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Abstract

Least-Squares Support Vector Machines (LS-SVM’s), originating from Stochastic Learning
theory, represent a promising approach to identify nonlinear systems via nonparametric es-
timation of nonlinearities in a computationally and stochastically attractive way. However,
application of LS-SVM’s in the identification context is formulated as a linear regression aim-
ing at the minimization of the ℓ2 loss in terms of the prediction error. This formulation
corresponds to a prejudice of an auto-regressive noise structure, which, especially in the non-
linear context, is often found to be too restrictive in practical applications. In [1], a novel
Instrumental Variable (IV) based estimation is integrated into the LS-SVM approach provid-
ing, under minor conditions, a consistent identification of nonlinear systems in case of a noise
modeling error. It is shown how the cost function of the LS-SVM is modified to achieve an
IV-based solution.

In this technical report, a detailed derivation of the results presented in Section 5.2 of [1]
is given as a supplement material for interested readers.

1 IV in the dual form

Consider the primal minimization problem (eq. (52) in [1]):

min
θ∈Rnθ

1

2
θ⊤θ +

γ

2N2

∥∥Γ⊤E
∥∥2
ℓ2
, (1a)

s.t. e(k) = y(k)− φ⊤(k)θ, k = 1, . . . , N, (1b)

ϕ⊤
i (0)θi = 0, i = 1, . . . , ng. (1c)
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Introduce the Lagrangian

L(θ, e, α, β) =
1

2
θ⊤θ +

γ

2N2

∥∥Γ⊤E
∥∥2
ℓ2

−
N∑
k=1

αk

(
φ⊤(k)θ + e(k)− y(k)

)
−

ng∑
i=1

βiϕ
⊤
i (0)θi, (2)

with αk and βi being the Lagrangian multiplier. According to [1], the terms φ⊤(k) and θ can
be decomposed as

φ(k) =
[
1 ϕ⊤

1

(
y(k − 1)

)
. . . ϕ⊤

na

(
y(k − na)

)
ϕ⊤
na+1

(
u(k)

)
. . . ϕ⊤

ng

(
u(k − nb)

) ]⊤
,

(3a)

θ =
[
c θ⊤1 . . . θ⊤ng

]⊤
, (3b)

where ϕi(�) = [ ϕi,1(�) . . . ϕi,nH
(�) ]⊤, θi = [θi,1 . . . θi,nH

]⊤ and c ∈ R.

The global optimum of Problem (1) is obtained when the KKT conditions are fulfilled,
i.e.,

∂L
∂e

= 0 → αk =
γ

N2
ΓΓ⊤e(k), (4a)

∂L
∂αk

= 0 → y(k) =

ng∑
i=1

ϕ⊤
i (xi(k))θi + c︸ ︷︷ ︸
φ⊤(k)θ

+ e(k), (4b)

∂L
∂βi

= 0 → 0 = ϕ⊤
i (0)θi, (4c)

∂L
∂θi

= 0 → θi =
N∑
k=1

αkϕi(xi(k)) + βiϕi(0), (4d)

∂L
∂c

= 0 → c =
N∑
k=1

αk, (4e)

for all i = 1, . . . , ng and k = 1, . . . , N .

By substituting (4d) and (4e) into (4b) and (4c), we get

y(k) =

ng∑
i=1

ϕ⊤
i (xi(k))

(
N∑
k=1

αkϕi(xi(k)) + βiϕi(0)︸ ︷︷ ︸
θi

)
+

N∑
k=1

αk︸ ︷︷ ︸
c

+ e(k), (5a)

0 = ϕ⊤
i (0)

(
N∑
k=1

αkϕi(xi(k)) + βiϕi(0)︸ ︷︷ ︸
θi

)
, (5b)

2



for k ∈ {1, . . . , N} and i ∈ {1, . . . , ng}. Let introduce the following notation (used in [1]):

E = [e(1) . . . e(N)]⊤ , (6a)

Y = [y(1) . . . y(N)]⊤ , (6b)

α = [α1 . . . αN ]
⊤ , (6c)

β =
[
β1 . . . βng

]⊤
, (6d)

1N = [1 . . . 1]⊤ ∈ RN , (6e)

0ng = [0 . . . 0]⊤ ∈ Rng , (6f)

Φi =
[
ϕi(xi(1)) . . . ϕi(xi(N))

]⊤
, (6g)

DΦ =
[
Φ1ϕ1(0) . . . Φngϕng(0)

]⊤
, (6h)

D0 =diag
(
ϕ⊤
1 (0)ϕ1(0), . . . , ϕ⊤

ng
(0)ϕng(0)

)
. (6i)

Eqs. (5) can also be written in the matrix form

E = Y −

(
1N1

⊤
N +

ng∑
i=1

ΦiΦ
⊤
i

)
α−DΦβ, (7a)

0ng = D⊤
Φα +D0β. (7b)

Then substitution of (7a) into (4a) leads to the solution:[
α
β

]
=

[
1
N2HG+ 1

γ
IN

1
N2HDΦ

1
N
D⊤

Φ
1
N
D0

]−1 [ 1
N2HY
0ng

]
, (8)

where H = ΓΓ⊤ and G = 1N1
⊤
N +

∑ng

i=1ΦΦ
⊤
i︸︷︷︸

G(i)

. Note that the (i, j)-th entry of the matrix G(i)

is given by
[G(i)]j,k =

⟨
ϕi(xi(j)), ϕi(xi(k))

⟩
= K(i)

(
xi(j), xi(k)

)
, (9)

with K(i)
(
xi(j), xi(k)

)
being a positive definite kernel function defining the inner product⟨

ϕi(xi(j)), ϕi(xi(k))
⟩
. Similarly, the entries of the matrices DΦ and D0 can be defined in

terms of a kernel function as

[DΦ]i,k =
⟨
ϕi(xi(k)), ϕi(0)

⟩
= K

(i)
Φ,0

(
xi(k), 0

)
, (10)

[D0]i,i =
⟨
ϕi(0), ϕi(0)

⟩
= K

(i)
0,0

(
0, 0
)
. (11)

Once the Lagrangian multipliers α and β are computed through (8), the estimate θ̂ of the
model parameters θ is obtained from (4d) and (4e), i.e.,

θ̂D =


c
θ1
...

θng

 =


1⊤Nα

Φ⊤
i α+ β1ϕ1(0)

...
Φ⊤

ng
α + βngϕng(0)

 . (12)
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The estimate of the nonlinear functions ϕ⊤
i (�)θi can be then obtained from (12) and (4d), i.e.,

ϕ⊤
i (�)θi =ϕ⊤

i (�)
(
ϕi(0)βi +

N∑
k=1

αkϕi(xi(k))

)
= (13a)

=ϕ⊤
i (�)ϕi(0)︸ ︷︷ ︸
K(i)
(
0,�
) βi +

N∑
k=1

αkϕ
⊤
i (�)ϕi(xi(k))︸ ︷︷ ︸
K(i)
(
xi(k),�

) = (13b)

=K(i)
(
0, �
)
βi +

N∑
k=1

αkK
(i)
(
xi(k), �

)
. (13c)
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