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Abstract

Commonly, controllers for Linear Parameter-Varying (LPV)systems are designed in continuous

time using a Linear Fractional Representation (LFR) of the plant. However, the resulting controllers

are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

discrete-time model of the plant which is often derived froma continuous-time first-principle model.

Existing discretization approaches for LFRs describing LPV systems suffer from disadvantages like

the possibility of serious approximation errors, issues ofcomplexity, etc. To explore the disadvantages,

existing discretization methods are reviewed and novel approaches are derived to overcome them. The

proposed and existing methods are compared and analyzed in terms of approximation error, considering

ideal zero-order hold actuation and sampling. Criteria to choose appropriate sampling times with respect

to the investigated methods are also presented. The proposed discretization methods are tested and

compared both on a simulation example and on the electronic throttle control problem of a race

motorcycle.

Index Terms

Linear fractional representation; discretization; linear parameter-varying systems.

I. INTRODUCTION

Control synthesis approaches forlinear parameter-varying(LPV) systems (e.g., [1]–[3]), often

require LPV models in alinear fractional representation(LFR), as depicted in Fig. 1. In the

LPV interpretation of LFRs, the feedback gain∆ is assumed to vary in time as∆ is a function
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Fig. 1. Linear fractional representation of LPV systems.

of a time-dependent measurable signal, the so-calledscheduling variablep : R → P. The

compact set (or polytope)P ⊂ R
nP denotes the so calledscheduling ‘space’. Using scheduling

variables to represent changing operating conditions or endogenous/free signals of the plant,

LPV representations can describe both nonlinear and time-varying phenomena. Note that LFRs

of LPV systems can be seen as a generalization of LFRs of uncertain LTI systems where∆

is assumed to be a constant or a time-varying uncertainty. Bytreating these uncertainties as

scheduling variables, such descriptions blend into the framework considered in this paper.

In practice, implementation of LPV controllers in physicalhardware generally meets significant

difficulties, as oftencontinuous-time(CT) LPV control synthesis approaches [2] are preferred

in the literature overdiscrete-time(DT) methods [1]. The main reason is that stability and

performance requirements can be more conveniently expressed in CT, like in a mixed sensitivity

setting [3]. Therefore, the current design tools focus on CT-LPV controller synthesis in an LFR

form, requiring efficient discretization of such system representations for implementation pur-

poses. Next to that, DT approaches require a DT model of the plant which is often available only

through the use of CT first-principle models. It follows thatdiscretization of LFR representations

of LPV systems is a crucial issue for both control design and implementation.

In the existing literature, some approaches to LFR discretization are available. However, the

validity of the used discretization settings or the introduced approximation error has not been

analyzed so far. Moreover, only the isolated, i.e. stand alone discretization of the LFR’s is

treated. Note that similar to the LTI case, the plant and its controller needs to be discretized
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together (non-isolated setting) if the objective is to preserve the performance of the control

loop [4]. Basically the available methods usezero-order hold(ZOH) andfirst-order hold(1OH)

approaches to restrict the variations of the signals of the LFR in the sampling interval which

results in a DT description of the dynamics [5]–[12]. Almostall of these methods suffer from

various disadvantages like the possibility of significant approximation error, loss of stability,

high complexity etc., see Sec. III. Furthermore there are also important questions that need to

be thoroughly investigated, for example the choice of thesampling period, such that a specified

discretization error and/or preservation of the stabilitycharacteristics can be guaranteed.

For the sake of completeness it is important to note, that LFR’s are in fact specialdifferential

algebraic equations(DAE’s) and hence existing DAE discretization (solution) methods (see e.g.

[13]–[15]) can be applied on them. However, using these general approaches it is either not

possible to reconstruct a DT LFR or they are too general (concentrating on high index DAE’s)

to provide transparent results where the above stated questions can be investigated.

In this paper we aim to analyze discretization settings for LPV models in the LFR case and to

derive exact extensions of the approaches of the LTI framework. We compare the properties of

the resulting approaches in terms of preservation of stability and discretization errors. By taking

the first step towards a systematic discretization theory, we restrict the focus in this paper to the

isolated setting. We will return to this issue at the end of the paper, showing that preservation

of closed-loop performance in the LPV case also requires a non-isolated approach and in this

respect the current results of the paper offer a well-founded starting point towards such solutions.

The current paper extends the results reported in [16] and isorganized as follows: first,

in Sec. II, LFRs of LPV systems are defined. Existing approaches to LFR discretization are

investigated in Sec. III, pointing out the need for improvement. Using an exact discretization

setting in Sec. IV, traditional discretization methods of the LTI framework are extended to LFRs.

In Sec. V, properties of the introduced methods are presented in terms of discretization error and

preservation of stability. In Sec. VI, both a simulation example and a real life LPV throttle control

problem of a race motorcycle are investigated to demonstrate the performance and properties of

the proposed approaches. Finally the conclusions of the paper are presented in Sec. VII.
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II. L INEAR FRACTIONAL REPRESENTATIONS

The LFR of a given continuous-time LPV systemS is denoted byRLFR(S) and defined as

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

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ẋ(t)

z(t)

y(t)






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


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


(1a)

whereu : R → U = R
nu andy : R → Y = R

ny are the input and output signals of the system

S, containing disturbance/actuated input and measurable/unmeasurable output channels alike.

x : R → X = R
nx is the state variable of the representation.{A, . . . , D22} are constant matrices

with appropriate dimensions and
w(t) = ∆(p)(t)z(t), (1b)

where∆ is an operator working on the scheduling signalp of S and resulting in a matrix

valued signal, i.e.∆(p)(t) ∈ R
nw×nz. Commonly,∆ has a block diagonal structure containing

the elements ofp(t) and∆ is assumed to vary in a convex polytope. Note that (1a-b) is a DAE,

instead of anordinary differential equation(ODE) encountered in state-space representations.

Additionally, x, w, z are latent (auxiliary) variables ofRLFR(S).
By defining yd, ud, pd as the sampled signals ofy, u, p with sampling periodTd > 0, e.g.,

ud(k) := u(kTd), the definition of a LFR can be established in DT as the representation of an

underlying sampled continuous-time LPV systemS:

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


(2)

where{Φ, . . . ,Ω22} are constant matrices with appropriate dimensions and

wd(k) = ∆d(pd)(k)zd(k), (3)

with ∆d(pd)(k) ∈ R
nwd

×nzd . Note that it is not necessary thatzd, wd, or xd are also sampled

signals of their CT counterparts (they are just latent variables). In the sequel, this representation

is denoted asRLFR(S, Td). It is important to note that depending onTd, the existence of

RLFR(S, Td) is not guaranteed. On the other hand, not every DT-LFR corresponds to a sampled

CT-LFR as discrete-time systems and representations are self-standing mathematical concepts.

However, here we are interested in the relations between DT and CT descriptions and the

possibility of preserving the dynamical behavior through aDT projection.
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Now we can define the problem we intend to focus on in the rest ofthe paper:

Problem 1 (Discretization problem):For a sampling periodTd > 0 and for a given LFR of a

CT-LPV systemS, find a DT-LFR that describes or approximates the sampled behavior of the

output signaly of S in terms of a given error measure and a threshold for all possible trajectories

of the inputu and the scheduling variablep. �

III. EXISTING DISCRETIZATION APPROACHES

Before deriving a solution to Problem 1, the existing LFR discretization approaches are

investigated by evaluating their performance in terms of the proposed problem setting and also

pointing out the need for improvements.

