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M. Lovera

P. S. C. Heuberger

M. Corno

P. M. J. Van den Hof

August 11, 2011



Abstract

Commonly, controllers for Linear Parameter-Varying (LPV) systems are designed in continuous time using
a Linear Fractional Representation (LFR) of the plant. However, the resulting controllers are implemented
on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a discrete-time model
of the plant which is often derived from a continuous-time first-principle model. Existing discretization
approaches for LFRs describing LPV systems suffer from disadvantages like the possibility of serious ap-
proximation errors, issues of complexity, etc. To explore the disadvantages, existing discretization methods
have been reviewed in [4] and novel approaches have been derived to overcome them. The proposed and
existing methods have been compared and analyzed in terms of approximation error, considering ideal
zero-order hold actuation and sampling.

In this technical report a detailed derivation of the formulas and results presented in [4] is given as a
supplement and background material for interested readers.
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Chapter 1

Detailed derivations

1.1 Example 1: proof of stability, CT case

Consider,

ẋ(t) = −
w(t)

︷ ︸︸ ︷

p(t)x(t) +u(t), (1.1a)

y(t) = x(t), (1.1b)

with 0 < pmin ≤ p(t) ≤ pmax. This LPV system is asymptotically stable, if ∃K > 0 s.t.

V (x(t)) = x(t)Kx(t), (1.2)

is a Lyapunov function satisfying that

V (x(t)) > 0 if x(t) 6= 0 and V (x(t)) = 0 if x(t) = 0 (1.3a)

d

dt
V (x(t)) < 0 if x(t) 6= 0 (1.3b)

for all valid state-trajectory x ∈ (Rnx)R (with the associated p ∈ P
R) and t ∈ R. As (1.1a-b) is a polytopic

LPV system, we can characterize its stability with a much stronger statement (see e.g. [2]): (1.1a-b) is
asymptotically stable if and only if

∃K > 0 s.t. A(p)K +KA(p) < 0 (1.4)

for all p ∈ P where A is defined by Eq. (17a) in the paper. In this case A(p) = −p, hence for asymptotic
stability we need to show that ∃K > 0 s.t.:

−2Kp < 0, (1.5)

for all 0 < pmin ≤ p ≤ pmax. As p > 0 and K > 0, hence (1.5) always holds.

1.2 Example 1: computation of the stability bound, DT case

Now consider the discretized form of (1.1a-b) with the full zero-order hold approach, resulting in

x((k + 1)Td) = (1 − Tdp(kTd))x(kTd) + Tdu(kTd), (1.6a)

y(kTd) = x(kTd). (1.6b)

This discrete-time representation is again a polytopic LPV system, and it is asymptotically stable (via a
Lyapunov argument, see e.g. [2]) if and only if

∃K > 0 s.t. Ad(p)KAd(p)−K < 0 (1.7)
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for all p ∈ P where Ad is defined in discrete time according to A. In this case Ad(p) = 1−Tdp, meaning
that we want to show that ∃K > 0 s.t.:

(1− Tdp)
2K −K < 0. (1.8)

As K is assumed to be positive, thus (1.8) is equivalent with

1− 2Tdp+T2
dp

2 < 1,

−2Tdp+T2
dp

2 < 0,

T2
dp

2 < 2Tdp,

Tdp < 2,

as p > 0. This gives that (1.6a) is asymptotically stable if and only if

Td <
2

pmax
. (1.9)

1.3 Example 1: LFR realization

Consider the LFR realization of (1.6a-b). Introduce xd(k) = x(kTd) and ud, pd, yd respectively. Let
wd(k) = pd(k)xd(k), then

xd(k + 1) = xd(k)− Tdwd(k) + Tdud, (1.10a)

zd(k) = xd(k), (1.10b)

wd(k) = pd(k)zd(k), (1.10c)

yd(k) = xd(k). (1.10d)

From the previous equations, the realization




xd(k + 1)
zd(k)
yd(k)



 =





1 −Td Td

1 0 0
1 0 0









xd(k)
wd(k)
ud(k)



 (1.11)

with ∆d(pd)(k) = p(kTd) trivially follows.

