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A Bayesian Approach for LPV Model Identification
and its Application to Complex Processes

Arash Golabi1, Nader Meskin1, Roland Tóth2 and Javad Mohammadpour3

Abstract—Obtaining mathematical models that can accurately
describe nonlinear dynamics of complex processes and be further
used for model-based control design is a challenging task. In this
paper, a Bayesian approach is introduced for data-driven identi-
fication of linear parameter-varying (LPV) regression models in
an input-output (IO) dynamic representation form with an auto-
regressive with exogenous variable (ARX) noise structure. The
applicability of the proposed approach is then investigated for
modeling of complex nonlinear process systems. In this approach,
the dependency structure of the model on the scheduling variables
is identified based on a Gaussian process (GP) formulation.
The GP is used as a prior distribution to describe the possible
realization of the scheduling dependent coefficient functions of
the estimated model. Then, a posterior distribution of these
functions is obtained given the measured data and the mean value
of this distribution is used to determine the estimated model.
The properties and performance of the proposed method are
evaluated using an illustrative example of a chemical process,
namely a distillation column, as well as an experimental case
study with a three tank system.

Index Terms—Linear parameter-varying (LPV) models; Sys-
tem identification; Bayesian method; Gaussian process; High-
purity distillation column; Three tank system.

I. INTRODUCTION

Today, complex industrial processes are requested to operate
at a wide range of operational conditions on which their
dynamic behavior exhibit significantly nonlinear characteris-
tics. To meet with the performance expectations it is often
inevitable to consider their nonlinear behavior for the design
and development of appropriate control strategies. However,
there are several challenges associated with nonlinear model-
based control design for such complex processes including the
need for accurate dynamical models to obtain a satisfactory
performance and the complexity of the associated control
problem to be solved, mostly in real time. The first principle
model of a real-world industrial process usually contains a
large number of parameters and heavy nonlinear relationships.
Often system identification methods are seen as an attractive
alternative to reduce the complexity of the models of these
systems using measured or even simulated data. Moreover,
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often the understanding of the internal physical/chemical phe-
nomena is not readily available. Therefore, it is imperative
to use system identification methods capable of efficient ex-
ploration of an appropriate model structure that can captive
these relationships directly from input-output data [1], [2].
To this end, data-driven approaches have been developed to
address the above mentioned modeling challenges regarding
different approaches such as nonlinear ARX methods [3],
Wiener-Hammerstein models [4], neural networks [5], fuzzy
systems [6] and least-squares support vector machine (LS-
SVM) approaches [7] which have been applied to identify low
complexity; yet accurate models.

To take advantage of the simplicity of linear time-invariant
(LTI) control synthesis methods and, at the same time, ac-
curately capture the dynamics of process systems over the
whole operating regime, linear parameter-varying (LPV) iden-
tification methods have attracted considerable attention in the
last decade (see, e.g., [8]–[13]). Different model structures
including input-output [14], state-space [15] and orthonormal
basis functions (OBF) representations [16] based approaches
have been proposed for identification of LPV models of
nonlinear systems. In particular, estimation of LPV models
in an input-output (IO) setting has received a great deal of
attention [17]–[19]. Most of the methods developed for LPV-
IO model identification has been in the discrete-time domain
using a linear regression form with static dependency of the
model coefficients on the scheduling variables. However, in
practice, these coefficient functions are not fully known and
often their estimation is required from the measured data. The
standard solution to this problem is to parameterize these func-
tions using a combination of a priori known basis functions.
However, inaccurate selection of the basis functions can lead to
structural bias while the over-parameterization can increase the
variance of the estimated model. Moreover, LPV modeling of
nonlinear systems often requires that the nonlinear coefficients
are dependent on the time-shifted versions of the scheduling
variables referred to as dynamic dependency. Parameterization
with such dynamic dependency often significantly increases
the dimension of the parameterization space. Hence, it is
appealing to estimate and learn the underlying dependencies
of the LPV model coefficients directly from the measured data
without a priori selection of a wide range of basis functions
to ensure an adequate representation capability of the model
structure. Some recent works have proposed the use of non-
parametric approaches to obtain an efficient solution to this
problem (see, e.g., [11], [20]–[22]).