A. Basic concepts of the discretization settings

In the available literature, only the isolated setting (stand alone discretization of the system)

is treated. Similar to the LTI case, in this setting it is necessary to restrict the free variables of

the system, i.e.,u andp, to vary in a predefined manner during fixed time intervals, called the

sampling intervals. This is required in order to describe the continuous-time evolution of all non-

free variables inside these time intervals. Having an exactcharacterization of these trajectories

makes it possible to derive a DT description of the system where signals are only observed

at the end of the sampling interval, i.e., with the sampling period Td. The simplest case is

when azero-order-hold(ZOH) device is applied onu and p, restricting their variation to be

piecewise-constant. However, this restriction can be relaxed to include a larger set of possible

signal trajectories like piece-wise linear (calledfirst-order-hold), or 2nd-order polynomial (called

second-order-hold), etc. In order to simplify the discretization problem we face in this setting,

the following assumption is commonly used (see [17]):

Assumption 1 (Discretization setting):The hold and the sampling devices are perfectly syn-

chronized withTd > 0 as thesampling periodor discretization time step. Furthermore, these

devices have infinite resolution (no quantization error) and their processing time is zero. �

Note that due to the assumed ideal hold devices, at the beginning of each sampling interval a

switching effect occurs. Contrary to the LTI case, the switching effect onp introduces additional

dynamics into the system which are not present in the original CT behavior. To avoid the

overcomplicated analysis of such effects, the following assumption is made:
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Fig. 2. (a) Full ZOH discretization of LFRs. (b) First/Zero-order hold discretization of LFRs.

Assumption 2 (Switching effects):The switching behavior of the hold devices has no effect

on the CT plant, i.e., the switching of the signals is assumedto take place smoothly.

B. Full zero-order hold approaches

A commonly used approach, like in [5], [6], is to apply ZOHs and sampling on all signals

of (1a-b) (see Fig. 2a). This setting implies that (1a) is discretized as a stand-alone (open-loop)

LTI system disregarding (1b). The advantage of this method lays in its simplicity, however it

can seriously alter the dynamics, i.e., stability, of the DTapproximation as it assumes that all

terms in the state equation that are coupled with∆ are constant inside the sampling interval. To

demonstrate the latter property consider the following example:

Example 1:Suppose that a CT-LFR is given as

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ẋ(t)
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y(t)
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
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
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
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

x(t)

w(t)

u(t)








(4)

with w(t) = ∆(p)(t)z(t), ∆(p)(t) = p(t) and0 < pmin ≤ p(t) ≤ pmax. Then

ẋ(t) = −
w(t)

︷ ︸︸ ︷

p(t)x(t) + u(t), (5a)

y(t) = x(t), (5b)
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and z(t) = x(t). Based on a Lyapunov argument, it follows that (5a) is asymptotically stable

(see [18]). Now by applying the ZOH in terms of Fig. 2a we have:

u(t) = u(kTd) and w(t) = p(kTd)x(kTd), (6)

for t ∈ [kTd, (k + 1)Td). From (5a) it follows that

x(t) = x(kTd) +

∫ t

kTd

(
−w(τ) + u(τ)

)
dτ = x(kTd) +

∫ t

kTd

(
−p(kTd)x(kTd) + u(kTd)

)
dτ, (7)

for t ∈ [kTd, (k + 1)Td). It is obvious that the integral is over a constant function (no state

variation), thus

x((k + 1)Td) = (1− Tdp(kTd))x(kTd) + Tdu(kTd), (8)

implying the DT-LFR:

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
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

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



(9)

with ∆d(pd)(k) = p(kTd). The corresponding DT system is asymptotically stable ifTd < 2
pmax

(see [18]). This illustrates that the original dynamics of the plant are substituted by a piecewise

linear evolution of the state in this discretization setting hence the stability characteristics are

altered.

C. First/Zero-order hold approaches

Other methods, like [7], [8], use a mixed discretization setting of first and zero-order holds,

depicted in Fig. 2b. By considering future samples ofp and z in terms of the 1OH, the

approximation of the variations ofx that are coupled with∆ improves. However, this also often

turns out to be a disadvantage, as the resulting DT-LFR depends on future samples ofp and

w, which results in a non-causal representation. In case the ultimate goal of the discretization

is analysis or simulation, this causality problem might notbe disadvantageous (see [7]). For

demonstration, consider the CT-LFR given in Example 1.

Example 2: In the setting of Fig. 2b, (4) implies that

w(t) = p(kTd)x(kTd) +
t− kTd

Td

(

p((k + 1)Td)x((k + 1)Td)− p(kTd)x(kTd)
)

, (10)

and u(t) = u(kTd) for t ∈ [kTd, (k + 1)Td). By computing the state evolution (7) inside the

sampling interval one obtains (see [18] for the detailed derivation)
(

1 +
Td

2
p((k + 1)Td)

)

x((k + 1)Td) =

(

1− Td

2
p(kTd)

)

x(kTd) + Tdu(kTd), (11)
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Fig. 3. (a) Extraction of the integrator for bilinear discretization. (b) Exact ZOH discretization of LFRs.

which implies the DT-LFR:







xd(k + 1)

zd(k)

yd(k)





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
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



1 −Td
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−Td
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1 −Td
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−Td
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




xd(k)

wd(k)

ud(k)








(12)

with ∆d(pd)(k) =
[
p((k+1)Td) 0

0 p(kTd)

]
. It can be proven that even if arbitrarily fast variation ofpd is

allowed, i.e.,p ∈ P
Z, (11) is asymptotically stable for anyTd > 0 (see [18]). (11) gives a rational

approximation of the original state evolution, better than(8), but with a price of non-causality1

in the p-dependence and an increase in the dimensions of∆d.

D. Bilinear transformation technique

As an alternative, the time operator in the state-equation can be extracted as an integrator (see

Fig. 3a) which is discretized via thez -substitution of its Laplace transform1/s (see [9], [10]).

For the substitution, the bilinear transformation

1

s
≈ Td

2

z + 1

z − 1
, (13)

is used, resulting in a Tustin type of discretization approach. It can be shown that this intuitive

1Note that in this simple example it is possible to introduce ap-dependent state transformation to eliminate the non-causal

dependence. However, such an elimination is not possible ingeneral [7], [8].
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method introduces ZOH only onu andp, depicted in Fig. 3b, and it does not restrict variations

of the state. Furthermore, this concept preserves stability of the original representation. On the

other hand, the formulation of the approach is only based on the analogy with the LTI case and

it does not give an understanding of the introduced approximations. To demonstrate this method,

again consider the previously investigated example.

Example 3:The bilinear transformation (13) corresponds to the evaluation of the integral (7)

by the trapezoidal formula. Using the nonlinear state transformation

x̆d(k) =
1√
Td

x(kTd) +

√
Td

2
w(kTd)−

√
Td

2
u(kTd), (14)

the resulting DT-LFR is







x̆d(k + 1)

zd(k)

yd(k)







=








1 −√
Td

√
Td

√
Td −1

2
Td

1
2
Td

√
Td −1

2
Td

1
2
Td















x̆d(k)

wd(k)

ud(k)








(15)

with ∆d(pd)(k) = pd(k) (see [9]). Using a Lyapunov argument, it can be shown that this DT-LFR

is asymptotically stable for anyTd > 0 and trajectories ofpd : Z → [pmin, pmax] (see [18]).

E. Discretization in state-space form

Another discretization approach is to rewrite (1a-b) as an LPV state-space(SS) representation:

ẋ = A(p)x+ B(p)u, (16a)

y = C(p)x+D(p)u. (16b)

This reformulation is possible if the following (well-posedness) condition holds:

Assumption 3:I −D11∆(p) is invertible for allp ∈ P
R and t ∈ R. �

In (16a-b) the matrices are given as (see e.g. [3])

A(p) = A +B1∆(p)(I −D11∆(p))−1C1, (17a)

B(p) = B2 +B1∆(p)(I −D11∆(p))−1D12, (17b)

C(p) = C2 +D21∆(p)(I −D11∆(p))−1C1, (17c)

D(p) = D22 +D21∆(p)(I −D11∆(p))−1D12. (17d)

As a next step, the discretization formulas of LPV-SS representations derived in [11], [12] are

applied on (16a-b). Then, the resulting discrete-time LPV-SS representation is transformed to a

discrete-time LFR. This approach provides a wide range of fully analyzed methods with criteria
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for the choice of the sampling period. However, conversion between LFR and SS representations

is complicated and the resulting DT-SS representations might not be realizable by an LFR without

introducing conservatism (see Sec. IV-A).