1.4 Example 2: computation of the state evolution

Given

w(t) = p(kTd)x(kTd) +
t− kTd

Td

(

p((k + 1)Td)x((k + 1)Td)− p(kTd)x(kTd)
)

, (1.12)

and u(t) = u(kTd) for t ∈ [kTd, (k + 1)Td). It follows that for (1.1a-b) the state evolution inside of
[kTd, (k + 1)Td) is

x(t) =

∫ t

kTd

−p(kTd)x(kTd)−
t− kTd

Td

(

p((k + 1)Td)x((k + 1)Td)− p(kTd)x(kTd)
)

+ u(kTd) dτ. (1.13)

By evaluation this integral for t = (k + 1)Td, the resulting equation is

x((k + 1)Td) = x(kTd)− Tdp(kTd)x(kTd)−
(
((k + 1)Td)

2 + (kTd)
2

2Td
− Td

kTd
Td

)

︸ ︷︷ ︸

kTd+
1

2
Td−kTd

(

p((k + 1)Td)x((k + 1)Td)− p(kTd)x(kTd)
)

+ Tdu(kTd). (1.14)

Now by collecting all terms w.r.t. x((k + 1)Td) to the left-hand side, it follows that

(

1 +
1

2
Tdp((k + 1)Td)

)

x((k + 1)Td) =

(

1− 1

2
Tdp(kTd)

)

x(kTd) + Tdu(kTd). (1.15)
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1.5 Example 2: computation of the stability bound

Again consider stability in a Lyapunov sense by searching for a quadratic Lyapunov function V (x) = xKx
with K > 0 such that

(
1− 1

2Tdp(kTd)

1 + 1
2Tdp((k + 1)Td)

)2

K −K < 0. (1.16)

This gives, that by a Lyapunov argument, asymptotic stability holds if

−1 <
1− 1

2Tdp(kTd)

1 + 1
2Tdp((k + 1)Td)

< 1. (1.17)

Consider the right-hand side. By multiplying with the positive denominator (p(t) > 0), the expression
reads as

1− 1

2
Tdp(kTd) < 1 +

1

2
Tdp((k + 1)Td),

0 <
1

2
Tdp((k + 1)Td) +

1

2
Tdp(kTd),

which always holds as p(t) > 0. Consider the left-hand side of (1.17). Again by multiplying with the
positive denominator (p(t) > 0), the expression reads as

−1− 1

2
Tdp((k + 1)Td) < 1− 1

2
Tdp(kTd),

1

2
Tdp(kTd)−

1

2
Tdp((k + 1)Td) < 2,

Td <
4

p(kTd)− p((k + 1)Td)
,

Td <
4

pmax − pmin
.

Note that this is a conservative stability bound as the underlying system is not polytopic. Consider now a
p-dependent quadratic Lyapunov function V (x, p) = xK(p)x where K(p) = L(1+ 1

2Tdp)
2 > 0 with L > 0.

In this case V (x, p) qualifies as a Lyapunov function if (see page 96 in [3]):

(
1− 1

2Tdp(kTd)

1 + 1
2Tdp((k + 1)Td)

)2

K(qp)(kTd)−K(p)(kTd) < 0. (1.18)

This gives that
(

1− 1

2
Tdp(kTd)

)2

L−
(

1 +
1

2
Tdp(kTd)

)2

L < 0. (1.19)

As L > 0, the underlaying system is asymptotically stable if

(

1− 1

2
Tdp(kTd)

)2

<

(

1 +
1

2
Tdp(kTd)

)2

, (1.20)

which always holds due to the fact that p(t) > 0. This concludes that the system obtained via this DT
representation is asymptotically stable for all Td > 0.

1.6 Example 2: LFR realization

Consider the LFR realization of (1.15) with (1.6b). Introduce xd(k) = x(kTd) and ud, pd, yd respectively.
Introduce wd,1(k) = pd(k + 1)xd(k + 1). This gives that

xd(k + 1) = −1

2
Tdwd,1(k) +

(

1− 1

2
Tdpd(k)

)

xd(k) + Tdud(k). (1.21)
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Now introduce wd,2(k) = pd(k)xd(k). Then (1.21) can be rewritten as

xd(k + 1) = xd(k)−
1

2
Tdwd,1(k)−

1

2
Tdwd,2(k) + Tdud(k). (1.22)

Note that by introducing zd,2(k) = xd(k), wd,2(k) = pd(k)zd,2(k). Let zd,1(k) = xd(k + 1), hence it
is characterized by (1.22). This also gives that wd,1(k) = pd(k + 1)zd,1(k). By collecting all previous
equations in a matrix form, the resulting LFR is





xd(k + 1)
zd(k)
yd(k)



 =








1 − Td

2 − Td

2 Td

1 − Td

2 − Td

2 Td

1 0 0 0
1 0 0 0












xd(k)
wd(k)
ud(k)



 (1.23)

with ∆d(pd)(k) =
[
p((k+1)Td) 0

0 p(kTd)

]
.

