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On the Connection Between Different Noise
Structures for LPV-SS Models

Pepijn B. Cox and Roland Tóth

Abstract—Different representations to describe noise processes
and finding connections or equivalence between them have been
part of active research for decades, in particular for linear
time-invariant case. In this paper the linear parameter-varying
(LPV) setting is addressed; starting with the connection between
an LPV state-space (SS) representation with a general noise
structure and the LPV-SS model in an innovation structure,
i.e., the Kalman filter. More specifically, the considered LPV-
SS representation with general noise structure has static, affine
dependence on the scheduling signal; however, we show that
its companion innovation structure has a dynamic, rational
dependency structure. Following, we would like to highlight the
consequences of approximating this Kalman gain by a static,
affine dependency structure. To this end, firstly, we use the
“fading memory” effect of the Kalman filter to reason how
the Kalman gain can be approximated to depend only on a
partial trajectory of the scheduling signal. This effect is shown by
proving an asymptotically decreasing error upper bound on the
covariance matrix associated to the innovation structure in case
the covariance matrix is subjected to an incorrect initialization or
disturbance. Secondly, we show by an example that an LPV-SS
representation that has dynamical, rational dependency on the
scheduling signal can be transformed into static, affinely depen-
dent representation by introducing additional states. Therefore,
an approximated Kalman gain can, in some cases, be represented
by a static, affine Kalman gain at the cost of additional states.

Index Terms—Linear parameter-varying system, state-space
representation, innovation form, Kalman filter.

I. INTRODUCTION

Including general representations of noise processes in
system identification is essential for capturing a wide vari-
ety of possible noise sources experienced in practice, e.g.,
unmodelled dynamics, sensor noise, parameter inaccuracies,
etc. Hence, active research on different representations, their
generality, and connections between them has been going
on for decades. Especially, the linear time invariant (LTI)
case has a well established connection between an LTI state-
space (SS) representation with state and output additive noise
and the innovation form, i.e., the Kalman filter (e.g., see [1]
and the references therein). In this case, the Kalman filter is
asymptotically time invariant, therefore, a suboptimal filter can
be found with a constant Kalman matrix.

To the authors knowledge, similar time invariant Kalman
filters for linear parameter-varying (LPV), time-varying, or
nonlinear systems does not exists. Except [2], for a stochastic
jump-Markov linear system a Kalman gain that has affine
dependency on the switching signal can be found, under the
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assumption that the system is quadratic stabilty. Contrary to the
LTI case, having quadratic stability for LPV or jump-Markov
linear systems is only a sufficient condition, i.e., ristrictive
condition for stability (e.g., see [3]), and, therefore, the result
of [2] does not apply to every stable LPV or jump-Markov
linear system. However, in this paper such strong assumption
on stability of the system is not required. Hence, we will treat
a more general case.

In this paper, we start by providing the connection between
the LPV-SS representation with general noise and its LPV-
SS innovation structure companion (Sec. II). When moving
from the general noise structure with affine, static dependency
on the scheduling signal to the innovation form, the resulting
error state covariance matrix function, Kalman gain, and the
covariance of the innovation noise will have dynamic, rational
dependency on the scheduling signal. Then, based upon the
stability result of [4], we show that the innovation recursion
can recover from an incorrect initialization or disturbance
with a guaranteed asymptotic convergence (Sec. III). This
guaranteed convergence implies a “fading memory” effect
within the innovation recursion and it is used to argue that
the Kalman gain can be approximated by only using a partial
trajectory of the scheduling signal, in stead of the complete
trajectory (Sec. IV).