F. Concluding remarks

The above given overview of the available approaches suggests that the applied discretization

setting in itself determines the quality of the achievable DT approximation. We have seen

that some approaches suffer from serious approximation errors and alteration of the stability

characteristics of the original system. The best properties follow from the setting of Fig. 3 as

the state variation in the sampling interval is not restricted. However, the applied Tustin method

only provides an approximation, raising the question: can we do more in the setting of Fig.

3? In the sequel we intend to focus on this question and extendother successful discretization

approaches for LFR representations similar to the case of LPV-SS representations (see [11]). We

analyze when it is possible to give an errorless DT projection and how the error introduced by

approximative methods can be determined. As we will see, this yields criteria for the choice of

Td to preserve stability and to achieve a desired performance with the introduced approaches.

IV. EXACT ZOH DISCRETIZATION OFLFRS

Based on the previous conclusions, we will investigate whether an approximation-free solution

to Problem 1 exists in the ZOH setting presented in Fig. 3b andif such a method can provide

a practically useful DT projection of CT-LFRs of LPV systems. The following assumption is

introduced:

Assumption 4 (exact ZOH setting):We are given a CT-LPV systemS, with CT input signal

u, scheduling signalp, and output signaly, whereu and p are generated by an ideal ZOH

device andy is sampled. Additionally, the ZOHs and the sampling satisfyAssumptions 1-2 with

Td > 0. �

These assumptions imply that fork ∈ Z

u(t) := ud(k), ∀t ∈ [kTd, (k + 1)Td), (18a)

p(t) := pd(k), ∀t ∈ [kTd, (k + 1)Td), (18b)

yd(k) := y(kTd). (18c)
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A. Complete approach

First the complete signal evolution approach [17] of the LTIframework is extended to the

LFR case. Let a CT-LFR be given in the ZOH setting of Fig. 3b. Based on Assumption 4, (1a)

can be written as 






ẋ(t)

z(t)

y(t)







=








A B1∆(p)(kTd) B2

C1 D11∆(p)(kTd) D12

C2 D21∆(p)(kTd) D22















x(t)

z(t)

u(kTd)








(19)

which corresponds to a DAE. Now in thekth sampling interval,x(t) reads as

x(t) = x(kTd) +

∫ t

kTd

Ax(τ) +B1∆(p)(kTd)z(τ) +B2u(kTd) dτ, ∀t ∈ [kTd, (k + 1)Td). (20)

If Assumption 3 holds, then (19) is an index-0 DAE, meaning that its solution can be obtained

by algebraically eliminating the latent variablez to obtain an ODE form. Then, fort = (k+1)Td,

(20) yields

x((k + 1)Td) = eTdA(p)(kTd)x(kTd) +A−1(p)(kTd)
(
eTdA(p)(kTd) − I

)
B(p)(kTd)u(kTd). (21)

Note that invertibility ofA(p) is not required for obtaining the solution (nor for the calculation

of the resulting matrix functions), but if it is invertible,we can write the resulting DT description

of the sate-evolution conveniently as (21). This solution implies a DT realization of the original

system, however aseTdA(p) is not a rational function of∆(p), it is not possible to find an exact

DT-LFR which describes the state transition from(x(kTd), u(kTd)) to x((k + 1)Td) defined by

(21). One option is to introduce

∆d(pd)(k) =




∆(p)(kTd) 0

0 eTdA(p)(kTd)



 , (22)

and provide a DT-LFR realization of (21), which however might be rather unattractive for

controller synthesis due to issues of conservatism.

Now consider the case when Assumption 3 is not satisfied2. Then, (19) is an index-1 DAE,

meaning that its solution (if it exists) can only be obtainedby differentiating (19) once. In

general, such solution also has no exact DT-LFR realization.

These conclusions underline that unlike the LTI and the LPV-SS cases, no exact DT projection

of the dynamics is available in the LFR case under Assumption4.
2Note that invertibility ofI−D11∆(p) is only a sufficient but not a necessary condition for the well-posedness of LFRs (see

[19]).
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B. Approximative approaches

As we have seen, complete discretization of LFRs is rather difficult, thus it is important

to develop approximative methods. By looking at the state-equation of (1a) as a pure ODE,

numerical approximations of the resulting CT solution can be applied. Then, by using the

algebraic constraints in (1a-b), a DT-LFR can be obtained that approximates the original behavior

under Assumption 4. In the literature on numerical methods,such an approach is reported to

work well for DAE’s with index 0 and 1. Using this methodology, the following approximative

methods can be derived:

1) Rectangular (Euler’s forward) method:Denote the righthand-side of the state equation in

(1a) byf(x, w, u), so
f(x, w, u)(t) = Ax(t) +B1w(t) +B2u(t). (23)

Then,
x(t) = x(kTd) +

∫ t

kTd

f(x, w, u)(τ) dτ (24)

defines the state evolution of (1a) in[kTd, (k + 1)Td). Left-hand rectangular evaluation of (24)

gives that
x((k + 1)Td) ≈ x(kTd) + Tdf(x, w, u)(kTd). (25)

Based on this rectangular approach, the DT approximation ofRLFR(S) reads as

RLFR(S, Td) ≈








I + TdA TdB1 TdB2

C1 D11 D12

C2 D21 D22







, (26)

with ∆d(pd)(k) = ∆(p)(kTd) (see [18]). Note that using a first-order Taylor approximation of

eTdA(p(kTd)) in (21) (which is called the Euler method) results in the sameDT-LFR realization as

(26). It is also important to highlight that the rectangularapproach gives the same solution as

the full ZOH setting of Fig. 2a with Euler discretization of the LTI part, suggesting very poor

performance for this method. Therefore, by applying the rectangular method on the previously

considered example, the resulting DT description reads as (9).

2) Polynomial (Hanselmann) method:It is possible to develop other methods that achieve

a better approximation of the complete solution (21) but with increasing complexity. One way

leads through the use of higher-order Taylor expansions of the matrix exponential:

eTdA(p)(kTd) ≈ I +
∑n

l=1
Tld
l!
Al(p)(kTd). (27)
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This gives the following DT-LFR (see [18]):

RLFR(S, Td) ≈














∑n

l=0
Tld
l!
Al

∑n

l=1
Tld
l!
Al−1B1

∑n

l=2
Tld
l!
Al−2B1 . . .

Tnd
n!
B1

∑n

l=1
Tld
l!
Al−1B2

C1 D11 0 . . . 0 D12

C1A C1B1 D11 . . . 0 C1B2

...
...

. . . . . .
...

...
C1A

n−1 C1A
n−2B1 C1A

n−3B1 . . . D11 C1A
n−1B2

C2 D21 0 . . . 0 D22














(28)

with ∆d(pd)(k) = In×n⊗∆(p)(kTd) where⊗ is the Kronecker product. Additionally, the above

defined method is not equivalent to applying polynomial discretization of the LTI part in the

spirit of Fig. 2a. Considering the previously given example, the polynomial method withn = 2

results in the following DT approximation of (4):







xd(k + 1)

zd(k)

yd(k)







=








1 −Td −T2d
2

Td

1 0 0 0
0 −1 0 1
1 0 0 0















xd(k)

wd(k)

ud(k)








(29)

which is asymptotically stable ifTd < 2
pmax

(see [18]).