In [20], a least-square support vector machine (LS-SVM)
approach is proposed to reconstruct the dependency structure
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for linear regression-based LPV models. The SVM approaches
represent a class of supervised learning methods for efficient
reconstruction of underlying functional relationships and struc-
tures in data with the LS-SVM being a particular subclass
formulated for regression problems [23]. In the present paper,
a different learning approach called the Bayesian method is
proposed for the structural identification of a linear regres-
sion type of LPV-IO models. The difference between SVM
approaches and Bayesian methods is that the former view the
problem from a deterministic optimization point of view, while
the latter start in a stochastic framework with a prior distri-
bution of the parameters/functions to be estimated. Bayesian
methods for system identification have been a subject of re-
newed interest in the last few years (see, e.g., [24]–[28]) due to
the efficient characterization of a priori information in terms of
kernels that encode structural properties of dynamical systems
such as stability [29]–[31]. In this context, in [25], the impulse
response of a linear system is modeled as the realization of
a Gaussian process (GP) whose statistics include information
not only on smoothness, but also on bounded-input bounded-
output (BIBO) stability. Unlike classical learning methods,
Bayesian approaches do not attempt to identify the best model
from data or make the best guess in terms of predictions for
new test inputs. Instead, they compute a posterior distribution
over models or compute posterior predictive distributions for
new test inputs [32]. These distributions offer a useful way
to quantify the uncertainties of the estimated model, which
can be exploited to achieve more robust predictions on new
test points. A preliminary version of this work has appeared
in [33] for single-input single-output systems in finite impulse
response (FIR) form.

In comparison to Bayesian identification methods in the LTI
framework, nonlinear dependency of the LPV model coeffi-
cients on the scheduling variables is considered to be the main
source of complexity involved in LPV model identification. In
fact in order to identify an LPV model of a nonlinear system
using Bayesian approaches, the covariance function should be
parameterized with a priori information to incorporate possible
structural dependencies in the LPV model and asymptotic
stability of the predictor. In this paper, we take advantage of
the Bayesian method utilizing a Gaussian kernel to reconstruct
the dependency structure of an LPV-IO model of a data-
generating system. Then, the identified LPV-IO model will
be used to predict the future behavior of the system followed
by its utilization in controller synthesis in terms of an internal
model control approach.

The applicability of the proposed Bayesian-based method
for LPV model identification is demonstrated in identifying
the LPV model of a laboratory setup of a three tank system
and a simulation model of a high-purity distillation column.
The three tank system has been extensively used in control
literature to investigate linear and nonlinear multivariable
feedback control. Next to that, high-purity distillation columns
are well known for their nonlinear characteristics and direc-
tionality problem making them a changeling problem for LTI
control pointing for a nonlinear or LPV solution. The results
on these systems show that the proposed LPV identification
approach can provide a promising tool to tackle the above

stated challenges by offering an accurate model identification
method with an attractive computational load.

This paper is organized as follows. In Section II, the
problem of LPV model identification based on the Bayesian
approach is presented and the proposed method for recon-
structing the dependency structure of the estimated model is
described. In Section III, properties and performance of the
proposed approach are studied through both on a numerical
and experimental study in chemical processes. Moreover, a
control application of the proposed method provided model is
studied. Finally, concluding remarks are made in Section IV.

II. LPV MODEL IDENTIFICATION BASED ON A BAYESIAN
APPROACH

In this section, the Bayesian formulation is employed to re-
construct the dependency structure of an LPV data-generating
system with an auto-regressive model with exogenous input
(ARX) noise structure.

