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Abstract

Commonly, controllers for Linear Parameter-Varying (LPM)stems are designed in continuous
time using a Linear Fractional Representation (LFR) of thenfp However, the resulting controllers
are implemented on digital hardware. Furthermore, disetiaie LPV synthesis approaches require a
discrete-time model of the plant which is often derived francontinuous-time first-principle model.
Existing discretization approaches for LFRs describing/L$ystems suffer from disadvantages like
the possibility of serious approximation errors, issuesahplexity, etc. To explore the disadvantages,
existing discretization methods are reviewed and novetagahes are derived to overcome them. The
proposed and existing methods are compared and analyzedrs bf approximation error, considering
ideal zero-order hold actuation and sampling. Criteriaitoase appropriate sampling times with respect
to the investigated methods are also presented. The prdmiseretization methods are tested and
compared both on a simulation example and on the electrémimitie control problem of a race
motorcycle.

Index Terms

Linear fractional representation; discretization; linparameter-varying systems.

I. INTRODUCTION

Control synthesis approaches forear parameter-varyingLPV) systems (e.g., [1]-[3]), often
require LPV models in dinear fractional representatiofLFR), as depicted in Fig. 1. In the

LPV interpretation of LFRs, the feedback galis assumed to vary in time a8 is a function
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LTI system

LPV system

Fig. 1. Linear fractional representation of LPV systems.

of a time-dependent measurable signal, the so-ca@ddeduling variablep : R — P. The
compact set (or polytopeé) C R denotes the so callescheduling ‘space’Using scheduling
variables to represent changing operating conditions dogenous/free signals of the plant,
LPV representations can describe both nonlinear and tiangng phenomena. Note that LFRs
of LPV systems can be seen as a generalization of LFRs of tantdiT| systems where\

is assumed to be a constant or a time-varying uncertaintytr@ting these uncertainties as
scheduling variables, such descriptions blend into theaésgork considered in this paper.

In practice, implementation of LPV controllers in physibardware generally meets significant
difficulties, as oftencontinuous-timgCT) LPV control synthesis approaches [2] are preferred
in the literature overdiscrete-time(DT) methods [1]. The main reason is that stability and
performance requirements can be more conveniently exgassCT, like in a mixed sensitivity
setting [3]. Therefore, the current design tools focus oALEYV controller synthesis in an LFR
form, requiring efficient discretization of such systemresentations for implementation pur-
poses. Next to that, DT approaches require a DT model of dua pthich is often available only
through the use of CT first-principle models. It follows tllgcretization of LFR representations
of LPV systems is a crucial issue for both control design anglémentation.

In the existing literature, some approaches to LFR disagtn are available. However, the
validity of the used discretization settings or the introgldi approximation error has not been
analyzed so far. Moreover, only the isolated, i.e. standhaldiscretization of the LFR’s is

treated. Note that similar to the LTI case, the plant and astoller needs to be discretized
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together (non-isolated setting) if the objective is to pres the performance of the control
loop [4]. Basically the available methods ugero-order hold(ZOH) andfirst-order hold(1OH)
approaches to restrict the variations of the signals of tRR lin the sampling interval which
results in a DT description of the dynamics [5]-[12]. Alm@dt of these methods suffer from
various disadvantages like the possibility of significappr@ximation error, loss of stability,
high complexity etc., see Sec. lll. Furthermore there ase ahportant questions that need to
be thoroughly investigated, for example the choice ofgampling periodsuch that a specified
discretization error and/or preservation of the stabitityparacteristics can be guaranteed.

For the sake of completeness it is important to note, that$ BRe in fact speciatlifferential
algebraic equation$DAE’s) and hence existing DAE discretization (solutiongtimods (see e.g.
[13]-[15]) can be applied on them. However, using these iggrepproaches it is either not
possible to reconstruct a DT LFR or they are too general @amating on high index DAE’S)
to provide transparent results where the above statedignestan be investigated.

In this paper we aim to analyze discretization settings #8¥Lmodels in the LFR case and to
derive exact extensions of the approaches of the LTI framevie compare the properties of
the resulting approaches in terms of preservation of styalaihd discretization errors. By taking
the first step towards a systematic discretization theoeyrestrict the focus in this paper to the
isolated setting. We will return to this issue at the end @& plaper, showing that preservation
of closed-loop performance in the LPV case also requiresraismated approach and in this
respect the current results of the paper offer a well-fodrglarting point towards such solutions.

The current paper extends the results reported in [16] anorganized as follows: first,
in Sec. Il, LFRs of LPV systems are defined. Existing appreacto LFR discretization are
investigated in Sec. lll, pointing out the need for improwsm Using an exact discretization
setting in Sec. IV, traditional discretization methodslod L T1 framework are extended to LFRs.
In Sec. V, properties of the introduced methods are predentierms of discretization error and
preservation of stability. In Sec. VI, both a simulation exde and a real life LPV throttle control
problem of a race motorcycle are investigated to demoresthat performance and properties of

the proposed approaches. Finally the conclusions of therpae presented in Sec. VII.
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II. LINEAR FRACTIONAL REPRESENTATIONS

