − i)

)
+

nb∑

j=0

goj
(
u(k − j)

)
+co+vo(k), (1)

where u and y are the input and output signals of So
corresponding to a valid input-output (I/O) partition,
k ∈ Z denotes the discrete time, co ∈ R is a constant,
fo
i , g

o
j : R → R are a set of possibly nonlinear func-

tions being bounded and sufficiently smooth on R with
fo
i (0) = 0, goj (0) = 0 centered and vo(k) is a zero-mean

stochastic noise process (not necessarily white). Note
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that the system defined by (1) is general enough to de-
scribe usual block structures such as Hammerstein or
Wiener systems. Formulation of (1) in the multi-input
multi-output (MIMO) case is also available as shown in
[7]. Note that in case vo = eo, where eo is white, (1) can
be seen as a specific nonlinear auto regressive with ex-
ogenous input (NARX) model. However, it is important
to note that this case corresponds to a more restrictive
system class than the NARX class defined in [20]:

y(k) = fo
(
x(k)

)
+ co + vo(k), (2)

where

x(k)=[y(k − 1) . . . y(k − na) u(k) . . . u(k − nb)]
⊤,

x(k) ∈ R
ng , ng = na + nb + 1 and fo : Rng → R is

bounded, nonlinear and zero at the origin. We are also
going to analyze the applicability of the proposed SVM
approach w.r.t. such a general system, but to preserve
tractability of the notation, the main line of discussion
is based on (1).

2.2 The modeling paradigm

In general, the main difficulty in parametric identifica-
tion of nonlinear systems such as (1) is that the involved
nonlinearities are a priori unknown – a natural expec-
tation for modeling, but a rather difficult problem to
be handled using only measurements –. To shed light
on the nature of the problem, consider the first step
in setting up an estimation problem by which we are
able to find an “adequate” model of the data-generating
system. The first step is the definition of a paramet-
ric model set M = {Mθ | θ ∈ Θ} with parameters
θ ∈ Θ ⊂ R

nθ in which this most “adequate” model
Mθ is searched for. The adequateness of the estimated
model Mθ ∈ M is assessed using a cost a function
or error measure V(Mθ,DN ) w.r.t. a given data set

DN = {y(k), u(k)}Nk=1 generated by So. However, in or-
der to choose a model setM able to describe the dynam-
ics of (1) accurately, the parametrization involved must
represent a wide class of nonlinearities. As the nonlin-
earities and the associated dynamics can be arbitrary,
such an objective is hopeless to be achieved without ad-
equate prior assumptions. Furthermore, the more de-
grees of freedom, i.e., over-parametrization, are present
inM, the more sensitive the estimation problem is to the
corruption of noise, which increases the variance of the
estimates, and the more demanding the conditions are
on the excitation signals. On the other hand, if M, i.e.,
the associated parametrization is not complex enough,
then the dynamics of So cannot be captured and the es-
timation process ultimately leads to a structural bias.
This reflection on the well-known bias/variance trade-off
problem sets the primary objective to finding a suitable
nonlinear parametric model set M (e.g., parametrized
in terms of suitable basis functions) which can precisely
describe the nonlinearities while keeping the number of
parameters as low as possible [20]. This translates to

considering the model structure selection and the choice
of the parametrization to be the part of the estimation
problem itself.

Besides of many sparse estimator and regularization
based approaches, e.g., [21–25], the so-called class of
“non-parametric” identification methods, like the LS-
SVM’s, aim to achieve this objective via an implicit
parametrization of the data relations. The assumption
is made that each nonlinearity f(�) can be modeled as
the projection φ⊤(�)θ by using an nH dimensional map-
ping φ : Rng → R

nH (where nH is potentially infinite)
from the space of input-output samples to the so called
feature space of the output samples. This so called fea-
ture map φ and the parameters θ are estimated together
using the concepts of the reproducing kernel theory [26]
without requiring from the user to define a parametriza-
tion of f explicitly.

Before properly addressing the LS-SVM problem and in
order to clearly develop the motivations for the proposed
approach, it is assumed that each nonlinearity in (1) can
be written as a function expansion:

fo
i

(
y(k − i)

)
=

nH∑

l=1

θoi,lφi,l

(
y(k − i)

)
, (3a)

goj
(
u(k − j)

)
=

nH∑

l=1

θoj+na+1,lφj+na+1,l

(
u(k − j)

)
, (3b)

where {φi,l : R → R}ng,nH

i=1,l=1 are a priori unknown
zero centered functional basis over a function space
Q(R) ⊂ R

R, for example, the set of real continuous
functions C(R), and {θoi,l ∈ R}ng,nH

i=1,l=1 are constant pa-
rameters. This assumption, which is usually taken in
over-parameterization methods altogether with the a
priori selection of each φi,l, leads to the parametrized
modelMθ described as

y(k) = ϕ⊤(k) θ + e(k), (4)

where e(k) qualifies as the prediction error. The regres-
sor ϕ(k) and the parameter vector θ are nθ-dimensional
vectors, with nθ = (na + nb + 1)nH + 1, defined as

ϕ(k) =
[

1 φ⊤
1

(
y(k − 1)

)
. . . φ⊤

na

(
y(k − na)

)

φ⊤
na+1

(
u(k)

)
. . . φ⊤

ng

(
u(k − nb)

)
]⊤

, (5a)

θ =
[

c θ⊤1 . . . θ⊤ng

]⊤

, (5b)

where φi(�) = [ φi,1(�) . . . φi,nH
(�) ]⊤, c ∈ R and θi =

[θi,1 . . . θi,nH
]⊤. Under this setting, So belongs to the

model set M = {Mθ | θ ∈ R
nθ}, i.e., the collection of
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all models in the form of (4). Therefore, there exists a
θo ∈ R

nθ such that

y(k) = ϕ⊤(k) θo + vo(k). (6)

Note that such a regression form can also be generalized
for (2). As discussed in Section 1, it is important to find
the feature maps φi, based on the given data set DN ,
which can achieve a good trade-off between the following
objectives:

• minimize nH, i.e., the number of estimated parameters
(minimizing the variance of θ);
• represent each function fo

i and goj with minimal error
(minimizing the structural bias).