II. PRELIMINARIES

Notation

We denote a probability space as (Ξ,FΞ,P) where FΞ is
the σ-algebra, defined over the sample space Ξ; and P : FΞ →
[0, 1] is the probability measure defined over the measurable
space (Ξ,FΞ). Within this work, we consider random variables
that take values on the Euclidean space. More precisely, for
the given probability space (Ξ,FΞ,P) we define a random
variable f as a measurable function f : Ξ → Rn, which
induces a probability measure on (Rn,B(Rn)). As such, a
realization ν ∈ Ξ of P, denoted ν ∼ P, defines a realization
f of f , i.e., f := f(ν). Furthermore, a stochastic process x
is a collection of random variables xt : Ξ → Rn indexed by
the set t ∈ Z (discrete time), given as x = {xt : t ∈ Z}.
A realization ν ∈ Ξ of the stochastic process defines a signal
trajectory x := {xt(ν) : t ∈ Z}. We call a stochastic process x
stationary if xt has the same probability distribution on each
time index as xt+τ for all τ ∈ N.

In addition, the inequalities A � B and A � B, for two
symmetric matrices A and B of equal dimension, imply that
A−B is semi-positive and positive definite, respectively.



2

A. The LPV-SS representation with general noise

Consider a multiple-input multiple-output (MIMO),
discrete-time linear parameter-varying data-generating
system, defined by the following first-order difference
equation, i.e., the LPV-SS representation with general noise
model:

xt+1 = A(pt)xt + B(pt)ut + G(pt)wt, (1a)
yt = C(pt) xt +D(pt)ut +H(pt)vt, (1b)

where x : Z → X = Rnx is the state variable, y : Z →
Y = Rny is the measured output signal, u : Z → U = Rnu

denotes the input signal, p : Z → P ⊆ Rnp is the scheduling
variable, subscript t ∈ Z is the discrete time, w : Z → Rnx ,
v : Z → Rny are the sample path realizations of zero-mean
stationary noise processes:[

wt

vt

]
∼ N (0,Σ), Σ =

[
Q S

S> R

]
, (2)

where wt : Ξ → X, vt : Ξ → Y are random variables of
the stochastic process w ,v, respectively, Q ∈ Rnx×nx , S ∈
Rnx×ny , and R ∈ Rny×ny are covariance matrices, such that Σ
is positive definite. Furthermore, we will assume u, p, w, v, y
to have left compact support to avoid technicalities with initial
conditions. The matrix functions A(·), ...,H(·), defining the
SS representation (1) are defined as affine combinations:

A(pt)=A0 +

nψ∑
i=1

Aiψ
[i](pt), B(pt)=B0 +

nψ∑
i=1

Biψ
[i](pt),

C(pt)=C0 +

nψ∑
i=1

Ciψ
[i](pt), D(pt)=D0 +

nψ∑
i=1

Diψ
[i](pt),

G(pt)=G0 +

nψ∑
i=1

Giψ
[i](pt), H(pt)=H0 +

nψ∑
i=1

Hiψ
[i](pt),

(3)
where ψ[i](·) : P → R are bounded scalar functions on
P and {Ai, Bi, Ci, Di, Gi, Hi}

nψ
i=0 are constant matrices with

appropriate dimensions. Additionally, for well-posedness, it is
assumed that {ψ[i]}nψi=1 are linearly independent over an appro-
priate function space and are normalized w.r.t. an appropriate
norm or inner product [5].

B. The innovation form

To start, under some mild conditions, the LPV-SS represen-
tation (1) has the following equivalent innovation form:

Lemma 1. For each given trajectory of the input u and
scheduling p, the LPV data-generating system (1) can be
equivalently represented by a p-dependent innovation form

x̌t+1 = A(pt)x̌t + B(pt)ut +Ktξt, (4a)
yt = C(pt) x̌t +D(pt)ut + ξt, (4b)

where ξt ∼ N (0,Ωt) and Kt can be uniquely determined by

Kt=
[
A(pt)Pt|t−1C>(pt) + G(pt)SH>(pt)

]
Ω−1
t , (4c)

Pt+1|t=A(pt)Pt|t−1A>(pt)−KtΩtK>t +

G(pt)QG>(pt), (4d)