1.7 Example 3: LFR realization

Note that the corresponding discretization scheme is the same as the trapezoidal method for which the
LFR realization is derived in [1]. Substituting A = 0, B1 = −1, B2 = 1, C1 = 1, C2 = 1 and zero for
other matrices into the formulas given there, the resulting DT-LFR is





x̆d(k + 1)
zd(k)
yd(k)



 =





1 −√
Td

√
Td√

Td − 1
2Td

1
2Td√

Td − 1
2Td

1
2Td









x̆d(k)
wd(k)
ud(k)



 (1.24)

with ∆d(pd)(k) = pd(k).

1.8 Example 3: computation of the stability bound

Note that according to the LFR realization (1.24):

Ad(pd) = Ad +Bd,1∆d(pd)(1−Dd,11∆d(pd))
−1Cd,1 = 1− Tdpd

(

1 +
Td

2
pd

)−1

. (1.25)

Again, we can investigate asymptotic stability via condition (1.7). This means that we need to verify that
∃K > 0 s.t.:

(

1− Tdpd

(

1 +
Td

2
pd

)−1
)2

K −K < 0. (1.26)

As K is assumed to be positive, the above equation holds if and only if

−1 < 1− Tdpd(k)

(

1 +
Td

2
pd(k)

)−1

< 1, (1.27)

for all pd ∈ R
Z and k ∈ Z. Consider the right-hand side:

1− Tdpd(k)

(

1 +
Td

2
pd(k)

)−1

< 1,

1 +
Td

2
pd(k)− Tdpd(k) < 1 +

Td

2
pd(k),

−Tdpd(k) < 0,

which holds for any Td > 0 as pd(k) > 0. Now consider the left-hand side of (1.27):

−1 < 1− Tdpd(k)

(

1 +
Td

2
pd(k)

)−1

,

−2− Tdpd(k) < −Tdpd(k),

−2 < 0,

which is trivially true. This concludes that the resulting DT-LFR form is asymptotically stable for any
Td > 0.
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1.9 LFR realization via the rectangular approach

The rectangular approach provides the following approximation of the CT state evolution:

x((k + 1)Td) ≈ x(kTd) + TdAx(kTd) + TdB1w(kTd) + TdB2u(kTd). (1.28)

Introduce xd(k) = x(kTd) and ud, pd, wd, zd, yd respectively. Note that wd(k) = ∆(p)(kTd)zd(k) hence
∆d(pd)(k) = ∆(p)(kTd). Then, the resulting DT form of the system is characterized by

xd(k + 1) ≈ (I + TdA)xd(k) + TdB1wd(k) + TdB2ud(k), (1.29a)

zd(k) = C1xd(k) +D11wd(k) +D12ud(k), (1.29b)

yd(k) = C2xd(k) +D21wd(k) +D22ud(k), (1.29c)

Collecting these equations into a matrix form result in the following DT-LFR realization:

RLFR(S, Td) ≈





I + TdA TdB1 TdB2

C1 D11 D12

C2 D21 D22



 , (1.30)

with ∆d(pd)(k) = ∆(p)(kTd).

1.10 LFR realization via the polynomial approach

Based on the Taylor expansion of the matrix exponential:

eTdA(p(kTd)) ≈ I +
∑n

l=1
T
l

d

l! A
l(p)(kTd), (1.31)

the state evolution is approximated as

x((k + 1)Td) ≈
(

I +
∑n

l=1
T
l

d

l! A
l(p)(kTd)

)

x(kTd) +
(
∑n

l=1
T
l

d

l! A
l−1(p)(kTd)

)

B(p)(kTd)u(kTd). (1.32)

Let’s consider the case when n = 1. Then the resulting expression is the same as (1.28) and hence the
resulting LFR realization is given by (1.30).