Note that in case the feature maps φi would be known, a
regularization based estimation of θ could be applied to
achieve such a trade-off. Next, a particular regularized
estimator is considered which gives the possibility to es-
timate θ and φi together via the so-called kernel trick.

3 Duals and the support vector machine

To characterize an estimate for (4) based on data, the
quality of the model fit is formulated in terms of the cost
function (error measure) V(Mθ,DN ), which in case of
LS-SVM’s is a regularized least-squares (LS) criterion
denoted in a compact form as:

V(θ, e)= 1

2
θ⊤θ +

γ

2N

N∑

k=1

e2(k)=
1

2
‖θ‖2ℓ2 +

γ

2N
‖e(k)‖2ℓ2 ,

(7)
where e(k) = y(k)−ϕ⊤(k) θ is the prediction error w.r.t.
DN and the scalar γ > 0 is the regularization parameter.
In case φi’s are known, the estimate of the parameters θ
(based on a data set DN ) is the solution of the following
minimization problem:

min
θ,e
V(θ, e), (8a)

s.t. e(k) = y(k)− ϕ⊤(k) θ, k = 1, . . . , N, (8b)

As the dimension nH of the regressor ϕ is usually large
(and potentially infinite), hence the use of the regular-
ization term ‖θ‖2ℓ2, whose importance is characterized
by γ in (7), is essential to achieve an efficient solution
in terms of the bias/variance trade-off. Hence (7) is a
so-called sum-of-norms criterion. In order to construct
an estimate of both the feature maps and the parame-
ters together, it is necessary to develop the solution of
problem (8) both in a primal and in a dual form.

3.1 Solution in the primal form

The primal solution of problem (8) implicitly assumes
that the regressor terms w.r.t. φi are given and well de-
fined. This allows to obtain the primal solution by substi-
tuting (8b) into the objective function V(θ, e) and then

deriving the analytical solution of

∂V(θ, e)
∂θ

= 0. (9)

This minimum for V(θ, e) is achieved at:

θ̂P=

(

1

γ
Inθ

+
1

N

N∑

k=1

ϕ(k)ϕ⊤(k)

)−1

·
(

1

N

N∑

k=1

ϕ(k)y(k)

)

, (10)

where Inθ
denotes the identitymatrix of size nθ. By using

the notation

Y = [ y(1) . . . y(N) ]⊤ ∈ R
N , (11a)

Φ = [ϕ(1) . . . ϕ(N) ]
⊤ ∈ R

N×nθ , (11b)

the primal solution in (10) can be written as:

θ̂P =

(
1

N
Φ⊤Φ+

1

γ
Inθ

)

︸ ︷︷ ︸

RP(γ,N)

−1
1

N
Φ⊤Y. (12)

3.2 Solution in the dual form

The solution of (8) can also be obtained in a dual form
which allows to avoid the implicit assumption that the
regressor terms are defined and all equality constraints
are satisfied. The dual solution of (8) is obtained by
constructing the Lagrangian:

L(θ, e, α) =V(θ, e)−
N∑

k=1

αk

(

ϕ
⊤(k) θ + e(k)−y(k)

)

, (13)

with αk ∈ R being the Lagrangian multipliers. The
global optimum is obtained when the Karush-Kuhn-
Tucker (KKT) conditions:

∂L
∂e

= 0→ αk =
γ

N
e(k), (14a)

∂L
∂αk

= 0 → y(k) = ϕ⊤(k) θ + e(k), (14b)

∂L
∂θ

= 0 → θ =

N∑

k=1

αkϕ(k). (14c)

are fulfilled for all k = 1, . . . , N . Substitution of (14a)
and (14c) into (14b) leads to

y(k) = ϕ⊤(k)

(
N∑

k=1

αkϕ(k)

)

︸ ︷︷ ︸

θ

+ γ−1Nαk
︸ ︷︷ ︸

e(k)

, (15)
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for k ∈ {1, . . . , N}. The set of linear equations in (15)
can be written as

Y =

[

ΦΦ⊤ +
N

γ
IN

]

α (16)

where α = [α1 . . . αN ]⊤ ∈ R
N and IN is the identity

matrix of size N . The Lagrangian multipliers α are then
given by

α =

(
1

N
ΦΦ⊤ + γ−1IN

)

︸ ︷︷ ︸

RD(γ,N)

−1
1

N
Y (17)

Once the Lagrangian multipliers α are computed

through (17), the estimate θ̂D of the model parameters
θ is obtained from (14c), i.e.,

θ̂D = Φ⊤

(
1

N
ΦΦ⊤ + γ−1IN

)−1
Y

N
︸ ︷︷ ︸

α

. (18)

Remark 1 (Zero duality gap [27] ) Since the primal
problem (8) is a convex quadratic problem with linear
equality constraints, strong duality holds for (8). There-
fore, the dual and primal solutions are equivalent, i.e.,

θ̂D = θ̂P.

3.3 Consistency analysis

The importance of Remark 1 lays in allowing to ana-
lyze the asymptotic properties of the dual solution via

the primal solution. The bias B
θ̂
of the estimate θ̂P and

hence the bias of θ̂D can be studied through

B
θ̂
= Ē

{
θ̂P − θo

}
, (19)

where Ē {�} = lim
N→∞

E {�}. Using the notation RP(γ) =

Ē{RP(γ,N)}, the bias can be expressed as:

B
θ̂
=
(
γRP(γ)

)−1
θo

︸ ︷︷ ︸

Br

θ̂

+R−1
P (γ)Ē

{

1

N

N∑

k=1

ϕ(k)vo(k)

}

︸ ︷︷ ︸

Bn

θ̂

.

(20)
For the derivation, see the Appendix. The term Br

θ̂
can

be seen as the regularization bias which is determined
by the regularization term in (7). On the other hand, Bn

θ̂
is determined by the residual and hence can be seen as
the direct effect of the noise. The interplay between the
two terms corresponds to a trade-off between bias and
variance of the estimates.