Ωt=C(pt)Pt|t−1C>(pt) +H(pt)RH>(pt), (4e)

under the assumption that ∃t0 ∈ Z such that xt0 = 0 and Ωt
is non-singular for all t ∈ [t0,∞). In (4c)-(4e), the notation
of Kt, Pt+1|t, and Ωt is a shorthand for Kt := (K � pt) ∈
Rnx×ny , Pt+1|t := (Pt+1|t � pt) ∈ Rnx×nx , and Ωt := (Ω �
pt) ∈ Rny×ny . The operator � : (R,PZ) → RZ denotes
(Kt � pt) = Kt(pt+τ1 , . . . , pt, . . . , pt−τ2) with τ1, τ2 ∈ Z. The
subscript notation t+1|t denotes that the matrix function at
time t+ 1 depends only on pi for i = t0, . . . , t. �

Proof. See Appendix.

From Lem. 1 it becomes clear that moving from the LPV-
SS system (1) with static, affine dependency to the innovation
from comes at the cost of dynamic, rational dependency
on the scheduling signal. In Sec. III, guaranteed asymptotic
convergence of the covariance matrix Pt+1|t (4d) is proven if
the covariance matrix is perturb by an error in the past. That
result is used to argue how the Kalman gain Kt (4c) can be
approximated by a partial trajectory of the scheduling signal,
in Sec. IV.

III. GARUENTEED ASYMPTOTIC CONVERGENCE OF THE
COVARIANCE MATRIX Pt+1|t

In this section, we will show that an error created on the
priori error covariance matrix Pt+1|t (4d) at a certain time will
asymptotically decrease to zero when time progresses.

To this end, let us introduce some technicalities. Firstly,
the stochastic processes w and v (2) need to be uncorrelated,
hence using the minimum variance estimate of wt given by
w̄t = wt − SR−1vt, the state equation (1a) is rewritten as
(e.g., see [1, Section 5.5])

xt+1 =
(
A(pt)− G(pt)SR

−1H−1(pt)C(pt)
)
xt

+
(
B(pt)− G(pt)SR

−1H−1(pt)D(pt)
)
ut

+ G(pt)SR
−1H−1(pt)yt + G(pt)w̄t, (5a)

where[
w̄t

vt

]
∼ N

([
0
0

]
,

[
Q− SR−1S 0

0 R

])
. (5b)

Define ū>t := [ u>t y>t ]>, which gives the following
scheduling dependent matrices

Āt=A(pt)− G(pt)SR
−1H−1(pt)C(pt), (5c)

B̄t=
[
B(pt)− G(pt)SR

−1H−1(pt)D(pt),

G(pt)SR
−1H−1(pt)

]
, (5d)

Q̄=Q− SR−1S. (5e)

Secondly, let B̄t and D(pt) be bounded and assume that

α1I � G(pi)Q̄G(pi) � α2I, (5f)

β1I � C(pi)>(H(pi)RH(pi)
>)−1C(pi) � β2I, (5g)

δ1I � Ā>i Āi � δ2I, (5h)

holds for i ∈ T, with left compact support T of the scheduling
signal, α1, β2, δ1 > 0, and α2, β1, δ2 < ∞. Conditions (5f)-
(5h) imply that the system (1) is stochastically controllable and
observable for all possible variations of p ∈ P, i.e., the state
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can uniquely be reconstructed, which are not over restrictive
assumptions. Define the posterior filter error et = xt − x̌t|t
dynamics by

et+1 = (I −Kt+1C(pt+1))Ātet = Wtet. (5i)

If (5f)-(5h) hold then there exitst a β3, β5, β6 [4] as∥∥∥∥[ C(pi) 0
0 C(pi−1)

][
Āi−1Āi−2

Ai−1

]
ei−2

∥∥∥∥
2

≥β3‖ei−2‖2,
(5j)[

R 0
0 R

]
+ Li

[
Pi|i−1 0

0 Pi−1|i−2

]
L>i � β5I, (5k)

with
Li =

[
C(pi) C(pi)Āi−1

0 Ci−1

]
,

and ∥∥W−1
i−2W

−1
i−1ei

∥∥
2
≥ β6 ‖ei‖2 , (5l)

for i = T where 0 < β3, β5, β6 < ∞. Using (5f)-(5l), the
error created on the priori error covariance matrix Pt+1|t (4d)
at a certain time will asymptotically decrease to zero as:

Theorem 1. Let B̄t and D(pt) be bounded and (5f)-(5h) hold.
Assume that Pt|t−1 is a positive semi definite matrix function
of t, which has a left compact support T and satisfies (4c)-(4e)
for a given trajectory of p (with left compact support). Let us
consider that there exists a τ > 0 and an associated P̂(τ)

t|t−1
constructed with the recursions of (4d) initialized at time t−τ
with

P̂(τ)
t−τ |t−τ−1 = ĀtP̂0,τ Ā>t + Q̄ (6a)

where P̂0,τ is a static matrix defined as

0 ≺ P̂0,τ ≺
(

α2

α2β2 + 1

)
I. (6b)

Then, the difference between Pt|t−1 and P̂(τ)
t|t−1 has the fol-

lowing bound

max
t∈T

∥∥∥Pt|t−1−P̂
(τ)
t|t−1

∥∥∥
2
≤ ξτ δ1nx(α1β1+1)2(α2β2+1)

α2β2
1

,

(6c)
where ξ ∈ (0, 1) and given as

ξ =
β5(α2β2 + 1)

β5(α2β2 + 1) + α2β3β6 �

The remainder of the section is used to proof Theorem 1.
The following proof uses extensivly the result of [4], however,
Deyst and Price make use of the posterior covariance matrix
Pt|t in stead of the prior covariance matrix Pt|t−1. Hence, we
will first construct the proof w.r.t. posterior covariance matrix.
The covariance matrix is given as

Pt|t = (I−KtC(pt))Pt|t−1, (7)

where it is proven in [4] to be bounded as(
α2

α2β2 + 1

)
I � Pt|t �

(
1

β1
+ α1

)
I, (8)

and the prior covariance can be found from the posterior as

Pt+1|t = ĀtPt|tĀ>t + Q̄. (9)

Remark that P̂0,τ of (6a) substitutes the posterior covariance
matrix on Pt−τ |t−τ to construct P(τ)

t|t .

Lemma 2. Given (6b) and the error dynamics (5i), it holds
that

0 �
(
Pt|t − P̂

(τ)
t|t

)
�

t−1∏
i=t−τ

Ŵi

(
Pt−τ |t−τ − P̂0,τ

) t−1∏
i=t−τ

Ŵ>i , (10)

where Ŵi is the filter error dynamics w.r.t. K̂i+1 of P̂(τ)
i|i . �

Proof. Lets first proof the lemma for τ = 1. As Pt|t is the
optimal solution for Kt, then P ′t|t is constructed from Ki for

i = t0, . . . , t− τ − 1 and K(τ)
j for j = t− τ, . . . , t with Kj 6=

K(τ)
j . Remark that P ′t|t is suboptimal; hence, P ′t|t � Pt|t [1,

Theorem 2.1]. Therefore,

P ′t|t − P̂
(1)
t|t � Pt|t − P̂

(1)
t|t . (11a)

Also see that (7) can be written, by using (4d), as

Pt|t=(I−KtC(pt))
(
Āt−1Pt−1|t−1Ā>t−1+G(pt−1)Q̄G>(pt−1)

)
(I −KtC(pt))> +Kt−1RK>t−1. (11b)

Combining (11a) and (11b) results in

Ŵt−1

(
Pt−1|t−1 − P̂0,τ

)
Ŵ>t−1 � Pt|t − P̂

(1)
t|t . (11c)

Then repeating the upper bound (11c) for τ time steps proofs
the upper bound, i.e., right-hand side of (10).
Similar argument can be made for the lower bound. Now,
initialize with P̂0,τ and use Kj for j = t−τ, . . . , t to construct
P̂ ′t|t, i.e., find an suboptimal solution with P̂ ′t|t � P̂

(τ)
t|t . Hence

Pt|t − P̂
(τ)
t|t � Pt|t − P̂

′
t|t, which results, for τ = 1, in the

following lower bound

Wt−1

(
Pt−1|t−1 − P̂0,1

)
W>t−1 � Pt|t − P̂

(1)
t|t . (11d)

As Pt−1|t−1 − P̂0,τ is semi-positive definite (by construction
of P̂0,τ ), the left-hand side of (11d) is bounded by zero.