A. The LPV Bayesian estimation problem

For a multi-input multi-output (MIMO) LPV model with
nY outputs and nU inputs, the ARX model structure for the
j-th output is described as

y(j)(k) = −
nY∑
l=1

na∑
i=1

a
(j)
l,i (p(k)) y(l)(k − i)+

nU∑
s=1

nb∑
i=0

b
(j)
s,i (p(k))u(s)(k − i) + e(j)(k), (1)

where k ∈ Z is the discrete time, u(s)(k) and y(l)(k)
denote the s-th input and the l-th output signals, respectively,
a
(j)
l,i : P → R, b(j)s,i : P → R are model coefficients dependent

on p(k) for the j-th output channel, p : Z→ P is the so-called
scheduling variable with compact range P ⊆ Rnp , e(j)(k)
is an independent and identically distributed (i.i.d.) white
stochastic noise process with distribution N (0, σ2

e(j)
) (also

being independent of the input signal u(s)), na is the number of
time-shifted instances of the past outputs, and nb is the number
of time-shifted instances of the past inputs used to predict the
current output. Moreover, R and Z are the set of real numbers
and integer numbers, respectively. The process model (1) is
fully characterized by the nonlinear coefficients {a(j)l,i }

nY,na

l=1,i=1

and {b(j)s,i}
nU,nb

s=1,i=0 for the j-th channel. The model structure
(1) can be also represented as

y(j)(k) =

ng∑
i=1

g
(j)
i (p(k))xi(k) + e(j)(k), (2)

where

xϑy(l,i)(k) = y(l)(k − i) for i ∈ Ina
1 , l ∈ InY

1 , (3)

xϑu(s,i)(k) = u(s)(k − i) for i ∈ Inb
0 , s ∈ InU

1 , (4)

with Iν2ν1 := {i ∈ Z | ν1 ≤ i ≤ ν2} being an
index set, ϑy(l, i) = na(l − 1) + i, ϑu(s, i) =
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nYna + (s− 1)(nb + 1) + 1 + i, ng = nYna + nU(nb + 1),
and

[g
(j)
1 ... g

(j)
ng

] =[a
(j)
1,1 . . . a

(j)
1,na

. . . a
(j)
nY,1

. . . a
(j)
nY,na

(5)

b
(j)
1,0 . . . b

(j)
1,nb

. . . b
(j)
nU,0 . . . b

(j)
nU,nb

].

In the context of the Bayesian setting for coefficient estima-
tion, a Gaussian process (GP) is used to describe a distribution
of nonlinear functions representing the coefficients of an LPV
model and the posterior distributions of these functions are
obtained, given the available observations. Formally, a GP
is a stochastic process such that any finite subcollection of
random variables has a multivariate Gaussian distribution [32].
Consider a standard scalar Gaussian process regression model
[32]

Y(k) = F(φ(k)) + e(k), (6)

where φ(k) is the “input vector”, Y(k) is the observed target
value and e(k) is an i.i.d. noise process with a zero mean and
variance of σ2

e , i.e., e(k) ∼ N (0, σ2
e). It is also assumed that

the function F(.) is a particular realization of a multivariate
process with zero-mean Gaussian distribution as

F(.) ∼ GP(0,K(., .)), (7)

with a symmetric positive semidefinite covariance function
K(., .) where GP(., .) denotes a Gaussian process distribution.
The following result on the joint distribution of the observed
target value and the function value F∗ at a test point φ∗, i.e.,
F∗ = F(φ∗), is used in Bayesian calculations[

Y
F∗

]
∼ N

(
0,

[
K(Φ,Φ) + σ2

eI K(Φ, φ∗)
K(φ∗,Φ) K(φ∗, φ∗)

])
, (8)

where Φ is a vector of “input training data” and Y is a vector
of observed target values. Note that if there are n training
points and one test point φ∗, then K(Φ, φ∗) is an n×1 vector.
The posterior distribution for Gaussian process regression can
then be obtained as [32]