3.3.1 On the γ parameter bias/variance trade-off

Most often in over-parametrization context, the infor-
mation matrix (Φ⊤Φ) is rank deficient and it can be
expressed as (Φ⊤Φ) = UΛU⊤ with UU⊤ = Inθ

, Λ ∈
R

nθ×nθ :
Λ = Diag(λ1 . . . λr, 0, . . . 0). (21)

and hence, Φ⊤ = U
√
ΛV ⊤, with V ∈ RN×nθ . Under

this notation, the bias terms become:

B
r

θ̂
=Ē

[

UDiag

(

γ−1

γ−1+λ1

N

. . .
γ−1

γ−1+λr

N

, 1 . . . 1

)

U
⊤

]

θo,

B
n

θ̂
=Ē

[

1

N
UDiag

( √
λ1

γ−1

1
+λ1

N

. . .

√
λr

γ−1

1
+λr

N

, 0 . . . 0

)

V
⊤
Wo

]

,

with Wo = [vo(1) . . . vo(N)]⊤. Moreover, let Ker{Φ⊤Φ}
be the null space of Φ⊤Φ and Im{Φ⊤Φ} its image. It
is first interesting to notice that the θ components in
Ker{Φ⊤Φ} are always set to zero independently from γ.
Consider the behavior of θ in Im{Φ⊤Φ}, for both the
extreme cases γ → 0 and γ →∞.

• For γ → 0, θ̂ → 0 and it can straightforwardly con-
cluded that Bn

θ̂
→ 0, Br

θ̂
→ −θo while the variance of

θ̂ tends to exactly 0. Therefore, this case can be seen
as a maximal regularization bias with no variance.
• For γ →∞, Br

θ̂
→ 0 and Bn

θ̂
→ BLS where BLS is the

bias of the unregularized LS estimate of θ̂. Moreover,
using a similar reasoning, it is possible to show that

the variance of θ̂ in this case is equal to the variance
of the LS estimate in Im{Φ⊤Φ}. This gives the other
extremum case for which the noise has the maximal
effect both in terms of bias and variance.

This indicates that the choice of γ defines an expected

bias/variance trade-off for θ̂ except for disturbing term
Bn

θ̂
which is an unwanted artifact of the noise. The term

Bn
θ̂
, characterizing (19), is a bias directly linked to the

noise and can become important depending on the noise
conditions. In the primal setting, it is well known that
Bn

θ̂
= 0 under the condition that the regressor ϕ(k) is

not correlated with the noise vo(k), i.e.,

C1 E
{
ϕ(k)vo(k)

}
= 0, ∀k ∈ Z.

This implies that C1 must also hold for the dual esti-
mate in order to eliminate the bias due to the noise as
γ → ∞. Unfortunately, C1 only holds if vo is white as
ϕ(k) is constructed from past samples of u and y. In
fact, while u(k − j) for any j ∈ Z is uncorrelated to the
noise, y(k − i) for i > 0 is uncorrelated to vo(k) only in
the case when this additive noise is white. However, in
real-world applications, assuming that the noise in the
data is white and exhibits an autoregressive form such
as in (6) is highly unlikely to happen. Furthermore, such
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a noise model to be valid also requires accurate knowl-
edge/estimation of the nonlinearities involved in the re-
gressor. Consequently, in most practical applications,
the minimization of criterion (7) will lead to a biased
estimate, most likely to be dominated by Bn

θ̂
. There-

fore, it would be highly advantageous to unbalance the
bias/variance trade-off, in order to keep the variance of
the LS estimate with a null bias when γ → ∞. This
is the aim of the next section, which introduces an IV
method in order to cope with this issue, guaranteeing
Bn

θ̂
= 0 for the dual estimate. Hence, the proposed IV

approach significantly improves the applicability of the
SVM scheme.

3.4 The support vector machine

For deriving the primal and dual solutions for (8), we
started with the assumption that the functional basis
{φi,l}ng,nH

i=1,l=1 are a priori unknown and the dimension
of the parametrization is possibly infinite. This means
that, unlike to over-parametrization approaches where
each {φi,l}ng,nH

i=1,l=1 is a-priori fixed and nH is finite and

known, in the considered context ϕ(k) is composed of
unknown feature maps with nH → ∞ implying that

nθ → ∞. Hence, θ̂P cannot be explicitly computed via
(12). The importance of the LS-SVM approach lies in
the fact that the vector α ∈ R

N in the dual solution can
be analytically obtained without the proper knowledge
of the feature maps Φ. In fact, what becomes possible
via the so called kernel trick is to estimate the required
feature maps in a considered function class using the
dual solution.

To properly introduce the kernel trick based LS-SVM
approach, consider the following preliminaries: Let K :
X × X → R be a similarity measure, which is positive
definite, like an inner product, w.r.t. (the finite measure
space) X ⊆ R

n with 0 < n < ∞. Then K is called the
kernel function of the operator TK defined as

(TKf)(x) =

∫

X

K(x, x′)f(x′) dx′, (22)

if (22) exists for all f ∈ L2(X ) (square integrable maps
f : X → R).

Theorem 1 (Mercer’s theorem, [28,29]) Let K ∈
L∞(X 2) be a symmetric real-valued function. Then, the
integral operator (22) is positive definite in the sense
that 〈f, TKf〉L2

> 0 for all f ∈ L2(X ), if
∫

X 2

K(x, x′)f(x)f(x′) dx dx′ ≥ 0, (23)

for all f ∈ L2(X ).

Now, we would like to represent the positive definite in-
ner products ΦΦ⊤ appearing in (17) via such symmet-
ric kernel functions with X being the regression space.

Suppose that K is a continuous symmetric kernel func-
tion on the closed interval X = [a, b]. Then there is an
orthonormal basis {φl}∞l=1 ∈ L2([a, b]) such that K has
the representation [29]

K(xi, xj) =

∞∑

l=1

λl φl(xi)φl(xj), (24)

where the convergence is absolute and uniform w.r.t.
λl ≥ 0. However, this also allows to represent any f ∈
L2([a, b]) in the reproducing kernel Hilbert space of K
as a series expansion f(�) =

∑m
j=1 αjK(�, xj), with X =

{x1, . . . , xm} and αj ∈ R [29]. Furthermore, it allows to
represent inner products of unknown functions as series
expansions in terms of K.

Define the so-calledGrammian matrix asG = ΦΦ⊤. Ac-
cording to the Mercer’s theorem, the Grammian matrix
G can be defined in terms of kernel functions without
the explicit knowledge of Φ. Notice that G can be de-
composed as

[G]j,k =
n∑

i=1

[G(i)]j,k, (25)

where each G(i) represents the inner product

[G(i)]j,k=
〈
φi(xi(j)), φi(xi(k))

〉
= K(i)

(
xi(j), xi(k)

)
.