3) Pad́e’s expansion method:A different way of approximating the exponential term in (21),

is to use a rational approximation in the form of a Padé(i, j) expansion:

eTdA(p) ≈ [Tij(TdA(p))]−1Nij(TdA(p)), (30)

where

Tij(TdA(p)) =
∑j

l=0
(i+j−l)!j!

(i+j)!l!(j−l)!
(−TdA(p))l , (31a)

Nij(TdA(p)) =
∑i

l=0
(i+j−l)!i!

(i+j)!l!(i−l)!
(TdA(p))l . (31b)

In general, (30) has a much faster convergence rate than (27). Approximation of matrix expo-

nentials by Padé expansions is also viewed as an attractiveapproach in the numerical literature

[20], [21]. Substituting (30) into (21) gives

Tij(TdA(p)(kTd))x((k+1)Td)≈Nij(TdA(p)(kTd))x(kTd)+N̂ij(TdA(p)(kTd))B(p)(kTd)u(kTd),
(32)

where, fori = j,

N̂ii(TdA(p))=A(p)−1
(
Nii(TdA(p))− Tii(TdA(p))

)
. (33)
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As Tij , Nij and N̂ij are rational functions of∆(p), there exists a DT-LFR realization of (32).

In the casei = j = 1, T11(TdA(p)(kTd)) = I − Td
2
A(p)(kTd) and N11(TdA(p)(kTd)) = I +

Td
2
A(p)(kTd), giving that a minimal DT-LFR realization of (32) reads as (see [18])

RLFR(S, Td) ≈








(I + Td
2
A)Ψ Td

2
ΨB1

Td
2
ΨB1 TdΨB2

C1(I +
Td
2
A)Ψ Td

2
C1ΨB1 +D11

Td
2
C1ΨB1 TdC1ΨB2 +D12

C1 0 D11 D12

C2 0 D21 D22








(34)

with Ψ = (I − Td
2
A)−1 and∆d(pd)(k) = I2×2 ⊗∆(p)(kTd). Again, it is important to note that

the above defined method is not equivalent to the Padé discretization of the LTI part in the

spirit of Fig. 2a. Considering the previously given example, the Padé’s expansion method with

(i, j) = (1, 1) results in the following DT approximation of (4):







xd(k + 1)

zd(k)

yd(k)







=








1 −Td
2

−Td
2

Td

1 −Td
2

−Td
2

Td

1 0 0 0
1 0 0 0















xd(k)

wd(k)

ud(k)







. (35)

It can be easily proven that the above given LFR is asymptotically stable for anyTd > 0 and

any trajectory ofpd : Z → [pmin, pmax] (see [18]).

4) Trapezoidal (Tustin) method:Another approach is to use different numerical formulas to

approximate (24). By using a trapezoidal evaluation, we obtain:

x((k + 1)Td) ≈ x(kTd) +
Td
2
f |kTd + Td

2
f |(k+1)Td , (36)

wheref |t = f(x, w, u)(t). Now by applying a change of variables:

x̆d(k) =
1√
Td

(
I − Td

2
A
)
x(kTd)−

√
Td
2
B1w(kTd)−

√
Td
2
B2u(kTd), (37)

and assuming thatI − Td
2
A is invertible, substitution of (37) into (36) gives the DT-LFR:

RLFR(S, Td) ≈








(
I + Td

2
A
)
Ψ

√
TdΨB1

√
TdΨB2

√
TdC1Ψ

Td
2
C1ΨB1 +D11

Td
2
C1ΨB2 +D12

√
TdC2Ψ

Td
2
C2ΨB1 +D21

Td
2
C2ΨB2 +D22








(38)

with ∆d(pd)(k) = ∆(p)(kTd) and Ψ = (I − Td
2
A)−1. The trapezoidal approach exactly gives

the same solution as the bilinear method introduced in Sec. III-D. Therefore, by applying this

method to the previously considered example, the resultingDT description reads as in Sec. III-D.
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5) Multi-step methods:(24) can also be approximated via multi-step formulas like the Runge-

Kutta, Adams-Moulton, or the Adams-Bashforth approaches [13]. However, in the considered

ZOH discretization setting, the sampling period is fixed andsampled data is only available at

past and present sampling instants. Therefore it is complicated to apply the Runge-Kutta or the

Adams-Moulton approaches. The family of Adams-Bashforth methods, on the other hand, does

fulfill these requirements (see [13]). The 3-step version ofthis numerical approach uses the

following approximation ofx((k + 1)Td):

x(kTd) +
Td

12

(
5f |(k−2)Td − 16f |(k−1)Td + 23f |kTd

)
. (39)

Then introducing a new state variable

x̆d(k) = [ x⊤(kTd) f |⊤(k−1)Td
f |⊤(k−2)Td

]⊤ (40)

leads to the DT-LFR (see [18]):

RLFR(S, Td) ≈










I + 23Td
12

A −16Td
12

I 5Td
12
I 23Td

12
B1

23Td
12

B2

A 0 0 B1 B2

0 I 0 0 0
C1 0 0 D11 D12

C2 0 0 D21 D22










(41)

with ∆d(pd)(k) = ∆(p)(kTd). Note that multi-step discretization results in simple formulas but

the state dimension is increased. Applying this method for the previous example results in







x̆d(k + 1)

zd(k)

yd(k)







=









1 −16Td
12

5Td
12

−23Td
12

23Td
12

0 0 0 −1 1
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0
















x̆d(k)

wd(k)

ud(k)








(42)

for which asymptotic stability can only be analyzed numerically for a specificP.

V. PROPERTIES OF THE APPROACHES

A. Numerical properties and discretization error

Using a similar line of reasoning as in [11], [12], the discretization error of the introduced

approaches can be investigated through their numerical properties. In this section we will briefly

cover how these properties and error bounds apply for the discretization methods of Sec. IV.
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1) Local discretization error:Due to the approximative nature of the discretization methods

developed in Section IV-B it is important to characterize the quality of approximation for example

in terms of the approximation error of the state evolution. For this purpose the concept ofLocal

Unit Truncation(LUT) error, denoted byεk ∈ R
nx, is introduced. LetRx(q, pd) andRu(q, pd)

be polynomials inq with pd-dependent coefficient matrices. Choose these polynomialssuch that

they formulate the state update of the DT approximations on the same state basis as in the original

CT-LFR: RLFR(S). In the rectangular, polynomial and the Padé cases,Rx(q, pd) = Ad(pd) and

Ru(q, pd) = Bd(pd), whereAd andBd are computed according to (17a-d) for the DT-LFR form,

but in the other cases, they also include the appropriate state transformation. For example, in the

trapezoidal case, (36) describes the DT state update w.r.t.the original state basis ofRLFR(S). By

using the change of variables (37), we transformed (36) to correspond to an LFR state equation.

However in terms of analysis we need (36) to characterize theLUT error w.r.t.xd. This gives

rise to polynomials

Rx(q, pd)(k) = I + Td
2
A(pd)(k) +

Td
2
A(qpd)(k)q,

Ru(q, pd)(k) =
Td
2
B(pd)(k) + Td

2
B(qpd)(k)q,

in the Trapezoidal case and

Rx(q, pd)(k) =
(
I + 23

12
TdA(q2pd)(k)

)
q2 − 16

23
TdA(qpd)(k)q +

5
23
TdA(pd)(k),

Ru(q, pd)(k) =
23
12
TdB(q2pd)(k)q2 − 16

23
TdB(qpd)(k)q + 5

23
TdB(pd)(k),

in the Adams-Bashforth case.

