An Instrumental Least Squares Support Vector Machine for Nonlinear System Identification: enforcing zero-centering constraints

TUE-CS-2013-001
V. Laurain and R.Tóth and D. Piga

April 18, 2013

Abstract

Least-Squares Support Vector Machines (LS-SVM's), originating from Stochastic Learning theory, represent a promising approach to identify nonlinear systems via nonparametric estimation of nonlinearities in a computationally and stochastically attractive way. However, application of LS-SVM's in the identification context is formulated as a linear regression aiming at the minimization of the ℓ_{2} loss in terms of the prediction error. This formulation corresponds to a prejudice of an auto-regressive noise structure, which, especially in the nonlinear context, is often found to be too restrictive in practical applications. In [1], a novel Instrumental Variable (IV) based estimation is integrated into the LS-SVM approach providing, under minor conditions, a consistent identification of nonlinear systems in case of a noise modeling error. It is shown how the cost function of the LS-SVM is modified to achieve an IV-based solution.

In this technical report, a detailed derivation of the results presented in Section 5.2 of [1] is given as a supplement material for interested readers.

1 IV in the dual form

Consider the primal minimization problem (eq. (52) in [1]):

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{n_{\theta}}} & \frac{1}{2} \theta^{\top} \theta+\frac{\gamma}{2 N^{2}}\left\|\Gamma^{\top} E\right\|_{\ell_{2}}^{2}, & \\
\text { s.t. } & e(k)=y(k)-\varphi^{\top}(k) \theta, \quad k=1, \ldots, N, \\
& \phi_{i}^{\top}(0) \theta_{i}=0, & i=1, \ldots, n_{\mathrm{g}} . \tag{1c}
\end{array}
$$

Introduce the Lagrangian

$$
\begin{equation*}
\mathcal{L}(\theta, e, \alpha, \beta)=\frac{1}{2} \theta^{\top} \theta+\frac{\gamma}{2 N^{2}}\left\|\Gamma^{\top} E\right\|_{\ell_{2}}^{2}-\sum_{k=1}^{N} \alpha_{k}\left(\varphi^{\top}(k) \theta+e(k)-y(k)\right)-\sum_{i=1}^{n_{g}} \beta_{i} \phi_{i}^{\top}(0) \theta_{i}, \tag{2}
\end{equation*}
$$

with α_{k} and β_{i} being the Lagrangian multiplier. According to [1], the terms $\varphi^{\top}(k)$ and θ can be decomposed as

$$
\begin{gather*}
\varphi(k)=\left[\begin{array}{llllll}
1 & \phi_{1}^{\top}(y(k-1)) & \ldots & \phi_{n_{\mathrm{a}}}^{\top}\left(y\left(k-n_{\mathrm{a}}\right)\right) & \phi_{n_{\mathrm{a}}+1}^{\top}(u(k)) & \ldots \\
\phi_{n_{\mathrm{g}}}^{\top}\left(u\left(k-n_{\mathrm{b}}\right)\right)
\end{array}\right]^{\top}, \tag{3a}\\
\theta=\left[\begin{array}{llll}
c & \theta_{1}^{\top} & \ldots & \theta_{n_{\mathrm{g}}}^{\top}
\end{array}\right]^{\top}, \tag{3b}
\end{gather*}
$$

where $\phi_{i}(\cdot)=\left[\begin{array}{lll}\phi_{i, 1}(\cdot) & \ldots & \phi_{i, n_{\mathrm{H}}}(\cdot)\end{array}\right]^{\top}, \theta_{i}=\left[\begin{array}{lll}\theta_{i, 1} & \ldots & \theta_{i, n_{\mathrm{H}}}\end{array}\right]^{\top}$ and $c \in \mathbb{R}$.
The global optimum of Problem (1) is obtained when the KKT conditions are fulfilled, i.e.,