(26)
Here, K(i) qualifies as a positive definite kernel function
on the sample set X = DN and

xi(k) = y(k − i), i = 1, . . . , na, (27a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (27b)

Consequently, a given set of kernel functionsK(i) defines
G and hence characterizes implicitly Φ, providing the
solution for (17) in terms of

α =

(
1

N
G+ γ−1IN

)−1
Y

N
. (28)

This is called the kernel trick [1], [2], which allows the
identification of the nonlinear functions fo

i , g
o
j in (3a)

without explicitly defining the feature maps involved.
The resulting dual approach is called the LS-SVM. A
typical choice of kernel, which provides uniformly effec-
tive representation of a large class of smooth functions,
is the Radial Basis Function (RBF) kernel:

K(i)
(
xi(j), xi(k)

)
=exp

(
−‖xi(j)−xi(k)‖

2
2

σ2
i

)

. (29)

However, other positive definite kernels, like linear, poly-
nomial, rational, spline or wavelet kernels, can also be
used [2]. Choosing the most appropriate kernel highly
depends on the problem at hand. Automatic kernel se-
lection for general SVM problems is possible and is dis-
cussed in [30].

Another remark is that the parameter vector θ̂D
is never accessible in the LS-SVM framework, and
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only the combined estimation fi(�) = φ⊤
i (�)θi (or

gj(�) = φ⊤
na+1+j(�)θna+1+j) is computable in an expan-

sion form using the kernel functions defined:

fi(�) =φ⊤
i (�)θi =

N∑

k=1

αkK
(i)(xi(k), �). (30)

However, the resulting function estimator is directly
linked to the dual solution of (6). This means that if the
kernel functions defined feature map (and therefore the
associated feature space X ) is correlated with the noise
vo (C1 is violated), then the function estimates are bi-
ased, i.e., Bn

θ̂
6= 0 implies that (30) is biased. In order to

eliminate this bias, i.e., Bn
θ̂
, an IV based modification

of the LS-SVM is proposed in the next section.

4 Instruments in the primal and the dual form

Among the available identification approaches used in
the regression framework, the principle idea of the In-
strumental Variable (IV) approach has been successfully
applied in many contexts to elegantly resolve the incon-
sistency problem of LS regression under correlated noise
vo [31,19,13,16]. In the sequel, our objective is to develop
an IV extension of the LS-SVM, allowing a much wider
applicability of this identification approach in practice.

We have seen previously that the most difficult condi-
tion required for the consistency of the LS-SVM is C1.
In most practical problems, the regressor is correlated
(implicitly or explicitly) to the noise and hence C1 does
not hold. Thus, in the parametric context, an IV identi-
fication criterion has been introduced which relaxes C1
to a less restrictive condition and prevents the deteri-
oration of the estimation performance [19]. The idea is
to introduce a so-called instrument signal ζ : Z → R

nθ

such that the consistency condition w.r.t. the noise bias
becomes:

X1 E{ζ(k)vo(k)} = 0, ∀k ∈ Z.

While condition C1 depends on ϕ(k) and therefore on
the model assumed, X1 depends on ζ(k) which can be
chosen by the user. This idea grants a wide range of
possible solutions for achieving consistency by picking
instruments uncorrelated to the noise.

To respect the consistency conditions, the IV estimate
can be seen as the minimizer of the IV criterion:

W(θ, e)=
1

2
θ⊤θ +

γ

2N2
‖

N∑

k=1

ζ(k)e(k)‖2ℓ2

=
1

2
‖θ‖2ℓ2 +

γ

2N2
‖Γ⊤E‖2ℓ2 , (31)

based on the data set DN and with Γ and E defined as

Γ =
[

ζ(1) . . . ζ(N)
]⊤

, (32a)

E =
[

e(1) . . . e(N)
]⊤

, (32b)

and ζ(k) ∈ R
nθ being the instrument:

ζ(k) =
[

1 φ⊤
1

(
ξ1(k)

)
. . . φ⊤

ng

(
ξng

(k)
)
]⊤

, (33)

chosen by the user so that condition X1 is satisfied.
The specific choice of the instrument signals {ξi}ng

i=1 re-
garding the considered identification setting is discussed
later. It is important to note that (31) introduces a differ-
ent sum of norms criterion than (7). In this respect, the
bias-variance trade off and even the introduced regular-
ization bias via (31) does not necessary scales as in (7).
On one hand, this makes comparison of the two estima-
tion problems difficult in the considered nonlinear con-
text, while on the other hand makes possible to achieve
better reduction of the bias with a smaller sacrifice on
the side of the variance.

The motivations to pursue an IV-scheme based solution
for bias reduction are the following:

• In general, recent IV approaches offer similar perfor-
mance as the optimal (minimum variance and unbi-
ased estimate) prediction error methods in case of cor-
rect assumptions on the system and noise models.
• As it will be shown later, the IV-based LS-SVM prob-
lem can be solved in a very similar way to the LS-SVM
problem, implying approximately the same computa-
tional load as well as the same complexity.
• Most importantly, the IV-schemes provide consistent
estimates in case of incorrect noise assumptions.

While the IVmethods are nowwidely used under the pri-
mal form of the optimization problem, they have never
been introduced in a dual setting to the best of the au-
thors’ knowledge. Thus, the question arises: can the par-
allelism between the primal and dual solutions, explored
in Section 3, be used to introduce an IV scheme for the
dual form without any performance degradation?