Next, let us provide the sufficient conditions for quadratic
Lyapunov stability of the filter dynamics (5i) proven in [4]:

Lemma 3. If the LPV-SS system (1) satisfies conditions (5f)-
(5h) then the system (5i) is asymptotically stable. Additionally,
there exists a real scalar function V (et, t) such that

0 < γ1‖et‖22 ≤ V (et, t) ≤ γ2‖et‖22, et 6= 0, (12a)

V (et, t)− V (et−1, t− 1) ≤ γ3‖et‖22 < 0, et 6= 0, (12b)

where

γ1 =
β1

1+α1β1
, γ2 =

1

α2
+ β2, γ3 =−β2

3β
−1
5 β6. (12c)

�

Using Lem. 3, the bound on the error-dynamics is:
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Lemma 4. If the LPV-SS system (1) satisfies conditions (5f)-
(5h) then the τ -step homogeneous error dynamics (5i) are
bounded as

‖et‖22 =

∥∥∥∥∥
t−1∏
i=t−τ

Wiet−τ

∥∥∥∥∥
2

2

≤ ξτγ−1
1 γ2‖et−τ‖22, (13)

where ξ = γ2
γ2−γ3 . �

Proof. To simplify notation, define Vt := V (et, t). Substitut-
ing the upper bound of (12a) into (12b) gives

Vt − Vt−1 ≤ γ3‖et‖22 ≤ γ3γ
−1
2 Vt < 0. (14a)

Therefore the following holds

Vt − ξVt−1 ≤ 0, ξ =
1

1− γ3γ
−1
2

, (14b)

where ξ ∈ [0, 1) as γ3γ
−1
2 < 0. Hence, Vt − ξτVt−τ ≤ 0.

Combining this τ -step Lyapunov bound and (12a) gives

γ1‖et‖22 ≤ Vt ≤ ξτγ2‖et−τ‖22 (14c)

The proof is completed by applying the `2 norm on (5i) and
substituting (14c).

To complete the proof of Thm. 1. First, take the eigenvalue
decomposition Z = UDU>, where U is a matrix containing
the eigenvectors and D the diagonal matrix containing the
eigenvalues λi ≥ 0 of Z. For a positive definite matrix Z, it
holds that

Z = UDU> � Tr (D)UU> = Tr (Z) I. (15)

Second, take the eigenvalue decomposition of Pt|t − P̂t|t =∑nx

j=1 λ
2
j,tuj,tu

>
j,t and define yj,t := λj,tuj,t. Then, combining

the trace of the left-hand side of (10) with (13) gives
nx∑
j=1

Tr
[
yj,ty

>
j,t

]
=

nx∑
j=1

‖yj,t‖22≤
nx∑
j=1

ξτγ−1
1 γ2‖yj,t−τ‖22

= ξτγ−1
1 γ2Tr

[
Pt−τ |t−τ− P0,τ

]
. (16)

Joining (15) and (16) results in

Pt|t − P̂
(τ)
t|t � ξ

τγ−1
1 γ2Tr

[
Pt−τ |t−τ − P0,τ

]
I.