By using the introduced polynomials,εk is defined by

Tdεk+n :=
(
qnxd − Rx(q, pd)xd − Ru(q, pd)ud

)
(k), (43)

for each sampling interval. In (43),n = 1 for all single step methods (all considered approaches

except the Adams-Bashforth case) whilen equals to the number of steps in case of a multi-

step method (liken = 3 for the 3-step Adams-Bashforth method). Note that LUT represents

the relative (scaled byTd) approximation error of the system dynamics at each sampling period,

when the correct sampled continuous statesx and inputsu are used for the state update of the DT

approximation. Hence the name ”local”. In the theory of numerical approximation of differential

equations,εk is considered as the measure of accuracy [13]. Based on simple calculations, the

LUT error of each method can be characterized and formulas can be given to calculate an
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upper bound of its norm (see [11] for the details). Based on these expressions of the LUT

error, it follows that the derived methods are numerically consistent and convergent, which

means that by decreasingTd the approximation error of the sampled CT behavior also converges

to zero. Furthermore, the order of numerical convergence (the lowest order of derivative of

x being necessary to bound the LUT error) indicates the convergence rate of this error (see

[13]). The rate of convergence is given in the first row of Table I for each method. Methods

with high convergence rate, like the polynomial and Padé approaches, provide more accurate

approximations (with decreasingTd) than the other methods. However convergence in terms of

the LUT error does not imply that theglobal approximation error

ηk+n :=
(
qnxd − Rx(q, pd)x̂d − Ru(q, pd)ud

)
(k), (44)

wheren is the number of steps in the approximation method andx̂d is the DT approximation of

the state, decreases/converges to zero too. In terms of practical applications, bounds onηk have

paramount importance.

2) Stability preservation:Preservation of stability through the discrete time projection can

also be analyzed. Consider the CT-LFR (1a-b). For a constanttrajectory ofp, i.e., p(t) ≡ p for

all t ∈ R, A(p) is a constant matrix ((1a-b) reduces to a LTI system). We call(1a-b) uniformly

frozen stable if (1a-b) is asymptotically stable for all constant trajectories ofp. In terms of

Assumption 2, this means thatA(p) is Hurwitz for all p ∈ P. An analogous definition of frozen

stability can be given for DT-LFRs. By analyzing the numerical stability of the DT projection

(see [11]), it can be concluded that the preservation of uniform frozen stability of the CT-LFR is

always guaranteed with the trapezoidal and the Padé approaches. With respect to other methods,

analytic bounds̆Td on the sampling period can be given for which preservation offrozen stability

is guaranteed.

3) Adequate discretization step size:In practical situations, the appropriate choice ofTd

to arrive at a specific performance in terms of discretization error is important. By using the

characterization of the LUT error, upper bounds ofTd can be derived that guarantee a certain

bound on the approximation error in terms of a chosen measure‖�‖. Defineε∗ as the supremum

of ‖εk‖ over all possible state trajectories ofRLFR(S) andk ∈ Z. Also introduce

Mmax
x = sup

x

max
t∈R

‖x (t)‖ = max
x∈X

‖x‖ , (45)
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Property Complete Rectangular nth-polynomial Trapezoidal Padé(n, n) Adams-Bashforth

consistency / convergence always 1st-order nth-order 2nd-order nth-order 3rd-order

preservation of stability / N-stab. always frozen with T̆d frozen with T̆d always frozen always frozen frozen with T̆d

preservation of instability + - - + + -

∆d-block complexity not realizable 1×∆ n×∆ 1×∆ 2n×∆ 1×∆

system order preserved preserved preserved preserved preserved increased

TABLE I

PROPERTIES OF THE DERIVED DISCRETIZATION METHODS

as the maximum “amplitude” of the state signal for anyu andp. Also defineεmax as the required

maximum relative local error of the discretization in termsof percentage. Then aTd > 0 is

searched for that satisfies

ε∗ ≤
εmaxM

max
x

100 · Td
. (46)

By using the bounds on the LUT error derived in [11], we can formulate an upper bound ofTd

denoted aŝTd w.r.t. each method, such that (46) is satisfied for the desired εmax percentage. Note

that, to derive these criteria, (45) must be bounded, i.e.,X must be confined in a ball (bounded

region) ofRnx , which is not an unrealistic assumption in case of asymptotic stability of (1a-b) for

all p ∈ P
Z) and boundedP andU. In case of the Padé(i, j) approach, exact computation ofT̂d

corresponds to a heavy nonlinear optimization problem, however the result can be approximated

in a lower bound sense by the performance bound of the(i+ j)-order polynomial method.

In practical situations one may be concerned about the maximum of the global errorηk (44)

as a performance measure. Defineη∗ as the supremum of‖ηk‖ over all possible state trajectories

of RLFR(S) andk ∈ Z. Also defineηmax as the maximal acceptable relative global error of the

discretization in terms of percentage. Then one would like to chooseTd such that

η∗ ≤
ηmaxM

max
x

100
. (47)

Unfortunately, characterization ofη∗ for the introduced discretization methods requires serious

restrictions on the considered CT behaviors. However, in case ofTd ≤ T̆d, εmax can be used as

a good approximation ofηmax, and therefore the performance boundT̂d can be used to bound

the global error as well.
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B. Complexity of∆d

As in LPV control synthesis mostly low complexity (dimension, type of dependence, structure,

etc.) of∆ is preferred (see [2]), therefore both for modeling and controller discretization purposes

- beside the preservation of stability - the preservation ofthe original∆ without repetition is

highly valued. This favors approximative methods that giveacceptable performance, but with less

repetition of∆ in the new∆d block. For the rectangular, trapezoidal and the Adams-Bashforth

methods∆d = ∆, making these approaches attractive from this point of view. However, in the

Adams-Bashforth case, discretization also results in the order increase of the DT system which

yields extra computational load or requires more complicated controller design depending on

the intended use.

C. Overall assessment

If the quality of the DT model has priority, then the trapezoidal, polynomial, and the Padé

methods are suggested due to their fast convergence and large stability radius. The Padé(n, n)-

method is especially attractive as it merges the good properties of the trapezoidal and polynomial

approaches like preservation of stability and fast convergence rate for highn. However the price

to be paid is an increased number of repetitions of the∆ block. The above stated properties

also clearly point out that there exists no ’best’ discretization method as in specific scenarios

one approach can be more attractive than the others. The choice of the method that is the most

attractive w.r.t. the problem at hand will always be up to theuser and may for instance be based

on Table I.

VI. EXAMPLES

In the following a simple example is presented to visualize/compare the properties of the ana-

lyzed discretization methods. This will be followed by a more involved example of discretization

of a LPV controller designed on the throttle body model of a race motorcycle and assessing the

achieved closed loop performance of the resulting DT controller.

A. Simulation study of a simple LPV model

Consider the following LFR of a continuous-time SISO LPV systemS:

RLFR(S) =









66 −136 1 0 1
116 −86 0 1 1
−58 123 0 0 1
−10 75 0 0 1
1 1 −0.1 −0.1 0.1








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with ∆(p) =
[
p 0
0 p

]
and P = [−1, 1]. For each constant scheduling trajectory,RLFR(S) is

equivalent to a stable LTI system, soS is uniformly frozen stable onP.

ConsiderRLFR(S) in the exact ZOH setting of Fig. 3b with sampling periodTd = 0.02 s.

By applying the discretization methods of Sec. IV, approximative DT-LFRs ofS have been

calculated. For comparison, the full ZOH approach has also been applied onRLFR(S). To

demonstrate the performance of the resulting DT descriptions, the output of the original system

and its DT approximations have been simulated on the time interval [0, 1] with zero initial

conditions and for 100 different realizations of whiteud and pd with uniform distribution

U(−1, 1). For fair comparison, the achieved (average) MSE3 of the resulting output signals

ŷd has been calculated w.r.t. the outputy of RLFR(S) and is presented in Table II. The relative

worst-case maximum local error̂εmax = 100 ·Tdε∗/Mmax
x and global error̂ηmax = 100 ·η∗/Mmax

x

of the DT state-signalŝxd associated with the DT representations have also been computed w.r.t.

x of RLFR(S) and presented in Table II. For the calculation ofMmax
x it has been assumed that

X = [−0.4, 0.4]2, which has been verified by simulations ofRLFR(S) based onud, pd ∈ U(−1, 1)

andx(0) = [ 0 0 ]⊤.