4.1 IV in the primal form

First, the minimizer of (31) is derived based on the clas-
sical results. Let us define

Ψ =

N∑

k=1

ζ(k)ϕ⊤(k) = Γ⊤Φ, (34a)

D =

N∑

k=1

ζ(k)y(k) = Γ⊤Y. (34b)
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Then, the minimizer of W(θ, e) (with the implicit as-
sumptions that (8b) is satisfied and each φi is given) is

θ̂IVP = arg min
θ∈R

nθ

1

2
θ⊤θ +

γ

2N2
‖Ψθ −D‖2ℓ2 , (35)

which is equivalent with the following algebraic problem

θ̂IVP = sol
{

θ +
γ

N2

(
Ψ⊤Ψθ −Ψ⊤D

)
= 0
}

. (36)

This problem has an analytic solution given by

θ̂IVP =

(
1

γ
Inθ

+
1

N2
Ψ⊤Ψ

)

︸ ︷︷ ︸

RIV
P

(γ,N)

−1
1

N2
Ψ⊤D. (37)

Remark 2 (Bias of the IV estimate) If the instru-
ment satisfies condition X1, then, under minor assump-

tions, the bias BIV
θ̂

of the estimate θ̂IVP is given by

BIV
θ̂

=
(
γRIV

P (γ)
)−1

θo
︸ ︷︷ ︸

B
IV,r

θ̂

, (38)

where RIV
P (γ) = Ē{RIV

P (γ,N)}.

For a proof see the Appendix.

Consequently, in the IV-SVM scheme, the bias is solely
conditioned by the regularization term. Again, by defin-
ing Ψ⊤Ψ = U ′⊤Λ′U ′⊤ where

Λ′ = Diag(λ′
1 . . . λ

′
r′ , 0, . . . 0) (39)

the argument provided in Section 3.3.1, implies that
BIV

θ̂
→ 0 as γ →∞ for the θ components in Im{Ψ⊤Ψ}.

This is however not true for the components in
Ker{Ψ⊤Ψ}. Consequently, in order to ensure a bias im-
provement with respect to the LS approach, the chosen
instrument must fulfill the following condition:

X2 Im{Φ⊤Φ} = Im{Ψ⊤Ψ}.

In other words Φ⊤Φ = UΛU⊤ with Λ as in (21) and

Ψ⊤Ψ = U Λ̃U⊤ with

Λ̃ = Diag(λ̃1 . . . λ̃r, 0, . . . 0). (40)

It can be noticed that this condition is similar to full
ranking condition in the linear regression framework
[19]. In practice, verifying this condition might be a te-
dious task. Nevertheless, choosing ξi correlated to xi,
∀i = 1 . . . nθ can ensure the correlation between Φ and
Γ and consequently, condition X2.

Under this conditions, it can be concluded that the
proposed estimate fulfills the aimed features: the
bias/variance trade-off has been dramatically changed
with respect to the LS optimization scheme. Hence, for
data sets where the bias is large with respect to the
variance, the proposed estimate can seriously increase
the quality of the estimates. Again, the γ parameter has
to be optimized based on validation data for the exact
same reasons as exposed in section 3.3.1.

4.2 IV in the dual form

Next, the IV solution is derived in a dual form which will
be used to define the IV-SVM. Let us rewrite the primal
minimization problem of (31) as

min
θ∈R

nθ

1

2
θ⊤θ +

γ

2N2

∥
∥Γ⊤E

∥
∥
2

ℓ2
, (41a)

s.t. e(k) = y(k)− ϕ⊤(k)θ, (41b)

based on the data set DN . Introduce the Lagrangian

L(θ, e, α)=W(θ, e)−
N∑

k=1

αk

(
ϕ⊤(k)θ+ e(k)−y(k)

)
, (42)

with αk ∈ R. The global optimum is obtained when the
KKT conditions (necessary and sufficient) are fulfilled:

∂L
∂e

= 0 → αk =
γ

N2
ΓΓ⊤e(k), (43a)

∂L
∂αk

= 0 → y(k) = ϕ⊤(k)θ + e(k), (43b)

∂L
∂θ

= 0 → θ =

N∑

k=1

αkϕ(k). (43c)

By substituting (43c) into (43b), we get

y(k) =

(
N∑

τ=1

ατϕ
⊤(τ)

)

ϕ(k) + e(k), (44)

which can be written in the matrix form:

Y = ΦΦ⊤α+ E. (45)

Then, substitution of (45) into (43a) leads to

α =
γ

N2
ΓΓ⊤

(

Y − ΦΦ⊤α
)

, (46)

which has the solution

α =

(
1

N2
HG+ γ−1IN

)−1
1

N2
HY, (47)
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where H = ΓΓ⊤. Hence, H is defined similar to G in
terms of (26) via the chosen kernels evaluated on ζ. Ac-
cording to (43c), θ = Φ⊤α and therefore

θ̂IVD = Φ⊤

[
1

N2
HG+ γ−1IN

]

︸ ︷︷ ︸

RIV
D

(γ,N)

−1
1

N2
HY. (48)

As for the LS-SVM case, once α are computed from

(47), the dual estimate θ̂IVD of the parameters θ is then
given by (43c) and, again, the primal and dual solutions

are equivalent. Consequently, under condition X1, θ̂IVD
is consistent w.r.t. the residual bias independently on
the correlation properties of vo(k) (as long as it is zero-
mean). Similarly, to the standard LS-SVM, the estimate
of the nonlinear functions fo

i and goj is given by

fi(�) =

N∑

k=1

αkK
(i)(xi(k), �), (49a)

gj(�) =

N∑

k=1

αkK
(na+1+j)(xna+1+j(k), �). (49b)

4.3 Identification of more general systems

If we consider a more general class of systems described
in the form of (2), the IV-SVM and LS-SVM methods
still remain applicable. Although, one major difference
is that in this case, due to the lack of strong priors on the
separation of dynamics and nonlinearities, a single but
multidimensional kernel function is needed , as it must

be based on the whole set of signals x = [ x1 . . . xng
]⊤

which contains the dynamics already (time operators).

5 Implementation of the IV-SVM

In this section, the properties and practical implementa-
tion of the IV-SVM method are discussed together with
the selection of the instruments, the kernel functions and
the hyper-parameters.