Left and right multiplying by Āt and Ā>t , respectively, and
substituting (9) gives

Āt
(
Pt|t − P̂

(τ)
t|t

)
Ā>t = Pt+1|t − P̂

(τ)
t+1|t

� ξτγ−1
1 γ2Tr

[
Pt−τ |t−τ − P̂0,τ

]
ĀtĀ>t

� ξτγ−1
1 γ2δ1Tr

[
Pt−τ |t−τ − P̂0,τ

]
I. (17)

Taking into account (8) and using (6b), the following holds

Tr
[
Pt−τ |t−τ − P̂0,τ

]
< nx(β−1

1 + α1). (18)

To conclude the proof, the spectral norm of a matrix A is
‖A‖2 = σmax(A). Hence, applying the spectral norm on (17)
and substitute (18) results in∥∥∥Pt|t−1 − P̂

(τ)
t|t−1

∥∥∥
2
≤ξτγ−1

1 γ2δ1nx(β−1
1 +α1), (19)

which is equivalent to (6c) when substituting (12c) and taking
into account that the bound is time independent, i.e., it should
hold for every t ∈ T, which concludes the proof of Thm. 1.

IV. APPROXIMATION OF KALMAN GAIN

The innovation form is a different view on constructing a the
Kalman filter for (1). Hence, Kt in (4c) can be viewed as the
optimal LPV Kalman gain of (1). In the LTI case, the Kalman
filter is asymptotically time invariant, therefore, a suboptimal
filter can be found with a constant P and K matrix [1].
Hence, in the LTI case, the innovation form with constant K
and P matrix is viewed as a model description which allows
a general noise model. However, for the LPV case, Lem. 1
indicates that even if A(·), . . . ,D(·) have, for example, affine
dependence on pt (each ψ[i](pt) = p

[i]
t ) then Kt, Pt|t−1,Ωt are

meromorphic functions, where the nominator and denominator
are polynomial functions in the scheduling signal p and its
past time-shifts. Hence, the filter, generally speaking, it is not
clear that Kt will converge to a steady state solution with
some constant K matrix, and, therefore, Kt is a function of
scheduling signal and its past, i.e., pi with i ∈ T.

However, a popular model for many subspace identification
schemes is the innovation form, e.g., see [6]. In the LTI
case, the connection between the innovation form and the LTI
counterpart of (1), e.g., A(p) = A, is well studied. However,
it has not been thoroughly investigated in the LPV case.
As Lem. 1 shows, the LPV-SS representation with general
noise (1) is not equivalent to the innovation form with only
static, affine matrix functions, commonly used [7], [8]. Hence,
in this section, we are providing two approximations: i) due to
the asymptotic convergence of the innovation filter (Thm. 1),
the Kalman gain Kt can be approximated by K(τ)

t , which
depends only on pt−τ , . . . , pt; and ii) in some cases, by
sacrificing state minimally, the approximate Kalman gain with
dynamic, rational dependence on the scheduling signal can be
transformed to an approximate Kalman gain with static, affine
dependence (Sec. IV-A).

To start with the first approximation, thm. 1 highlights that
the covariance matrix Pt|t−1 can be arbitrary well approxi-
mated by only taking the scheduling signal p from pt−τ , . . . , pt
into account, e.g., “fading memory” of the innovation recur-
sions. The approximation error is upper bounded, as given
in (6c), and decays to zero if τ → ∞. Furthermore, the
covariance matrix (4d) is not implicitly dependent on the
Kalman gain (4c); however, any approximation of P will lead
to an approximation of K. As K is a rational function, any
approximation of P will result in a unique relation in K (up
to co-primness of the nominator and denominator).

Conjecture 1. Let us consider that there exists a τ > 0,
P̂(τ)
t|t−1 as constructed in Thm. 1, and let the associated gain

K(τ)
t be given by (4c) using P̂(τ)

t|t−1. Then the Kalman gain
can be decomposed as

Kt = K(τ)
t +R(τ)

t , (20a)

where R(τ)
t is a rational matrix function in pt, pt−1, . . .. In

addition, if τ →∞ then R(τ)
t → 0 and∥∥R(τ)

t

∥∥
2
>
∥∥R(τ+1)

t

∥∥
2
, (20b)

where R(τ+1)
t is the remainder term w.r.t. K(τ+1)

t and K(τ+1)
t

is constructed by using P̂(τ+1)
t|t−1 . �
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Conj. 1 highlights that Kt can be approximated by K(τ)
t ,

which depends only on pt−τ , . . . , pt. This truncation can be
made arbitrarily accurate by choosing an appropriate τ , i.e.,∥∥R(τ+1)

t

∥∥
2
�
∥∥Kt∥∥2

.