E{F∗} = F̄∗ = κ∗>(K(Φ,Φ) + σ2
eI)−1Y, (9)

cov{F∗} = K(φ∗, φ∗)− κ∗>(K(Φ,Φ) + σ2I)−1κ∗, (10)

where κ∗ = K(φ∗,Φ) and E denotes the expectation operator.
Next, the above Bayesian formulation is used for the identi-

fication of the LPV IO model (1). For each g(j)i (.) in Equation
(2), the covariance function for all p(s), p(k) ∈ P is defined
as

cov{g(j)i (p(k)), g
(j)
i (p(s))} = E{g(j)i (p(k))g

(j)
i (p(s))}

= K(j)
i (p(k), p(s)), (11)

where K(j)
i (., .) is a positive kernel function. The Gaussian

kernel commonly used in non-parametric estimation is defined
as [34]

K(j)
i (p(k), p(s)) = λ

(j)
i exp

(
−||p(k)− p(s)||22

(σ
(j)
i )2

)
, (12)

which is also referred to as Radial Basis Function (RBF).
In (12), σ(j)

i and λ
(j)
i are the hyper-parameters of the prior

distribution which specify the width and scale of the RBF. We

note that the kernel function in (12) is expressed as a function
of the scheduling variable p and describes the prior assumption
on how observed values of g(j)i relate to each other depending
on the distance between p(k) and p(s). It is assumed that a
training data set are given as D = {y(k), u(k), p(k)}Nk=1. The
joint distribution of the observed value and coefficient function
values g(j)i (.) of the LPV model structure are given by[

y(j)

g
(j)
i (.)

]
∼ N

(
0,

[
Ky(j) + σ2

e(j)
I κ

∗(j)
i (.)

κ
∗(j)
i

>
(.) K(j)

i (., .)

])
, (13)

where (.) denotes any value of the scheduling parameter and

κ
∗(j)
i (.) =


xi(1)K(j)

i (p(1), .)
...

xi(N)K(j)
i (p(N), .)

 , (14)

[Ky(j) ]s,k =

ng∑
i=1

[Ky(j) ]
i
s,k, (15)

[Ky(j) ]
i
s,k = xi(s)

(
K(j)
i (p(s), p(k))

)
xi(k). (16)

The property of linear combinations of mutually independent
normal random variables [35] is employed here to compute
covariance and mean of y(j)(.) based on (2) as

cov{y(j)(k), y(j)(s)} =
ng∑
i=1

xi(k)cov{g(j)i (p(k)), g
(j)
i (p(s))}xi(s) + σ2

e(j) ,

=

ng∑
i=1

xi(k)K(j)
i (p(k), p(s))xi(s) + σ2

e(j) ,

=

ng∑
i=1

[Ky(j) ]
i
s,k + σ2

e(j) . (17)

From (9) and (10), the posterior distribution of g(j)i (.), i.e.,
the LPV model coefficient functions, based on the prior
distribution (13), are chosen to be estimated as the following
conditional mean

E
{
g
(j)
i (.) | D

}
= ḡi

(j)(.) =

N∑
k=1

α
(j)
k xi(k)K(j)

i (p(k), .),

(18)

while their conditional covariance is characterized by

cov
{
g
(j)
i (.) | D

}
= K(j)

i (., .)−
N∑
k=1

β
(j)
i,k (.)xi(k)K(j)

i (p(k), .),

(19)

in which α(j)
k and β(j)

i,k are the k-th elements of N -dimensional
vectors α(j) and β(j)

i , respectively, defined by

α(j) =
(
Ky(j) + (σ(j)

e )2I
)−1

Y (j), (20)

with
Y (j) =

[
y(j)(1) ... y(j)(N)

]>
,
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and

β
(j)
i,k (.) = (Ky(j) + (σ(j)

e )2I)−1κ
∗(j)
i (.),

where κ∗(j)i (.) is defined in (14).
It should be noted that, in principle, the LS-SVM approach

[20] and the proposed Bayesian method are similar. The main
difference is the availability of the estimation of the covariance
function (19) based on which the Bayesian method computes
a posterior distribution over the model set. Computation of
the covariance function provides a useful way to quantify the
uncertainties of the estimated LPV model of the underlying
system.