5.1 The choice of the instrument

So far, we have not shed light on the specific choice of
the variables ξ(k) which eventually generate the instru-
ment ζ(k) used in the derivation of the IV-SVM. In the
previous section, we have shown that, in order to guar-

antee consistency of the dual parameters θ̂IVD w.r.t. the
noise bias, the instrument ζ(k) has to satisfy condition
X1, which means that the variables ξ(k) have to be cho-
sen by the user so that they are independent of the noise
realization vo(k). It is worth pointing out that, in the
linear identification framework, the optimal instruments
minimizing the asymptotic covariancematrix of the esti-
mated parameters are given by the noise-free input and

output samples [19]. On the other hand, in a nonlinear
context, the choice of an optimal instrument depends
highly on the system structure and the noise model as-
sumed, and is mostly an open problem. Nevertheless,
the bias results exposed in Sections 4.1 and 3.3.1 can be
derived in the same way for the variance leading to the
conclusion that the variance properties is strongly linked
to the linear regression theory for Im{Ψ⊤Ψ} as γ →∞.
Hence, the linear regression theory is here invoked re-
garding the choice of an instrument. More precisely, the
variable ξi(k) is chosen to be maximally correlated with
the noise-free part of the sample xi(k) in order to both
satisfy X2 and X1. This leads to the following choice of
instruments

ξi(k) = y̆(k − i), i = 1, . . . , na, (50a)

ξna+1+j(k) = u(k − j), j = 0, . . . , nb, (50b)

where y̆ is the noise free output signal of the data-
generating system So. As such signals are not available
in practice, one needs to restrict himself to y̆ being
approximated by the simulated output of an estimated
model of the system, e.g., a model obtained via the LS-
SVM approach. This choice of the instrument resembles
to the widely used IV solution for linear regression
[19,13].

The following iterative IV-SVM scheme can be imple-
mented in order to mitigate the effect of the estimated
noiseless signals on the IV scheme and hence “maximize”
the accuracy of the IV-SVM solution by iteratively re-
fining the instruments.

Algorithm 1 Refined IV-SVM

Require: model structure (4) in terms of model orders
na and nb, data set DN = {y(k), u(k)}Nk=1, regular-

ization parameter γ, kernel functions {K(i)}ng

i=1 with
ng := na + nb + 1.

1: set τ ← 0.
2: compute the matrices G(i) via the kernels K(i) ap-

plied on DN .
3: estimateα(0) via (17) resulting in themodel estimate
M(0).

4: repeat
5: set τ ← τ + 1
6: use M(τ−1) to generate, by simulation,

{y̆(τ)(k)}Nk=1.

7: calculate {ξi(k)}ng,N

i=1,k=1 via (50) using

{y̆(τ)(k), u(k)}Nk=1.

8: compute H in terms of the kernel functions K(i)

applied on {ξi(k)}ng,N

i=1,k=1.

9: estimate α(τ) via (47) resulting in the model esti-
mateMτ .

10: until α(τ) has converged.
11: return Model structureM(τ) with estimates of the

nonlinear functions f̂i and ĝj obtained via (49).
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5.2 Enforcing zero-centering of the nonlinear functions

Note that, to ensure identifiability, it is essential to im-
pose normalization of fi and gj as otherwise, any pair of

functions φ̃⊤
1 (·)θ̃1 = φ⊤

1 (·)θ1−c̄ and φ̃⊤
2 (·)θ̃2 = φ⊤

2 (·)θ2+
c̄ would provide the same input-output realization for
any constant c̄. Consequently, in order to respect the sys-
tem description (1) and the assumption that fo

i and goj
are equal to zero at the origin, it is essential to impose
that

φ⊤
i (0)θi = 0, i = 1, . . . , ng. (51)

The primal problem (41) can be then modified by adding
the constraints (51), i.e.,

min
θ∈R

nθ

1

2
θ⊤θ +

γ

2N2

∥
∥Γ⊤E

∥
∥
2

ℓ2
, (52a)

s.t. e(k) = y(k)− ϕ⊤(k)θ, (52b)

φ⊤
i (0)θi = 0. (52c)

By introducing the Lagrangian

L(θ, e, α, β)=W(θ, e) −
N∑

k=1

αk

(
ϕ⊤(k)θ + e(k)−y(k)

)

−
ng∑

i=1

βiφ
⊤
i (0)θi, (53)

the following expression of the dual parameters α ∈ R
N

and β ∈ R
ng can be derived from the KKT conditions:




α

β



=





1

N2
HG+

1

γ
IN

1

N2 HDΦ

1

N
D⊤

Φ

1

N
D0





−1



1

N2 HY

0ng



 , (54)

with 1N = [1 . . . 1]⊤ ∈ R
N , 0ng

= [0 . . . 0]⊤ ∈ R
ng

and

Φi =
[

φi(xi(1)) . . . φi(xi(N))
]⊤

, (55a)

DΦ =
[

Φ1φ1(0) . . . Φng
φng

(0)
]⊤

, (55b)

D0 =diag
(

φ⊤
1 (0)φ1(0), . . . , φ

⊤
ng
(0)φng

(0)
)

. (55c)

The kernel trick can be then used to characterize the
entries of H , G, DΦ and D0 in terms of the kernel func-
tions K(i). This leads to the following estimate of the
constant term co and of the nonlinear functions fo

i :

c =1⊤Nα, (56a)

fi(�) =

N∑

k=1

αkK
(i)(xi(k), �) + βiK

(i)
(
0, �
)
, (56b)

gj(�) =

N∑

k=1

αkK
(na+1+j)(xna+1+j(k), �)

+ βna+1+jK
(na+1+j)

(
0, �
)
. (56c)

A detailed derivation of eqs. (56) can be found in the
technical report [32].

5.3 The choice of γ and the kernels

In this subsection, choice/optimization of the hyper-
parameter γ (defining the cost functionW(θ, e) in (31))
and the choice/tuning of the kernel functionsK(i) is dis-
cussed.

As it has been briefly explained in Section 3, choice of
the most appropriate kernel for the modeling problem at
hand highly depends on the structure of the system to be
identified and on the available data. Besides of the dis-
cussed radial basis function kernels which are adequate
to represent a large class of smooth functions in terms of
the expansion f(�) =

∑m

j=1 αjK(�, xj) (see Section 3.4,
other positive definite kernels, like linear, polynomial,
rational, spline or wavelet kernels, can also be used [2].
However, these choices have an impact on the function
class in which the expansion is made rather than the ac-
tual decay rate of the expansion error. So it becomes a
question, how the particular parameters of these kernel
functions, like σi in (29) should be chosen to maximize
the decay rate of the expansion w.r.t. the estimated un-
known functional terms and hence the accuracy of the
obtained model. Furthermore, the optimal choice of the
regularization parameter γ is dependent on the choice
of kernel functions, hence the overall optimization of all
such hyper-parameters can not be independently accom-
plished.