A. Static, affine Kalman gain

A popular choice in LPV-SS identification is to identify
an LPV-SS innovation form with a static and affine Kalman
filter matrix (e.g., see [8], [9]), similarly parametrized as (3).
Under the assumption that the Kalman filter function can be
arbitrarily well approximated by K(τ)

t , the dynamic, rational
dependence on the scheduling signal may, in some cases,
be transformed into a static, affine LPV-SS representation by
adding states, i.e., increasing nx:

Example 1. Consider the following LPV representation

yt = −ptyt−1 + ptut−1 + et + et−1. (21a)

The state minimal LPV-SS realization of (21a) is

xt+1 =−ptxt+ut+
1− pt+1

pt+1
et, yt=ptxt+et, (21b)

which is rationally and dynamically dependent on the schedul-
ing parameter p. Note, it can be shown that there exists
no state transformation (not even p-dependent) which can
turn (21b) into (4a)-(4b) with static, affine depend K on p,
i.e., Kt = K(pt), and keep the minimal state dimension
nx = 1 [10, Def. 3.29]. However, the transformation into a
static, affine form can be done by introducing an additional
state as

x̆t+1 =

[
−pt 1

0 0

]
x̆t +

[
−1 1
0 1

] [
ut
et

]
,

yt=
[
−pt 1

]
x̆t + et.

(21c)

Ex. 1 shows the elimination of dynamic, rational depen-
dence by sacrificing state minimality1. Hence, as many LPV-
SS identification methods estimate a static, affine functional
relation on the scheduling signal [8], [9], the rank relieving
property of subspace methods is lost, as additional states
are added to preserve the static, affine dependency. As a
conclusion, in the LPV case, the Kalman gain Kt (4c) should
have rational and dynamic dependency on the scheduling
signal to enjoy general noise modelling capabilities (Lem. 1)
and minimality of the state dimension. However, in practice,
we need to restrict overparameterization to reduce complexity
of the estimation method and variance of the model estimates.
Hence, the above given analysis is important to understand the
trade-off behind these choices.

V. CONCLUSION

We have shown that the innovation form (4) should have
a Kalman gain with rational and dynamic dependence on the
scheduling signal to represent general noise. However, this
function can be approximated by truncating the dynamic de-
pendency. Using this truncation, for some cases, an equivalent

1Comparable phenomena can be observed in the LTI case. If it is assumed
that S = 0, however, for the underlying system S 6= 0, then an increase of
the state dimension is also evident [1].

LPV-SS representation with affine and static dependency on
the scheduling signal can be found by including additional
states, resulting in a non-state minimal system.

APPENDIX
INNOVATION REPRESENTATION

The idea of the innovation process ξt is such that ξt consists
of that part of yt not carried in yt−1,yt−2, . . . [1], i.e.,

ξt = yt − E∗{yt | Yt−1}, (22)

where E∗{·} is the minimum variance estimator and Yt−1

indicates the set of observations {yt−1, . . . ,y0}. The signal yt
generated by (1) is a sequence of Gaussian random variables
as ut is known exactly. Hence, the output signal y is split into
a ‘deterministic’ part of yt as y̌t = E∗{yt | Yt−1} and a white
noise ξt with Gaussian distribution. The variables y̌t and ξt
are uncorrelated, i.e., E{y̌iξ