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial e}=0 \rightarrow \quad \alpha_{k}=\frac{\gamma}{N^{2}} \Gamma \Gamma^{\top} e(k), \tag{4a}\\
& \frac{\partial \mathcal{L}}{\partial \alpha_{k}}=0 \rightarrow \tag{4b}\\
& y(k)=\underbrace{\sum_{i=1}^{n_{\mathrm{g}}} \phi_{i}^{\top}\left(x_{i}(k)\right) \theta_{i}+c}_{\varphi^{\top}(k) \theta}+e(k), \\
& \frac{\partial \mathcal{L}}{\partial \beta_{i}}=0 \rightarrow \tag{4c}\\
& 0=\phi_{i}^{\top}(0) \theta_{i}, \\
& \frac{\partial \mathcal{L}}{\partial \theta_{i}}=0 \rightarrow \tag{4~d}\\
& \theta_{i}=\sum_{k=1}^{N} \alpha_{k} \phi_{i}\left(x_{i}(k)\right)+\beta_{i} \phi_{i}(0), \\
& \frac{\partial \mathcal{L}}{\partial c}=0 \rightarrow \tag{4e}\\
& c=\sum_{k=1}^{N} \alpha_{k},
\end{align*}
$$

for all $i=1, \ldots, n_{\mathrm{g}}$ and $k=1, \ldots, N$.
By substituting (4d) and (4e) into (4b) and (4c), we get

$$
\begin{align*}
y(k) & =\sum_{i=1}^{n_{\mathrm{g}}} \phi_{i}^{\top}\left(x_{i}(k)\right)(\underbrace{\sum_{k=1}^{N} \alpha_{k} \phi_{i}\left(x_{i}(k)\right)+\beta_{i} \phi_{i}(0)}_{\theta_{i}})+\underbrace{\sum_{k=1}^{N} \alpha_{k}}_{c}+e(k), \tag{5a}\\
0 & =\phi_{i}^{\top}(0)(\underbrace{\sum_{k=1}^{N} \alpha_{k} \phi_{i}\left(x_{i}(k)\right)+\beta_{i} \phi_{i}(0)}_{\theta_{i}}), \tag{5b}
\end{align*}
$$

for $k \in\{1, \ldots, N\}$ and $i \in\left\{1, \ldots, n_{\mathrm{g}}\right\}$. Let introduce the following notation (used in [1]):

$$
\begin{align*}
E & =\left[\begin{array}{lll}
e(1) & \ldots & e(N)
\end{array}\right]^{\top}, \tag{6a}\\
Y & =\left[\begin{array}{lll}
y(1) & \ldots & y(N)
\end{array}\right]^{\top}, \tag{6b}\\
\alpha & =\left[\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{N}
\end{array}\right]^{\top}, \tag{6c}\\
\beta & =\left[\begin{array}{lll}
\beta_{1} & \ldots & \beta_{n_{\mathrm{g}}}
\end{array}\right]^{\top}, \tag{6d}\\
1_{N} & =\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right]^{\top} \in \mathbb{R}^{N} \tag{6e}\\
0_{n_{\mathrm{g}}} & =\left[\begin{array}{lll}
0 & \ldots & 0
\end{array}\right]^{\top} \in \mathbb{R}^{n_{\mathrm{g}}}, \tag{6f}\\
\Phi_{i} & =\left[\begin{array}{llll}
\phi_{i}\left(x_{i}(1)\right) & \ldots & \phi_{i}\left(x_{i}(N)\right)
\end{array}\right]^{\top}, \tag{6~g}\\
D_{\Phi} & =\left[\begin{array}{llll}
\Phi_{1} \phi_{1}(0) & \ldots & \Phi_{n_{\mathrm{g}}} \phi_{n_{\mathrm{g}}}(0)
\end{array}\right]^{\top}, \tag{6h}\\
D_{0} & =\operatorname{diag}\left(\phi_{1}^{\top}(0) \phi_{1}(0), \ldots, \phi_{n_{\mathrm{g}}}^{\top}(0) \phi_{n_{\mathrm{g}}}(0)\right) . \tag{6i}
\end{align*}
$$

Eqs. (5) can also be written in the matrix form

$$
\begin{align*}
E & =Y-\left(1_{N} 1_{N}^{\top}+\sum_{i=1}^{n_{\mathrm{g}}} \Phi_{i} \Phi_{i}^{\top}\right) \alpha-D_{\Phi} \beta \tag{7a}\\
0_{n_{\mathrm{g}}} & =D_{\Phi}^{\top} \alpha+D_{0} \beta \tag{7b}
\end{align*}
$$