Now consider the case when n = 2. Then (1.32) reads as

x((k + 1)Td) ≈
(

I + TdA(p)(kTd) +
T2d

2
A2(p)(kTd)

)

︸ ︷︷ ︸

Ad(pd)(k)

x(kTd) +

(

TdI +
T2d

2
A(p)(kTd)

)

B(p)(kTd)
︸ ︷︷ ︸

Bd(pd)(k)

u(kTd).

(1.33)
The resulting DT matrix functions can be further extended as:

Ad(pd) =I + Td
(
A+B1∆(pd)(I −D11∆(pd))

−1C1

)
+

T2d

2

(

A2 +B1∆(pd)(I −D11∆(pd))
−1C1A

+AB1∆(pd)(I −D11∆(pd))
−1C1 +B1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1C1

)

Bd(pd) =Td
(
B2 +B1∆(pd)(I −D11∆(pd))

−1D12

)
+

T2d

2

(

AB2 +AB1∆(pd)(I −D11∆(pd))
−1D12

+B1∆(pd)(I −D11∆(pd))
−1C1B2 +B1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1D12

)

In these equations the new terms w.r.t. the n = 1 case are denoted by different colors. Now by using the
existing realization of the n = 1 case, we can introduce a new auxiliary variable wd,2 such the additional
dynamics denoted by the colors are realized. This gives the following LFR form where the colors indicate
the parts that belong to the specific subparts in the previous equations:

RLFR(S, Td) ≈








I + TdA+
T
2

d

2 A
2 TdB1 +

T
2

d

2 AB1
T
2

d

2 B1 TdB2 +
T
2

d

2 AB2

C1 D11 0 D12

C1A C1B1 D11 C1B2

C2 D21 0 D22







, (1.34)
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with ∆d(pd)(k) = I2×2 ⊗∆(p)(kTd) =
[∆(p)(kTd) 0

0 ∆(p)(kTd)

]
.

Now consider the case when n = 3. Then

Ad(pd) =I + TdA(p)(kTd) +
T2d

2
A2(p)(kTd) +

T3d

6
A3(p)(kTd) = (∗) + T3d

6

(

A3 +B1∆(pd)(I −D11∆(pd))
−1C1A

2

+AB1∆(pd)(I −D11∆(pd))
−1C1A+B1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1C1A

+A2B1∆(pd)(I −D11∆(pd))
−1C1 +AB1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1C1

+B1∆(pd)(I −D11∆(pd))
−1C1AB1∆(pd)(I −D11∆(pd))

−1C1

+B1∆(pd)(I −D11∆(pd))
−1C1B1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1C1

Bd(pd) =

(

TdI +
T2d

2
A(p)(kTd) +

T3d

6
A(p)(kTd)

)

B(p)(kTd) = (∗) + T3d

6

(

A2B2 +A2B1∆(pd)(I −D11∆(pd))
−1D11

+AB1∆(pd)(I −D11∆(pd))
−1C1B2 +AB1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1C1D12

+B1∆(pd)(I −D11∆(pd))
−1C1B1∆(pd)(I −D11∆(pd))

−1C1B1∆(pd)(I −D11∆(pd))
−1D12

+B1∆(pd)(I −D11∆(pd))
−1C1AB2 +B1∆(pd)(I −D11∆(pd))

−1C1AB1∆(pd)(I −D11∆(pd))
−1D12

)

Again, in these equations the new terms w.r.t. the n = 2 case are denoted by different colors. Now by
using the existing realization of the n = 2 case, we can introduce a new auxiliary variable wd,2 such the
additional dynamics denoted by the colors are realized. This gives the following LFR form where the
colors indicate the parts that belong to the specific subparts in the previous equations:










I + TdA+
T
2

d

2 A2 +
T
3

d

6 A3 TdB1 +
T
2

d

2 AB1 +
T
3

d

6 A
2B1

T
2

d

2 B1 +
T
3

d

6 AB1
T
3

d

6 B1 TdB2 +
T
2

d

2 AB2 +
T
3

d

6 A
2B2

C1 D11 0 0 D12

C1A C1B1 D11 0 C1B2

C1A
2 C1AB1 C1B1 D11 C1AB2

C2 D21 0 0 D22










with ∆d(pd)(k) = I2+1×2+1 ⊗∆(p)(kTd). This clearly proves by induction that for any n ∈ N, the LFR
form reads as

RLFR(S, Td) ≈














∑n

l=0
T
l

d

l! A
l
∑n

l=1
T
l

d

l! A
l−1B1

∑n

l=2
T
l

d

l! A
l−2B1 . . .