Remark 1: Although, the assumption of an ARX model
structure with white noise equation error has been commonly
made in system identification with Bayesian methods (see,
e.g., [24]–[27], [31], [34]), it may constrain the effectiveness
and applicability of the method. As an extension of this work,
instrumental variable (IV) approaches can be developed for
the Bayesian approach to handle more realistic noise scenarios
without specifying a direct noise parametrization or structure
[36].

B. Estimation of the hyper-parameters

To estimate the parameters λ
(j)
i and σ

(j)
i in the kernel

function (12), an exhaustive search can be performed over
a discrete grid of values, using an independent validation
data set and by minimizing the `2-loss over the prediction
error, but this can be quite slow and time consuming [35].
As an alternative, the empirical Bayesian approach can be
used, which offers a direct estimation of these parameters via
maximizing the marginalized likelihood of the model estimate.
Assume that θ(j)i denotes the vector whose components are
the hyper-parameters describing the kernel function (12), i.e.,
θ
(j)
i = [λ

(j)
i σ

(j)
i ]>. Based on (17) and the Gaussian assump-

tion on the distribution of g(j)i and e(j), the logarithm of the
marginal likelihood for the j-th output channel is given by

log P
(
y(j)|D, θ(j)

)
= logN

(
y(j)
∣∣∣∣0, ng∑

i=1

(
[Ky(j) ]

i
))

=− 1

2
y(j)>

ng∑
i=1

(
[Ky(j) ]

i
)−1

y(j)−

1

2
log

∣∣∣∣ ng∑
i=1

(
[Ky(j) ]

i
) ∣∣∣∣− N

2
log(2π), (21)

where θ(j) = [θ
(j)
1 ... θ

(j)
ng ], P denotes the probability

density function and [Ky(j) ]
i is the matrix, whose elements

are determined by (16). Therefore, the hyper-parameters θ(j)i
can be estimated to maximize the marginal likelihood function
in (21) as

θ̂(j) = arg max
θ
(j)
1 ,...,θ

(j)
ng

J(θ
(j)
1 , ..., θ(j)ng

), (22)

and
J(θ(j)) := log P(y(j)|D, θ(j)1 , ..., θ(j)ng

). (23)

Then, the estimated hyper-parameters θ̂(j)i are substituted in
(12) to obtain the estimates g(j)i (.) in (18).

C. Summary of the proposed Bayesian method

Based on the data set D = {y(k), u(k), p(k)}Nk=1, the
proposed LPV identification algorithm is summarized below.

1) Determine the order of the LPV model, i.e., the value
of na and nb in (2) by using cross-validation [35] based
order selection.

2) Estimate the hyper-parameters in (12) based on (22) and
D to obtain θ̂(j)i .

3) Obtain the function estimate g(j)i (.) based on (18) using
D.

III. SIMULATION AND EXPERIMENTAL STUDIES

To illustrate the performance of the proposed LPV model
identification method, we use the model of a high-purity
distillation column and a laboratory three tank system for
which the Bayesian method is utilized based on the proposed
algorithm in the Section II-C to estimate a non-parametric
LPV-IO model. Then, using a validation data set Dval

N∗ =

{(u∗(k), p∗(k), y∗(k))}N
∗

k=1 compute the one-step-ahead pre-
diction of the j-th output channel at the time instant k as
follows

ŷ(j)(k) =

na∑
i=1

ḡ
(j)
i (p∗(k))x̂i(k)+

nU∑
s=1

nb+1∑
i=1

ḡ
(j)
ϑ(s,i)(p

∗(k))x∗ϑ(s,i)(k),

where

x̂ϑy(l,i)(k) = ŷ(l)(k − i) for i ∈ Ina
1 , l ∈ InY

1 ,

x∗ϑ(s,i)(k) = u∗(s)(k − i+ 1) for i ∈ Inb+1
1 , s ∈ InU

1 ,

in which u∗(s) is the s-th input in the validation data set and
ϑ(s, i) = (s− 1)(nb + 1) + i.