Then substitution of (7a) into (4a) leads to the solution:

$$
\left[\begin{array}{c}
\alpha \tag{8}\\
\beta
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{N^{2}} H G+\frac{1}{\gamma} I_{N} & \frac{1}{N^{2}} H D_{\Phi} \\
\frac{1}{N} D_{\Phi}^{\top} & \frac{1}{N} D_{0}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{1}{N^{2}} H Y \\
0_{n_{\mathrm{g}}}
\end{array}\right]
$$

where $H=\Gamma \Gamma^{\top}$ and $G=1_{N} 1_{N}^{\top}+\sum_{i=1}^{n_{\mathrm{g}}} \underbrace{\Phi \Phi_{i}^{\top}}_{G^{(i)}}$. Note that the (i, j)-th entry of the matrix $G^{(i)}$ is given by

$$
\begin{equation*}
\left[G^{(i)}\right]_{j, k}=\left\langle\phi_{i}\left(x_{i}(j)\right), \phi_{i}\left(x_{i}(k)\right)\right\rangle=K^{(i)}\left(x_{i}(j), x_{i}(k)\right), \tag{9}
\end{equation*}
$$

with $K^{(i)}\left(x_{i}(j), x_{i}(k)\right)$ being a positive definite kernel function defining the inner product $\left\langle\phi_{i}\left(x_{i}(j)\right), \phi_{i}\left(x_{i}(k)\right)\right\rangle$. Similarly, the entries of the matrices D_{Φ} and D_{0} can be defined in terms of a kernel function as

$$
\begin{gather*}
{\left[D_{\Phi}\right]_{i, k}=\left\langle\phi_{i}\left(x_{i}(k)\right), \phi_{i}(0)\right\rangle=K_{\Phi, 0}^{(i)}\left(x_{i}(k), 0\right),} \tag{10}\\
{\left[D_{0}\right]_{i, i}=\left\langle\phi_{i}(0), \phi_{i}(0)\right\rangle=K_{0,0}^{(i)}(0,0)} \tag{11}
\end{gather*}
$$

Once the Lagrangian multipliers α and β are computed through (8), the estimate $\hat{\theta}$ of the model parameters θ is obtained from (4d) and (4e), i.e.,

$$
\hat{\theta}_{\mathrm{D}}=\left[\begin{array}{c}
c \tag{12}\\
\theta_{1} \\
\vdots \\
\theta_{n_{\mathrm{g}}}
\end{array}\right]=\left[\begin{array}{c}
1_{N}^{\top} \alpha \\
\Phi_{i}^{\top} \alpha+\beta_{1} \phi_{1}(0) \\
\vdots \\
\Phi_{n_{\mathrm{g}}}^{\top} \alpha+\beta_{n_{\mathrm{g}}} \phi_{n_{\mathrm{g}}}(0)
\end{array}\right]
$$

The estimate of the nonlinear functions $\phi_{i}^{\top}(.) \theta_{i}$ can be then obtained from (12) and (4d), i.e.,

$$
\begin{align*}
\phi_{i}^{\top}(\cdot) \theta_{i} & =\phi_{i}^{\top}(\cdot)\left(\phi_{i}(0) \beta_{i}+\sum_{k=1}^{N} \alpha_{k} \phi_{i}\left(x_{i}(k)\right)\right)= \tag{13a}\\
& =\underbrace{\phi_{i}^{\top}(\cdot) \phi_{i}(0)}_{K^{(i)}(0, \cdot)} \beta_{i}+\sum_{k=1}^{N} \alpha_{k} \underbrace{\phi_{i}^{\top}(\cdot) \phi_{i}\left(x_{i}(k)\right)}_{K^{(i)}\left(x_{i}(k), \cdot\right)}= \tag{13b}\\
& =K^{(i)}(0, \cdot) \beta_{i}+\sum_{k=1}^{N} \alpha_{k} K^{(i)}\left(x_{i}(k), \cdot\right) . \tag{13c}
\end{align*}
$$

References

[1] V. Laurain, R. Tóth, D. Piga, and W. X. Zheng. An instrumental least squares support vector machine for nonlinear system identification. Submitted to Automatica, 2013.