T
n

d

n!B1

∑n

l=1
T
l

d

l! A
l−1B2

C1 D11 0 . . . 0 D12

C1A C1B1 D11 . . . 0 C1B2

...
...

. . .
. . .

...
...

C1A
n−1 C1A

n−2B1 C1A
n−3B1 . . . D11 C1A

n−1B2

C2 D21 0 . . . 0 D22














(1.35)

with ∆d(pd)(k) = In×n ⊗∆(p)(kTd).

1.11 Example 2nd-order polynomial: computation of the stability

bound

Consider the example w.r.t. the polynomial discretization for n = 2. By the above given formulas, the
resulting DT approximation reads as





xd(k + 1)
zd(k)
yd(k)



 =








1 −Td − T
2

d

2 Td

1 0 0 0
0 −1 0 1
1 0 0 0












xd(k)
wd(k)
ud(k)



 . (1.36)

In this case, the state equation is characterized by

Ad(pd) = Ad +Bd,1∆d(pd)(I −Dd,11∆d(pd))
−1Cd,1 = 1− Tdpd +

T2d

2
p2d. (1.37)
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Again, we can investigate asymptotic stability via condition (1.7). This means that we need to verify that
∃K > 0 s.t.:

(

1− Tdpd +
T2d

2
p2d

)2

K −K < 0. (1.38)

As K is assumed to be positive, the above equation holds if and only if

−1 < 1− Tdpd +
T2d

2
p2d < 1. (1.39)

Consider the right-hand side:

1− Tdpd +
T2d

2
p2d < 1,

−Tdpd +
T2d

2
p2d < 0,

T2d

2
p2d < Tdpd,

Td

2
pd < 1,

Td <
2

pmax
.

Consider the left-hand side:

−1 < 1− Tdpd +
T2d

2
p2d,

0 < 2− Tdpd +
T2d

2
p2d,

where the roots of the above given polynomial are

λ1,2 =
Td ±

√

T2d − 4T2d
2

=
Td ± i

√
3Td

2
. (1.40)

Based on these roots, the condition always holds. This concludes that the DT approximation is asymp-
totically stable if Td < 2

pmax
.

1.12 LFR realization via the 1,1-Padé approach

Consider the 1,1-step -Padé approach for the discretization of the CT state evolution. This gives the
following approximation:

(

I − Td

2
A(p)(kTd)

)

x((k + 1)Td)≈
(

I +
Td

2
A(p)(kTd)

)

x(kTd) + TdB(p)(kTd)u(kTd), (1.41)

where

A(p) = A+B1∆(p)(I −D11∆(p))−1C1, (1.42a)

B(p) = B2 +B1∆(p)(I −D11∆(p))−1D12. (1.42b)

Introduce xd(k) = x(kTd) and ud, pd, yd respectively. Furthermore, define an auxiliary signal s(k), s.t.

s(k + 1) = ∆(pd)(k)(I −D11∆(pd)(k))
−1C1xd(k + 1). (1.43)

Then (1.41) can be rewritten as:

(

I − Td

2
A

)

︸ ︷︷ ︸

Ψ−1

xd(k + 1) ≈ Td

2
B1s(k + 1) +

(

I +
Td

2
A(pd)(k)

)

xd(kTd) + TdB(pd)(k)ud(k). (1.44)
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where
(
I − Td

2 A
)−1

= Ψ is assumed to exist. Now introduce the signal

w2(k) = ∆(pd)(k)(I −D11∆(pd)(k))
−1 (C1xd(k) +D12ud(k)) . (1.45)

Then (1.44) can be rewritten as

xd(k + 1) ≈ Ψ

(
Td

2
B1s(k + 1) +

Td

2
B1∆(pd)(k)(I −D11∆(pd)(k))

−1D12ud(k)