Moreover, a control application of the developed LPV-IO
model is studied through the liquid level control in a single
tank system.

A. LPV modeling of a high-purity distillation column

The high-purity distillation column considered in this paper
is a propane-propene splitter (PP-splitter). Based on the princi-
ple of boiling point difference of propane and propene, the PP-
splitter is designed to separate the mixture of these substances
to its components with a desired purity level. The high-purity
products (distillates) are valuable for the gasoline production
or as a raw material for further chemical synthesis [37]. The
schematic of a PP-splitter is depicted in Figure 1. High-
purity distillation columns are well known for their nonlinear
dynamics and directionality problem. The response of these
systems is dominated by the high-gain direction which limits
the performance of linear SISO controllers when controling
both top and bottom compositions. To tackle this issue, a
MIMO controller is often used which requires an accurate
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Fig. 1: Schematic of a typical PP-splitter [38].

model in order to compute the correct control action. However,
due to the strong nonlinear behavior of high-purity distillation
columns, a single LTI model may be insufficient to describe
the system dynamics. Hence, an alternative modeling solution
is required which can preserve the simplicity of LTI control
synthesis while accurately capturing the system dynamics over
the whole operating regime. Toward this goal, the proposed
Bayesian identification method is utilized to obtain an LPV-
IO model of the high-purity distillation column.

To generate realistic measurement records of the system, a
first-principle model of a typical PP-splitter is used [37]. In
the process, the liquid flow rate L and the vapor flow rate V
are used as the manipulated variables to control the operation
of the high-purity column. The system outputs consist of
the top composition xd (Propene) and bottom xb (Propane)
products. The resulting distillation column model description
is a large-scale (110th order), nonlinear, 2-input 2-output
system. The bottom and top product compositions are chosen
as scheduling variables, i.e., p(k) = [xb(k) xd(k)]> since
they uniquely characterize the operating point of the system
and are available via measurements. The scheduling range
is selected such that it covers a large set of local operating
points described by the top and bottom compositions in the
region P = [0.95, 0.995] × [0.02, 0.1]. The first principle
model is simulated in continuous time and input/output data
is collected with the sampling rate of Ts = 5 min, which
is 20 times faster than the time constant of the fastest step
response with respect to all the possible operating conditions.
The inputs of the system are manipulated through a zero-order-
hold actuation synchronized with the data sampling. Moreover,
the measurement data is assumed to be corrupted by an output
additive zero-mean white noise process with signal-to-noise
ratio (SNR) of 15dB.

To identify the LPV model, we use the data set D =
{(u(k), y(k), p(k))}Nk=1 with N = 2500, which corresponds
to 8.7 days of experimentation time. The data set is generated
using an input signal which is a combination of a deterministic
component added to a white noise with uniform distribution
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Fig. 2: Measurement data used for LPV model identification
of the distillation column.