>
i } = 0 for i = 0, . . . , t because of

the orthogonality property of the minimum variance estimator.
Without loss of generality, we assume that ξ0 = y0−E∗{y0}.
Hence, as the initial condition is known, there exists a causal
filter from y0, . . . ,yt to ξt by writing out (1). The other way
around, i.e., that yt depends on ξ0, . . . , ξt, can be shown
in a recursive way [1]. Therefore, the dataset y0, . . . ,yt and
ξ0, . . . , ξt are uniquely related to each other and the following
holds

E{yt | y0, . . . ,yt−1} = E{yt | ξ0, . . . , ξt−1}. (23)

In addition, for any variable xt which has a joint Gaussian
distribution with yt it holds that

x̌t = E{xt | y0, . . . ,yt−1} = E{xt | ξ0, . . . , ξt−1}. (24)

Substituting (23) and (24) into (22) and taking the output
equation relation (4b) into account, gives

yt = C(pt)x̌t +D(pt)ut + ξt. (25)

We will assume that the initial state x0 = 0 is known2.
As ξ0, . . . , ξt+1 are mutually uncorrelated, the conditional

expectation (24) can be split up, e.g., see [1, Theorem 2.4, Ch.
5], and combined with (4a), which gives

x̌t+1 =E{xt+1 | ξ0, . . . , ξt−1}+E{xt+1 | ξt}−E{xt+1},

=A(pt)x̌t+B(pt)ut+E{xt+1 | ξt}−E{xt+1}. (26)

Note that xt+1 is uncorrelated with ξt−i for i > 0. The state
xt+1 and ξt are jointly Gaussian distributed variables, hence

E{xt+1 | ξt} = E{xt+1}+
cov [xt+1, ξt] var [ξt]

−1
(ξt − E{ξt}) , (27)

2This proof can be extended to x0 ∈ N (0, P0). However, it involves
additional constraints to ensure that the noise sequences w and v can be
causally computed from y, see [1, Theorem 3.4, Ch. 9]. For simplicity, this
case will not be considered.
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by using the minimum variance estimator property, e.g., see [1,
Theorem 2.1, Ch. 5]. Define the error of the state estimate by
x̃t = xt − x̌t. To compute cov [xt+1, ξt], see:

cov [xt+1, ξt] = cov [xt+1, C(pt)x̃t +H(pt)vt]

=E
{
[A(pt)(xt−E{xt})+G(pt)wt][C(pt)x̃t+H(pt)vt]

>
}

= A(pt)Pt|t−1C>(pt) + G(pt)SH>(pt), (28)

where Pt|t−1 = var [x̃t] is the a priori state error covariance.
To compute var [ξt], note that (1b) and (25) are equal in yt,
hence, by using the transitive property of equality, the variance
of ξt is given as

Ωt = var [ξt] = var [C(pt)x̃t +H(pt)vt]

= C(pt)Pt|t−1C>(pt) +H(pt)RH>(pt). (29)

Substituting (27), (28), and (29) in (26) gives

x̌t+1 =A(pt)x̌t + B(pt)ut +Ktξt, (30a)

Kt=
[
A(pt)Pt|t−1C>(pt)+G(pt)SH>(pt)

]
Ω−1
t . (30b)

Finally, the a priori state error covariance Pt|t−1 should be
found. Subtracting (30a) from (1a) gives

x̃t+1 = A(pt)x̃t + G(pt)wt −Ktξt
=[A(pt)−KtC(pt)] x̃t+G(pt)wt−KtH(pt)vt. (31)

Then

Pt+1|t = [A(pt)−KtC(pt)]Pt|t−1

[
A>(pt)− C>(pt)K>t

]
+ G(pt)QG>(pt) +KtH(pt)RH>(pt)K>t
− G(pt)SH>(pt)K>t −KtH(pt)S

>G>(pt)
= A(pt)Pt|t−1A>(pt) + G(pt)QG>(pt) +KtΩtKt
−Kt[C(pt)Pt|t−1A>(pt) +H(pt)S

>G>(pt)]
− [A(pt)Pt|t−1C>(pt) + G(pt)SH>(pt)]K>t , (32)

Combining (30b) and (32) gives (4d).
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