Table II shows that - except for the rectangular, polynomialand the Adams-Bashforth methods

- all approximations converge. As expected, the error of thecomplete method is extremely small

while the trapezoidal and the Padé(1, 1) methods give a moderate, but acceptable performance.

Surprisingly, the full ZOH approach also gives a stable projection with an acceptable error. This

underlines that the full ZOH approach can provide effectivediscretization of LFRs in some

cases. However, its weakness is its unpredictable nature (see the next example).

As a second step, we calculate boundsT̆d and T̂d on the sampling period by choosing the

Euclidean norm as an error measure andεmax = 1%, with the intention to achieveηmax = 1%.

The calculated sampling bounds are presented in Table III. For the calculation of̂Td it has been

again assumed thatX = [−0.4, 0.4]2. The results show that the rectangular method needs a fast

sampling rate to achieve a stable projection and even a faster sampling to obtain the required

performance. The2nd-order polynomial projection has significantly better bounds due to the

2nd-order accuracy of this method. For the trapezoidal and the Padé cases, the existence of the

3Mean Squared Error: Ē
{

(y − ŷd)
2
}

= lim
N→∞

1
N

∑

N−1
k=0 E{(y (kTd)− ŷd (k))

2}, i.e. the expected value of the squared

estimation error, wherēE is the generalized expectation operator.
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MSE of ŷd

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

2 · 10−2, (50Hz) 1.2 · 10−8 8.67 · 10−2 (∗) (∗) 1.14 · 10−1 3.37 · 10−1 (∗)

5 · 10−3, (0.2kHz) 6.7 · 10−9 1.2 · 10−3 (∗) 2.04 · 10−3 9.67 · 10−4 3.64 · 10−4 1.14 · 10−2

10−4, (10kHz) 5.37 · 10−8 5.37 · 10−8 2.19 · 10−7 5.37 · 10−8 9.77 · 10−8 5.37 · 10−8 3.15 · 10−7

ε̂max of x̂d

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

2 · 10−2 , (50Hz) 0.02% 27.43% (∗) (∗) 4.68% 12.58% (∗)

5 · 10−3 , (0.2kHz) 0.01% 1.71% (∗) 1.85% 1.51% 1.25% 12.36%

10−4 , (10kHz) 0.06% 0.06% 0.06% 0.07% 0.07% 0.06% 0.16%

η̂max of x̂d

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

2 · 10−2 , (50Hz) 0.02% 78.92% (∗) (∗) 75.47% 143.37% (∗)

5 · 10−3 , (0.2kHz) 0.01% 5.87% (∗) 6.62% 5.47% 2.84% 17.97%

10−4 , (10kHz) 0.03% 0.03% 0.06% 0.03% 0.03% 0.03% 0.10%

TABLE II

DISCRETIZATION ERROR OFS , GIVEN IN TERMS OF THE ACHIEVED AVERAGEMSE, ε̂max AND η̂max FOR 100

SIMULATIONS. (∗) INDICATES UNSTABLE PROJECTION TO THE DISCRETE DOMAIN.

Criteria

Rectangular 2nd-polynomial Trapezoidal Padé(1, 1) Adams-Bashforth

T̆d [s] 1.76 · 10−3, (0.6kHz) 1.04 · 10−2, (96.3Hz) ∞ ∞ 2.86 · 10−3, (0.3kHz)

T̂d [s] 1.02 · 10−3, (1.0kHz) 2.52 · 10−3, (0.4kHz) 3.16 · 10−3, (0.3kHz) > 2.52 · 10−3, (0.4kHz) 1.80 · 10−3, (0.6kHz)

TABLE III

STABILITY (T̆d) AND PERFORMANCE(T̂d) BOUNDS USING THEEUCLIDEAN NORM AND εmax = 1%.

transformation is always guaranteed because all frozen eigenvalues ofRLFR(S) are complex

valued and are in the left half-plane.

The derived bounds are used to choose aTd for the calculation of the discrete projections.

The T̆d bounds of Table III represent the stability boundary, therefore Td < T̆d is used as a new

sampling-time in each case. As a next step, discretizationsof RLFR(S) with Td = 5 · 10−3 s, the

half of the stability bound̆Td for the polynomial method, are calculated. The simulation results
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Fig. 4. Prototype of an electronic throttle body for a race bike.

for this case are given in the second row of Table II. The rectangular method again results in

an unstable projection, while the Adams-Bashforth method seems to be stable, but its numerical

stability is not guaranteed for all trajectories ofpd. The trapezoidal and the Padé methods also

improve significantly in performance, however the Padé seems to outperform the trapezoidal

method due to its faster convergence rate. The achievedε̂max of each approximative method is

above the aimed 1% which is in accordance with theirT̂d.

Finally, discretizations ofRLFR(S) with Td = 10−4 s, the1/10th of the T̆d bound for the

rectangular method, are calculated and simulated. The results are given in the third row of

Table II: the rectangular method converges and also the approximation capabilities of the other

methods reach the numerical step-size (10−8) of the continuous-time simulation. By looking

at the achieved̂εmax, all the methods obtain the aimed 1% error performance whichis in

accordance with their̂Td bound. Note that̂ηmax is also less than 1%, proving the concept that

by choosing the sampling period to achieve a small local error, the expected global error will

also be small/approximately equal to the aimed bound.

B. Electronic throttle control

In the automotive industry, electronic throttle actuationis regarded as a solution for the air loop

control problem for modern combustion engines. A more accurate control of the air inflow to

the engine allows better control of the air-fuel mixture with the results of improved combustion

and reduced pollution. Motorcycles, especially race bikes, are very sensitive to small changes

of the air-fuel mixture which are due to the highly nonlinearbehavior of the throttle position.

Electronic throttle actuation is an emerging technology inorder to optimize the performance of

race bikes.
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In [22] a recently developed prototype of anelectronic throttle body(ETB), depicted in Fig. 4,

for a race bike has been successfully modeled as an LPV system. With respect to the developed

model, a continuous-time gain-scheduled LPV-PID controller was synthesized to regulate the

throttle gap based on the demand of the driver. The conceptual diagram of the LPV control

loop is illustrated in Fig. 5. Hererθ(t) denotes the reference signal for the throttle position, i.e.,

the demand of the driver,uc(t) is the input of the controller, i.e., the tracking error,yc is the

output of the controller, i.e., the PWM signal applied to theDC motor armature, while∆v(t)

denotes the actual position of the throttle. Analysis of professional drivers’ behavior has pointed

out that the fastest full-open/full-close maneuver lasts approximately 100 ms, i.e., the reference

signalrθ(t) is a low frequency signal with a band limit of 20 Hz. By analyzing the dynamical

behavior of the throttle body w.r.t. the control synthesis problem, the scheduling signalp(t) of the

controller has been selected to be the requested position variation∆rθ(t). In order to implement

a causal filter to estimate this signal,∆rθ(t) is computed by considering (at the current time

instantt0) the averaged value of the set-point derivative ofrθ(t) – averaged over a time window

[t0 − τ, t0] – and propagating it forward over[t0, t0 + h] by assuming that it remains constant

over the latter time interval. The values ofh and τ have been experimentally tuned to 7 ms

and 100 ms, respectively. The controller has shown good performance both during simulation

study and experimental verification. During implementation, a 1 kHz sampling rate has been

used, due to physical limitations of the processing unit, and the discrete-time form of the design

was obtained via a full ZOH-approach. Here we intend to studyhow discretization affects the

performance of the designed CT controller and how the specific properties of the discretization

approaches assist or hamper to obtain an adequate digital implementation of the control design.