U(−0.5, 0.5) corresponding to a standard deviation (std) of
1/
√

12 (see Figure 2). Cross-validation based order selection
has been used to choose the structure of the LPV model
leading to na = 3 and nb = 3. The hyper-parameters have
been obtained as λ(1)i = 0.01, λ(2)i = 0.0095, σ

(1)
i = 0.16

and σ(2)
i = 0.75 for i ∈ Ing

1 based on the algorithm proposed
in the Section II-B. Figure 3 shows the true system output,
the LPV model output and the error between the true output
and the simulated output of the identified LPV model w.r.t.
Dval

30k, which is the validation data set selected to be different
from the training data set. To show the dependency, Figure
4 depicts four coefficients (a(1)1,1, b

(1)
1,0, a

(2)
1,1 and b

(2)
1,0 in (2))

of the identified LPV model of the distillation column as
a function of scheduling variables. The mean squared error
(MSE) and the best fit rate (BFR) have been used to evaluate
the performance of the Bayesian approach as

MSE = ||y(k)− ŷ(k)||2`2 , (24)

BFR = 100%×max
(

1− ||y(k)− ŷ(k)||`2
||y(k)− ȳ||`2

)
, (25)

where ȳ denotes the mean of y and ŷ is the simulated model
response for the input in Dval

30k.
The MSE for the estimation error of y1 is calculated to be

1.76 × 10−7 while that of y2 is 5.27 × 10−9. The BFR for
the estimation of y1 is 99.84% while that of y2 is 99.76%.
Based on the obtained results, it can be concluded that the
Bayesian method has led to a highly accurate LPV model for
high-purity distillation column with an outstanding BFR and
MSE.

It is important to note that in this paper, the LPV-ARX
model structure is used for a system with an output additive
(OE) noise structure which results in a biased estimation.
However, the optimal tuning of the hyper-parameters can
partly compensate for the bias. The proposed approach can be
refined by using the instrumental-variable approach introduced
in [36]. The comparison of the mean values of the MSE and
BFR of the LPV Bayesian approach with the available global
LPV model identification approaches is shown in Table I with
the results for the global approaches borrowed from [37]. In
comparison with the LPV LS-SVM and the parametric global
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Fig. 3: Comparison of the true system output xb, xd and the
output of the estimated LPV distillation column model based
on the validation data set.
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Fig. 4: Four coefficient functions of the identified LPV model
of the distillation column.

LPV-OBF and OE methods, the means for both BFR and MSE
are slightly worse with the proposed LPV Bayesian approach.
Bayesian approaches do not attempt to identify the best model
from data or result in the best guess in terms of predictions
for the new test inputs. However, they are able to compute
a posterior distribution over models and posterior predictive
distributions for the new test inputs. These distributions can
be used to quantify the uncertainties of the estimated model,
which can be exploited to achieve more robust predictions on
new test points. For example, in Figure 5 the uncertainty can be
described as 95% confidence region for coefficient functions
a
(1)
1,1 and a

(2)
1,1. Here, the confidence region is defined based

on the covariance function in (19). It should be emphasized

TABLE I: The comparison of mean of BFR and MSE for the
LPV models estimated via different approaches.

LPV Bayesian LPV LS-SVM LPV OE Global LPV-OBF

Avg. BFR of y1 96.84% 97.02% 92.49% 97.68%
Avg. MSE of y1 1.76× 10−7 8.27× 10−8 5.03× 10−7 5.14× 10−8

Avg. BFR of y2 99.76% 99.89% 99.77% 99.90%
Avg. MSE of y2 5.27× 10−9 5.14× 10−10 2.02× 10−9 3.79× 10−10
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Fig. 5: Mean and 95% confidence region of the estimated
coefficient functions a

(1)
1,1 and a

(2)
1,1 evaluated along a given

scheduling trajectory.

that none of the previously reported identification methods
for LPV systems can provide such analytical tool to quantify
the uncertainty in the model coefficients. Moreover, the OBF
model requires a very high-order polynomial dependency for
the associated coefficient functions; hence, this makes the LPV
Bayesian approach truly promising from the computational
point of view.