If we restrict our attention to the RBF case, a simple
methodology can be used to optimize the kernel func-
tionsK(i) and γ for the system to be estimated. As a first
step, we can reduce the number of hyper-parameters by
requiring that

σi = σy for all i = 1, . . . , na (57a)

σna+1+j = σu for all j = 0, . . . , nb (57b)

In this way, all kernels K(i) (with i = 1, . . . , ng) used
in the IV-SVM scheme are characterized by only two
hyper-parameters, i.e., σy and σu. Then, the parame-
ters σy, σu and γ are tuned via cross-validation based
optimization. For instance, the values of σy, σu and γ
providing the most accurate model w.r.t. an indepen-
dent “validation” data set can be computed through
a three-dimensional grid-search procedure over the
space of hyper-parameters. Other numerically efficient
techniques for the computation of the optimal hyper-
parameters by means of genetic algorithms and particle
swarm optimization are discussed in [33–35].

6 Simulation example

In this section, performance of the IV-SVM and of the
standard LS-SVM approaches are compared using an
extensive Monte-Carlo study based on a simulation ex-
ample.
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6.1 The data-generating system

The data-generating system So, considered in this study,
is described by the difference equation

y(k) = −0.7y(k− 1) + fo
(
y(k − 2)

)
+ go

(
u(k)

)
+

− 0.4u(k − 1) + co + vo(k), (58)

where the constant parameter co is 0, while f(·) and g(·)
are defined by the following nonlinear functions

fo(x) = 1
8x

2, go(x) =







0.5 if x ≥ 0.5,

x if −0.5 < x < 0.5,

−0.5 if x ≤ −0.5.

Furthermore, vo(k) is a zero-mean colored noise gener-
ated by filtering a white noise sequence eo(k) ∼ N (0, σ2

e)
with standard deviation σe = 0.07 with the filter

vo(k) = a1vo(k) + b0eo(k) + b1eo(k − 1), (59)

where a1 = 0.95, b0 = 1.5 and b1 = −0.3. To generate
data sets DN = {u(k), y(k)}Nk=1 by So, the system is
excited with aN = 1000 long white input sequence with
uniform distribution U(−1, 1) starting with zero initial
conditions. In order to provide representative results,
100 of such data sets are generated with independent
realizations of the noise and the input sequences, setting
up a Monte Carlo study with NMC = 100 runs. To asses
the level of the noise, the signal-to-noise ratio (SNR),
defined as

SNR = 10 log

(∑N
k=1 y

2
o(k)

∑N

k=1 v
2
o(k)

)

, (60)

with yo(k) denoting the noise-free output of So, has
been computed. The resulting 11 dB average SNR cor-
responds to a significant noise present in the data.

6.2 Model structures

In order to provide a fair comparison between the LS-
SVM method and the IV-SVM method, the same model
structure is used by the two approaches. In particular,
the following ARX model structureMθ is considered:

y(k) = y(k − 1)θ1 + φ⊤
2

(
y(k − 2)

)
θ2+

+ φ⊤
3

(
u(k)

)
θ3 + u(k − 1)θ4 + c + e(k), (61)

with e(k) denoting the residual error. Note that the func-
tions φ1(y(k − 1)) and φ4(u(k − 1)) are explicitly de-
fined as y(k−1) and u(k−1), respectively. This a-priori
information can be easily exploited in the SVM identi-
fication context. On the other hand, the feature maps

φ2(·), φ3(·) : R → R
nH are not a-priori imposed and

their dimension nH is potentially infinite. RBF kernels
are used to characterize these nonlinearities. Since the
aim of the example is to compare the estimation prop-
erties of the LS-SVM and the IV-SVM approaches, the
same modeling setting is applied in both approaches by
using the same kernel functions and hyper-parameters.
The IV-SVM approach is implemented with the refined
scheme of Algorithm 1 defining the choice of instru-
ments. The parameters σ2 and σ3 associated with the
RBF kernel function K(2) and K(3) used to estimate φ2

and φ3 are chosen via cross validation, in particular, by
maximizing the best fit rate (BFR), computed on a val-
idation data set, of the model estimates. The BFR is
defined as

BFR = max

{

1− ‖y(k)− ŷ(k)‖2
‖y(k)− y(k)‖2

, 0

}

· 100%, (62)

with y(k) denoting the mean value of the output se-
quence y(k), while ŷ(k) is the simulated output of the
estimated model. Based on an exhaustive grid search,
σ2 = 1.7 and σ3 = 0.5 have been obtained for the LS-
SVM. This choice of hyper-parameters have been also
applied in the IV-SVM in order to guarantee fair compar-
ison w.r.t. the original LS-SVM approach. On the other
hand, the regularization-parameters γLS and γIV have
been optimized separately, since they are linked to dif-
ferent criteria, i.e., V(θ, e) (in eq. (7)) andW(θ, e) (in eq.
(31)), respectively. An exhaustive search aiming at the
maximization of the cross-validation basedBFR has lead
to the choice of γLS : γLS

N
= 12.5 and γIV : γIV

N2 = 16.5.

6.3 Obtained results

First, note that since the φ1(·) and φ4(·) are explicitly
defined, the parameters θ1 and θ4 are directly identified.
On the other hand, the parameters θ2 and θ3 are not di-
rectly accessible and only a combined estimation of the
functions f(·) = φ⊤

2 (·)θ2 or g(·) = φ⊤
3 (·)θ3 can be com-

puted. The mean value and standard deviation (over the

100 Monte Carlo runs) of the estimates θ̂1 and θ̂4 ob-
tained through the LS-SVM and the IV-SVM algorithms
are reported in Table 1, which shows that, in line with
the theory, the standard LS-SVM approach provides a
biased estimate of θ1 and θ4, while the parameters iden-
tified through the IV-SVM are unbiased. The estimation
results of the nonlinear function g(·) obtained by the LS-
SVM and the IV-SVM methods are shown in Fig. 1a-b,
where the mean estimated function together with the
standard deviation interval over the 100 Monte Carlo
runs are plotted. Both the algorithms provide an accu-
rate estimate of the function g(·). The estimation results
of the nonlinearity f(·) are reported in Fig. 1c-d, which
shows that the mean estimate of f(·) obtained through
the IV-SVM algorithm is centered on the true one, while
the LS-SVM approach provides a biased estimate of the
nonlinearity f(·).
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Fig. 1. Comparison of the estimation results: true nonlinearity go(u) and fo(y) (solid black lines), mean estimate (solid gray
line) and standard deviation intervals (dashed black line) over the 100 Monte Carlo runs.