Furthermore, it is also interesting to check whether the controller can be implemented in DT

with a slower sampling rate without sacrificing the performance of the current implementation.

The latter would be essential to reduce the cost of the processing unit, providing a cost-effective

high-performance solution to the manufacturer.

The gain-scheduled PID controllerKPID was designed based on the interpolation of PID

controllers optimized for some fixed throttle positions. Hence for a constant scheduling trajectory

p(t) ≡ p, with p ∈ P, KPID is equivalent with an LTI-PID controller having the transfer function

Gp(s) = KP

(

1 +
1

sTI(p)
+

sTD(p)

1 + sTD(p)/N

)

, (48)
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Fig. 5. Conceptual diagram of the LPV-PID based control of the throttle-gap.

where

KP : = 3.5 · 104,

TD(p) : = 0.01
︸︷︷︸

d1

p+ 0.003
︸ ︷︷ ︸

d0

, N := 10,

TI(p) : = −0.3074
︸ ︷︷ ︸

r3

p3 + 0.6981
︸ ︷︷ ︸

r2

p2−0.5325
︸ ︷︷ ︸

r1

p+ 0.165
︸ ︷︷ ︸

r0

.

The interpolated PID controller, with the above given specifications, has a minimal CT-LFR

realization in the form of

RLFR(KPID) =


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




and with a delta block∆(p)(t) = I5×5 · p(t).
First, we investigate the approximation of the behavior ofRLFR(KPID) w.r.t. the proposed dis-

cretization approaches using the physically possible1 kHz maximum of the sampling frequency.

According to this, considerRLFR(KPID) in the exact ZOH setting of Fig. 3b with sampling

period Td = 10−3 s. Based on the discretization approaches of Sec. IV, DT approximations

of RLFR(KPID) have been calculated similarly as in the previous example. Note that in the

considered discretization setting we only aim at the stand-alone discretization of the given LFR,
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which refers to an open-loop setting. Therefore, in order todemonstrate the performance of the

resulting DT controllers, we first focus on their open-loop simulation error and only later we

will test their closed-loop behavior. In order to facilitate an open-loop comparison of the CT and

DT-PIDs, the continuous-time closed loop system, depictedon Fig. 5, has been simulated on the

time interval [0, 1] with zero initial conditions in MATLAB . During the simulation a sinusoidal

reference signalrθ(t) = 1
2
+ 1

2
sin(2.5t) has been applied and theODE45 numerical solver has

been used with a variable step size having a maximum of10−6. The results of this simulation

are depicted in Fig. 6, where in the bottom figure it can be seenthat the red throttle demand has

been well tracked by the actual throttle position given in blue. All signals of the closed loop have

been recorded with a sampling period of10−6 s. These signals were down sampled toTd = 10−3

s and the resulting DT signalsucd(k) = uc(kTd) andpd(k) = p(kTd) have been used to simulate

the response of the obtained discrete-time controller by each proposed methods. The resulting

DT output signalŝyc are depicted in Fig. 7a. The achieved MSE ofŷcd has been calculated w.r.t.

the sampled outputyc(kTd) of RLFR(KPID) and is presented in Table IV. The relative worst-

case maximum local error̂εmax and global error̂ηmax of the DT state-signalŝxd associated with

the DT controllers have been also computed w.r.t. to the state-signals ofRLFR(KPID) and are

presented in Table IV. During the calculation ofMmax
x , X = [−5 · 10−3, 5 · 10−3]2 was used in

accordance with the amplitudes of the state-signals ofRLFR(KPID) during the CT simulation.

From Table IV it is apparent that the rectangular, the2nd-order polynomial and the 3-step

Adams-Bashforth approaches do not provide numerically convergent approximations while the

complete approach has a negligible approximation error as expected. The Padé(1, 1) approach

provides the best result among the approximative methods while the trapezoidal one gives

somewhat moderate results. The large MSE values of the output approximation are due to the

extremely large value ofyc aroundt = 0.01, see the upper part of Fig. 6. As the trapezoidal

approach averages the state-evolution over the sample interval, it inherently has a relatively large

error (̂εmax = 36%) for such huge variations. This is why the Padé(1, 1) approach achieves a

better performance (ε̂max = 2.36%) as it approximates the complete approach rather than the

state-evolution itself. In line with the previous observations in [22], the full ZOH approach also

provides a convergent approximation, however with the worst MSE. This immediately shows

that by applying the Padé(1, 1) or the trapezoidal approach in the implementation of the throttle
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controller, the performance loss of the CT design can be decreased.

To analyze the approximation capabilities of the methods, we next can calculate the bounds

T̆d and T̂d on the sampling period by choosing the Euclidean norm as an error measure and

εmax = 10%, with the intention to achieveηmax = 10%. Note that T̆d is infinite as the PID

controller contains an integrator part, which is not asymptotically stable. The calculated̂Td

bounds are presented in Table V. During the calculation ofT̂d, the regionsP = [0, 1] and

U = [−1, 1] have been used which were obtained from the simulation results of the CT-PID

controller (see Fig. 6).

As a next step, discretization ofRLFR(KPID) has been computed via all approaches using

Td = 2.5 · 10−4, the sampling period where the2nd-order polynomial approach achieves the

aimed worst-case numerical error. As we can see from Table IV, all approaches improve in

performance, the rectangular method becomes convergent, while the 3-step Adams-Bashforth

approach still diverges. Comparing the maximum of the LUT error, we can see that, as expected,

the2nd-order polynomial approach achieves the aimedεmax = 10%. Due to its faster convergence

rate, the Padé(1, 1) method has even better performance in all measures than the2nd-order

polynomial. However, the Trapezoidal approach still has a large error, even larger than the

rectangular approach in almost all measures, which is due toits erratic behavior aroundt = 0.01.

On the other hand, respecting the bounds, its maximum LUT error is below 10%. An also

interesting observation is that contrary to the previous example, the full ZOH approach has a

poor performance, especially in terms of the MSE of the output, compared to the other methods.

This clearly shows the unpredictable behavior of this discretization scheme.

Next, we investigate discretization with all methods usingTd = 10−4. From Table IV, it follows

that all methods with this sampling period achieve the aimedηmax = 10% bound and in case

of the Padé(1, 1) and the2nd-order polynomial approaches the MSE ofŷcd becomes negligible

compared to the amplitude ofyc. However, the Trapezoidal and the Adams-Bashforth approaches

perform poorly, especially in terms of̂εmax and η̂max. Even the full ZOH approach seems to

perform better in terms of these error measures. From the preformed open-loop simulation it

seems that the Padé(1, 1) approach provides the best discretization of the LPV-PID controller

for all practically interesting values ofTd and it can be shown that it remains to perform better

than the Trapezoidal approach even forTd > 10−3. This seems to give the conclusion that the

August 9, 2011 DRAFT



27

Padé(1, 1) approach provided DT LPV controller will perform better than the one based on the

trapezoidal approach. To investigate this, the closed-loop behavior of the DT LPV controllers

obtained by all approaches has been analyzed w.r.t a realistic gas profile, see Fig. 8. This gas

profile in terms of demanded throttle position has been recorded during a test track lap performed

by a professional driver. Using this gas profile the CT LPV-PID controller has been simulated

together with its DT projection via all approaches under various values ofTd. The results are

visualized in Fig. 10 in terms of the MSE ofŷcd(k) w.r.t. the gas profilerθ(kTd). In this figure, the

performance of the CT controller is given by a black solid line, while the achieved performance

of the DT controllers, produced by each discretization method, is given for equidistant values

of Td on the range[10−4, 2 · 10−3]. The response of the simulated closed-loop system is given

on Fig. 9 w.r.t. to the CT-PID and the controllers provided bythe convergent approaches for

Td = 10−3. From these figures it becomes evident that the Trapezoidal method provides an

excellent steady performance in terms of tracking for all values ofTd in the considered region.