B. LPV modeling of a three tank system

In this section, the proposed LPV model identification
approach is examined using an experimental three tank liquid
level system. The three tank system has been widely used as
a benchmark to investigate linear and nonlinear multivariable
feedback control. As shown in Figure 6, the system under
consideration consists of three plexiglas cylinders T1, T3 and
T2. The pump flow rates Q1 and Q2 denote the input signals.
The liquid levels of h1 in cylinder T1 and h2 in cylinder T2
denote the output signals. Therefore, the model to be identified
is a 2-input, 2-output LPV model of three-tank system. The
liquid levels of h1 and h2 (in cm) are chosen as the scheduling
variables, i.e., p(k) =

[
h1(k) h2(k)

]>
since they uniquely

characterize the operating point of the system. The scheduling
range is selected such that it contains a large set of local
operating points described by the system outputs in the region
P = [0, 40] × [0, 40]. The system is excited with a random
multilevel signal and the resulting output signals are depicted
in Figure 7. A training data set D with N = 450 samples is
collected with a sampling rate of 1 sec from the three tank
system. Cross-validation based order selection has been used
to choose the structure of LPV model with na = 3 and nb = 3.
The hyper-parameters have been obtained as λ(1)i = 0.025,



7

Fig. 6: The three tank system TTS20.
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Fig. 7: Measurement data used for LPV model identification
of the three tank system.
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Fig. 8: The liquid level in the first cylinder: the real output
versus the predicted one.

λ
(2)
i = 0.02, σ

(1)
i = 40.1, and σ

(2)
i = 52.2 for i ∈ Ing

1

based on the algorithm proposed in Section II-B. Figures 8
and 9 show the real system output of the three tank system
and the simulated output of the estimated LPV model and the
corresponding output error w.r.t. Dval

900, which is the validation
data set selected to be different from the training data set. The
MSE for the estimation error of h1 is calculated to be 0.01
and h2 is calculated to be 0.05. The BFR for the estimation
of h1 is 99.89% and of h2 is 99.91%. Based on the obtained
results, it can be concluded that the Bayesian method has led
to a highly accurate LPV model for the three tank system with
a high BFR.

C. Control application of the proposed LPV modeling ap-
proach

In this section, a control application of the proposed LPV
model identification approach is given. To this aim, first
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Fig. 9: The liquid level in the second cylinder: the real output
versus the predicted one.
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an LPV model of a single tank system is identified using
the proposed algorithm, and then, an internal model control
(IMC) feedback structure is employed such that the tank liquid
level tracks the step reference signal r(t) in the presence of
disturbances. In this framework, a model of the process is
used internally to simulate the response of the system. In the
IMC structure, the internal model is the identified LPV-IO
model and the controller is an LTI one. The configuration of
the IMC structure is shown in Figure 10. The LPV-IO model
obtained via the proposed algorithm is used to simulate the
output of the single tank system. A band-limited white noise
with the power of 0.0001 is chosen to model the disturbance
input d(s). The controller transfer function C(s) is obtained
as C(s) = 4.02(13.8s+1)

4s+1 . In Figure 11, the tank liquid level
and its corresponding reference signal are shown under the
IMC feedback structure. The presented IMC controller clearly
demonstrates the usefulness of the obtained LPV-IO model for
control design purposes. It is noted that a parameter-dependent
controller can also be designed for achieving an improved
performance, which is beyond the scope of this paper.
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IV. CONCLUSION

In this paper, a Bayesian formulation for identification of
LPV-IO models has been introduced. A Gaussian process (GP)
is used to describe the distribution over nonlinear coefficient
functions. Without a prior information about the parametriza-
tion of the underlying coefficient functions, the proposed
approach is capable of reconstructing the dependency structure
of the LPV model based on the posterior distribution. The
applicability of the proposed approach has been investigated
through an extensive simulation study using a complex chem-
ical process, namely a high-purity distillation column and an
experimental case study using a three tank system laboratory
setup. By comparing the output of the identified LPV models
and the original systems, it is shown that the proposed LPV
Bayesian approach achieves high accuracy in capturing the
input-output behavior of such nonlinear systems.
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