Table 1
Mean and standard deviation of the estimated parameters

ĉ, θ̂1 and θ̂4 over the 100 Monte Carlo runs.

True Value LS-SVM IV-SVM

mean ĉ 0 −0.0044 −0.0035

std ĉ – 0.0290 0.0468

mean θ̂1 −0.7 −0.2684 −0.6920

std θ̂1 – 0.0451 0.0359

mean θ̂4 −0.4 −0.6983 −0.4062

std θ̂4 – 0.0320 0.0371

The performance of the LS-SVM and the IV-SVM algo-
rithms is also tested on a noiseless validation data set
DV

N with N = 600 input-output pairs, where the input
is a triangle wave with range from −0.5 to 0.5 and with
a period of 50 samples. Using this validation data, the
simulated output sequences ŷ of the models estimated
by the LS-SVM and the IV-SVM algorithms are plot-
ted in Fig. 2a-b, while the error between the true output
yo(k) inDV

N and ŷ(k) is plotted in Fig. 2c-d. The average
BFR and the mean squared error (MSE), defined as

MSE =
1

N

N∑

k=1

(yo(k)− ŷ(k))
2
, (63)

computed on the simulated response ŷ of the estimated
models are reported in Table 2. The obtained results
show that IV-SVM algorithm significantly outperforms
the standard LS-SVM approach.

Table 2
Validation results of the estimated models. Average and
standard deviation of the best fit rate (BFR) and of the
mean squared error (MSE).

mean(BFR) std(BFR) mean(MSE) std(MSE)

LS-SVM 15% 14% 0.0127 0.0030

IV-SVM 95% 2% 0.0009 0.0003

7 Conclusions

In this paper, identification of nonlinear models via the
LS-SVM identification scheme has been analyzed, result-
ing in a consistency analysis at the parameter level for
this method issued from the machine learning commu-
nity. The analysis has shown that due to the minimiza-
tion of the ℓ2-loss over the prediction using an NARX
structure, the choice of the regularization parameter un-
der general noise conditions corresponds to a trade-off
between a regularization bias deriving from the opti-
mization scheme and a noise bias deriving from the mea-
sured data. Consequently, in case of a system structure
other than NARX, the user is unable to suppress the
bias on the estimates, which can lead to poor structural
learning capabilities. Consequently, an IV-SVM opti-
mization criterion was introduced in order to cope with
this limitation while preserving the attractive computa-
tional properties of the LS-SVM. It has been shown that
the IV-SVM scheme allows the elimination of the bias
in case the noise process can be written as a zero mean
additive process. Hence, the proposed scheme consider-
ably widens the applicability of LS-SVM based methods.
A suitable choice for the required instrument has been

12
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Fig. 2. Validation data based comparison of the true output yo(k) (black line) with the simulated output sequence ŷ(k) (gray
line) of one model estimated from the Monte Carlo simulation by the standard LS-SVM and the proposed IV-SVM approaches.

discussed and an iterative solution inspired from linear
regression IV methods has been proposed. The perfor-
mance of the resulting IV-SVM algorithm with respect
to the regular LS-SVM method has been demonstrated
on a challenging example. Finally, while generalization
in terms of the nonlinear dynamics follows relatively eas-
ily, generalization for non-zero mean and/or nonlinearly
distorted noise is technically more demanding and re-
mains the objective of future research in the LS-SVM
context.

8 Appendix

PROOF. (Bias of the LS estimate) Consider B
θ̂
=

Ē
{
θ̂P − θo

}
. Then, based on (10),

B
θ̂
= Ē

{

R−1
P (γ,N)

(

1

N

N∑

k=1

ϕ(k)y(k)

)

− θo

}

(64)

By using that y(k) = ϕ⊤(k)θo+ vo(k), (64) can be writ-
ten as

B
θ̂
= Ē

{

R−1
P (γ,N)

1

N

(

Φ⊤Φθo +

N∑

k=1

ϕ(k)vo(k)

)

− θo

}

= Ē

{

R−1
P (γ,N)

1

N

(
Φ⊤Φ−NRP(γ,N)

)
θo

︸ ︷︷ ︸

(γRP(γ,N))−1θo

}

+ Ē

{

R−1
P (γ,N)

1

N

N∑

k=1

ϕ(k)vo(k)

}

Then, by using RP(γ) = Ē{RP(γ,N)}, (20) follows di-
rectly.

PROOF. (Bias of the IV estimate)ConsiderBIV
θ̂

=

Ē{θ̂IVP − θo}. Then

BIV
θ̂

= Ē

{

(
RIV

P (γ,N)
)−1 1

N2
Ψ⊤

N∑

k=1

ζ(k)y(k) − θo

}

.

(65)
Using the same derivation as in the LS case, it follows
that

BIV
θ̂

= Ē

{
(
RIV

P (γ,N)
)−1 1

N2

(
Ψ⊤Ψ−N2RIV

P (γ,N)
)
θo

︸ ︷︷ ︸
(
γRIV

P
(γ,N)

)
−1

θo

}

+ Ē

{
(
RIV

P (γ,N)
)−1 1

N2
Ψ⊤

N∑

k=1

ζ(k)vo(k)

}

Now under minor assumptions (stationary data and
that ζ is uncorrelated with vo) it holds that RIV

P (γ) =

Ē{RIV
P (γ,N)} and Q∗(γ) = Ē{

(
RIV

P (γ)
)−1 1

N
Ψ⊤} exist

and

B
IV

θ̂
=
(
γR

IV

P (γ)
)−1

θo + Q∗(γ)Ē

{

1

N

N∑

k=1

ζ(k)vo(k)

}

.

(66)

13



If condition X1 is satisfied, then it holds that

Ē

{

1

N

N∑

k=1

ζ(k)vo(k)

}

= lim
N→∞

1

N

N∑

k=1

E {ζ(k)vo(k)}
︸ ︷︷ ︸

=0

= 0.
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