The Padé(1, 1) method in closed-loop performs significantly worse than during the open-loop

simulations as between4 · 10−4 and 10−3 even the full ZOH approach performs better. At

Td = 1.5 · 10−3 the full ZOH approach based controller is not able to stabilize the loop any

more which is quickly followed by the divergence of the Padé(1, 1) method based controller

at Td = 1.6 · 10−3. As expected from the open-loop simulations, the Adams-Bashforth approach

based design only provides a stable, but well-performing controller at Td = 10−4 and the2nd-

order polynomial approach starts to diverge aboveTd = 5 · 10−4. What is interesting is that

the rectangular method performs well tillTd = 7 · 10−4 and then it quickly becomes unstable.

As an overall conclusion it follows that contrary to the open-loop simulation study it turns out

that the Trapezoidal approach provides the best DT controller in terms of tracking, which is

followed by the full ZOH approach, while the Padé(1, 1) does not seem to be an attractive

choice at all. Explanation of this result lies in the fact that the considered discretization setting

and the provided analysis in this paper have focused on the stand alone discretization of an

open-loop LPV system. In that case, we could see that the developed methods in this example

achieved the performance suggested by the theory. However,as is well-known in the LTI case,

discretization w.r.t. a system in a closed-loop considering a closed-loop performance measure is a

different problem setting. This underlines that the results reported in this paper are the first steps
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MSE of ŷcd

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

10−3, (1kHz) 6.20 · 10−19 1.08 · 107 (∗) (∗) 7.46 · 106 6.62 · 104 (∗)

2.5 · 10−4, (4kHz) 6.23 · 10−19 1.03 · 106 1.83 · 105 1.23 · 103 4.60 · 105 2.15 · 102 (∗)

10−4, (10kHz) 6.19 · 10−19 1.70 · 105 2.57 · 104 2.52 · 101 7.28 · 104 5.47 · 100 1.00 · 105

ε̂max of x̂d

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

10−3 , (1kHz) 0.00% 25.35% (∗) (∗) 36.00% 2.36% (∗)

2.5 · 10−3 , (4kHz) 0.00% 3.78% 1.99% 0.16% 9.02% 0.06% (∗)

10−4 , (10kHz) 0.00% 0.74% 0.33% 0.01% 3.61% 0.01% 6.95%

η̂max of x̂d

Td [s] Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé(1, 1) Adams-Bash.

10−3 , (1kHz) 0.00% 31.72% (∗) (∗) 24.51% 2.36% (∗)

2.5 · 10−3 , (4kHz) 0.00% 8.95% 3.73% 0.31% 8.06% 0.13% (∗)

10−4 , (10kHz) 0.00% 3.54% 1.40% 0.05% 3.45% 0.02% 6.95%

TABLE IV

DISCRETIZATION ERROR OFS , GIVEN IN TERMS OF THE ACHIEVEDMSE, ε̂max AND η̂max FOR THE INVESTIGATED STATE

TRAJECTORY. (∗) INDICATES UNSTABLE PROJECTION TO THE DISCRETE DOMAIN.

Criteria

Rectangular 2nd-polynomial Trapezoidal Padé(1, 1) Adams-Bashforth

T̂d [s] 1.26 · 10−4, (7.93kHz) 2.42 · 10−4, (4.12kHz) 3.06 · 10−4, (3.27kHz) > 2.42 · 10−4, (4.12kHz) 2.09 · 10−4, (4.78kHz)

TABLE V

PERFORMANCE(T̂d) BOUNDS USING THEEUCLIDEAN NORM AND εmax = 10%.

towards providing theoretically well-understood solutions for the DT implementation of CT-LPV

controllers preserving their closed-loop performance, which is the aim of future research.

VII. CONCLUSIONS

In this paper, discretization approaches oflinear fractional representations(LFR’s) of LPV

systems were introduced using an exact ZOH setting where thevariation of the state coupled by

the scheduling dependent∆-block is not restricted inside the sampling interval. Thisprovides

an advantage over existing methods to reduce the introduceddiscretization error. The developed
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Fig. 6. Closed-loop response of the system with the CT-PID controller for a sinusoidal gas profile: controller input (tracking

error) uc(t), scheduling signalp(t), controller output (actuation)yc(t), system output∆v(t) (blue, bottom subfigure) and the

tracked gas profile (red, bottom subfigure).

approaches were analyzed in terms of applicability and numerical properties, giving an overview

of which methods are attractive depending on the aim and achievable sampling period of the

discretization. Illustrative examples were provided to give insight into the derived methods and

their properties.

REFERENCES

[1] A. Packard, “Gain scheduling via linear fractional transformations,”Systems & Control Letters, vol. 22, no. 2, pp. 79–92,

1994.

[2] C. W. Scherer, “MixedH2/H∞ control for time-varying and linear parametrically-varying systems,”Int. Journal of Robust

and Nonlinear Control, vol. 6, no. 9-10, pp. 929–952, 1996.

[3] K. Zhou, J. C. Doyle, and K. Glover,Robust and Optimal Control. Prentice-Hall, 1995.

[4] H. Hanselmann, “Implementation of digital controllers- A survey,” Automatica, vol. 23, no. 1, pp. 7–32, 1987.

[5] J. Kim, D. G. Bates, and I. Postletwaite, “Robustness analysis of linear periodic time-varying systems subject to structured

uncertainty,”Systems & Control Letters, vol. 55, pp. 719–725, 2006.

[6] L. Ma and P. Iglesias, “Robustness analysis of a self-oscillating molecular network in a dictyostelium discoideum,” in

Proc. of the 41th IEEE Conf. on Decision and Control, Las Vegas, Nevada, USA, Dec. 2002, pp. 2538–2543.

August 9, 2011 DRAFT



30

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

0.7 0.75 0.8 0.85 0.9 0.95 1
−2000

−1000

0

1000

2000

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

(a) Td = 10−3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−2000

−1500

−1000

−500

0

500

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

(b) Td = 2.5 · 10−4

0.92 0.922 0.924 0.926 0.928 0.93

−300

−200

−100

0

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Time [s]

y c

 

 
Rectangular
Poly 2nd
Complete

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−2000

−1500

−1000

−500

0

500

Time [s]

y c

 

 
Rectangular
Poly 2nd
Complete

(c) Td = 2.5 · 10−4

0.92 0.922 0.924 0.926 0.928 0.93
−300

−200

−100

0

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−2000

−1500

−1000

−500

0

500

Time [s]

y c

 

 
full ZOH
Trapezoidal
Pade 1−1
Complete

(d) Td = 10−4

0.92 0.9205 0.921 0.9215
−160

−140

−120

−100

−80

−60

−40

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Time [s]

y c

 

 
Rectangular
Poly 2nd
Adams−Bash. 3
Complete

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−2000

−1500

−1000

−500

0

500

Time [s]

y c

 

 
Rectangular
Poly 2nd
Adams−Bash. 3
Complete

(e) Td = 2.5 · 10−4

0.92 0.9205 0.921 0.9215
−150

−100

−50

 

 

Fig. 7. Open loop simulation results of the discretized PID controller using the proposed approaches and different sampling

periodsTd.
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[14] C. Arévalo and G. Söderlind, “Convergence of multistep discretizations of DAEs,”BIT Numerical Mathematics, vol. 35,

no. 2, pp. 143–168, 1995.

[15] E. Hairer and G. Wanner,Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer

Verlag, 2010, vol. 14.

[16] R. Tóth, M. Lovera, P. S. C. Heuberger, and P. M. J. Van den Hof, “Discretization of linear fractional representations of

LPV systems,” inProc. of the 48th IEEE Conf. on Decision and Control, Shanghai, China, Dec. 2009, pp. 7424–7429.
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