)

+Ψ

(

I +
Td

2
A

)

xd(kTd) +
Td

2
ΨB1w2(k) + TdΨB2ud(k). (1.46)

Next, introduce

w1(k) = s(k + 1) + ∆(pd)(k)(I −D11∆(pd)(k))
−1D12ud(k),

= ∆(pd)(k)(I −D11∆(pd)(k))
−1 (C1xd(k + 1) +D12ud(k)) , (1.47)

such that the previous equation reads as

xd(k + 1) ≈ Td

2
ΨB1w1(k) + Ψ

(

I +
Td

2
A

)

xd(kTd) +
Td

2
ΨB1w2(k) + TdΨB2ud(k). (1.48)

Now substitute (1.48) into (1.47) resulting in

w1(k) = ∆(pd)(k)(I −D11∆(pd)(k))
−1

(

Td

2
C1ΨB1w1(k) + C1Ψ

(

I +
Td

2
A

)

xd(kTd)

+
Td

2
C1ΨB1w2(k) + (TdC1ΨB2 +D12)ud(k)

)

. (1.49)

Next, introduce w1(k) = ∆(pd)(k)z1(k) and w2(k) = ∆(pd)(k)z2(k). Note that the realization of the
output equation is the same as in the continuous case by using the latent variable w2. Then collecting
(1.48), (1.45) and (1.49) into a matrix form, the resulting a minimal DT-LFR realization of (1.41) reads
as

RLFR(S, Td) ≈








(I + Td

2 A)Ψ Td

2 ΨB1
Td

2 ΨB1 TdΨB2

C1(I +
Td

2 A)Ψ
Td

2 C1ΨB1 +D11
Td

2 C1ΨB1 TdC1ΨB2 +D12

C1 0 D11 D12

C2 0 D21 D22








(1.50)

with Ψ = (I − Td

2 A)−1 and ∆d(pd)(k) = I2×2 ⊗∆(p)(kTd).

1.13 Example 1,1-Padé: computation of the stability bound

Considering the previously given discretization form, Padé’s expansion method with (i, j) = (1, 1) results
in the following DT approximation of (1.1a-b):





xd(k + 1)
zd(k)
yd(k)



 =








1 − Td

2 − Td

2 Td

1 − Td

2 − Td

2 Td

1 0 0 0
1 0 0 0












xd(k)
wd(k)
ud(k)



 . (1.51)

In this case, the state equation is characterized by

Ad(pd) = Ad +Bd,1∆d(pd)(I −Dd,11∆d(pd))
−1Cd,1 = 1− Tdpd

(

1 +
Td

2
pd

)−1

. (1.52)

Further proof of the asymptotic stability follows according to Sec. 1.8.
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1.14 LFR realization via the trapezoidal approach

Note that the underlaying realization is classical and can be found in many works like [1].

1.15 LFR realization via the 3-step Adams-Bashforth approach

Consider the 3-step Adams-Bashforth approach for the discretization of the CT state evolution. This
gives the following approximation:

x((k + 1)Td) ≈ x(kTd) +
Td

12

(
5f |(k−2)Td − 16f |(k−1)Td + 23f |kTd

)
. (1.53)

Introduce a new state variable

x̆d(k) = [ x⊤(kTd) f |⊤(k−1)Td
f |⊤(k−2)Td ]⊤, (1.54)

which gives that

x((k + 1)Td) ≈
[
I + 23Td

12 A(p)(kTd) − 16Td
12

5Td
12

]
x̆d(k) +

23Td
12 B(p)(kTd)u(kTd). (1.55a)

Furthermore, it holds that

xd,2(k + 1) = A(p)(kTd)x(kTd) + B(p)(kTd)u(kTd), (1.55b)

xd,3(k + 1) = xd,2(k). (1.55c)

By substituting x(kTd) with xd,2(k), equations (1.55a-c) lead straightforwardly to the DT-LFR:

RLFR(S, Td) ≈









I + 23Td
12 A − 16Td

12 I 5Td
12 I 23Td

12 B1
23Td
12 B2

A 0 0 B1 B2

0 I 0 0 0
C1 0 0 D11 D12

C2 0 0 D21 D22









(1.56)

with ∆d(pd)(k) = ∆(p)(kTd).
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