The LFR of a given continuous-time LPV systetnis denoted byR;rr(S) and defined as

i(t) A By B x(t)
Z(t) - Cl D11 D12 UJ(t) (la)
y(t) Cy Da; Doy u(t)

whereu : R — U =R"™ andy : R — Y = R™ are the input and output signals of the system
S, containing disturbance/actuated input and measurabtedasurable output channels alike.
z: R — X = R is the state variable of the representatifA. . .., Dy} are constant matrices
with appropriate dimensions and
w(t) = A(p)(t)z(t), (1b)

where A is an operator working on the scheduling sigpabf S and resulting in a matrix
valued signal, i.eA(p)(t) € R™*". Commonly,A has a block diagonal structure containing
the elements of(t) and A is assumed to vary in a convex polytope. Note that (1a-b) i®\&,D
instead of anordinary differential equation(ODE) encountered in state-space representations.
Additionally, z, w, =z are latent (auxiliary) variables Ry g (S).

By definingyq, uq, pa @s the sampled signals of u, p with sampling periodTq > 0, e.g.,
uq(k) := u(kTy), the definition of a LFR can be established in DT as the reptaten of an
underlying sampled continuous-time LPV systémn

xa(k +1) o Iy Ty xq(k)
za(k) =1 T Qu Qi wq(k) 2)
ya(k) Ty Qo Qo ug (k)
where{®, ..., Qy} are constant matrices with appropriate dimensions and
wa(k) = Ada(pa)(k) za(k), 3)

with Aq(pq)(k) € R™a*"=a. Note that it is not necessary that, wq, or x4 are also sampled
signals of their CT counterparts (they are just latent \deis). In the sequel, this representation
is denoted adRrr(S,Tq). It is important to note that depending dn, the existence of
Rrrr(S, Tq) is not guaranteed. On the other hand, not every DT-LFR cporess to a sampled
CT-LFR as discrete-time systems and representations Hrstaeding mathematical concepts.
However, here we are interested in the relations between milr GT descriptions and the

possibility of preserving the dynamical behavior througbB® projection.
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Now we can define the problem we intend to focus on in the reshefpaper:

Problem 1 (Discretization problem)For a sampling periody > 0 and for a given LFR of a
CT-LPV systems, find a DT-LFR that describes or approximates the sampledwehof the
output signaly of S in terms of a given error measure and a threshold for all ptessiajectories

of the inputu and the scheduling variabje O

[1l. EXISTING DISCRETIZATION APPROACHES

Before deriving a solution to Problem 1, the existing LFRcd#ization approaches are
investigated by evaluating their performance in terms ef phoposed problem setting and also

pointing out the need for improvements.

A. Basic concepts of the discretization settings

In the available literature, only the isolated setting rigtalone discretization of the system)
is treated. Similar to the LTI case, in this setting it is resagy to restrict the free variables of
the system, i.e.x andp, to vary in a predefined manner during fixed time intervaliedathe
sampling intervalsThis is required in order to describe the continuous-tinaigion of all non-
free variables inside these time intervals. Having an eghatacterization of these trajectories
makes it possible to derive a DT description of the systemra/isignals are only observed
at the end of the sampling interval, i.e., with the sampliregigd T,. The simplest case is
when azero-order-hold(ZOH) device is applied om. and p, restricting their variation to be
piecewise-constant. However, this restriction can bexeslao include a larger set of possible
signal trajectories like piece-wise linear (call@t-order-hold, or 2"-order polynomial (called
second-order-holy etc. In order to simplify the discretization problem wedan this setting,
the following assumption is commonly used (see [17]):

Assumption 1 (Discretization setting]:he hold and the sampling devices are perfectly syn-
chronized withTq > 0 as thesampling periodor discretization time stepFurthermore, these
devices have infinite resolution (no quantization error) #meir processing time is zero. [
Note that due to the assumed ideal hold devices, at the bagiwh each sampling interval a
switching effect occurs. Contrary to the LTI case, the shitg effect onp introduces additional
dynamics into the system which are not present in the oirigBia behavior. To avoid the

overcomplicated analysis of such effects, the followinguasption is made:
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J pa(k) l pa(k)
wa (k) za(k) wa(k) z (k)
A A
ZOH :,/El \? 10H i
w(t) 2(t) w(t) 2(t)
» OQO » g o/ ) > oQo > g 0/ o
ua(k) u(t) (%) ya(k) ua(k) u(t) y(t) Ya(k)
ZOH E.?Fg;:g;ﬁ Sampling ZOH f.?.?g;zg}ﬁ Sampling
CY (b)

Fig. 2. (a) Full ZOH discretization of LFRs. (b) First/Zeooder hold discretization of LFRs.

Assumption 2 (Switching effectsfhe switching behavior of the hold devices has no effect

on the CT plant, i.e., the switching of the signals is assutonetéke place smoothly.
B. Full zero-order hold approaches

A commonly used approach, like in [5], [6], is to apply ZOHsdasampling on all signals
of (1a-b) (see Fig. 2a). This setting implies that (1a) ixdiszed as a stand-alone (open-loop)
LTI system disregarding (1b). The advantage of this metlayd in its simplicity, however it
can seriously alter the dynamics, i.e., stability, of the &Jproximation as it assumes that all
terms in the state equation that are coupled wthre constant inside the sampling interval. To
demonstrate the latter property consider the followingngxa:

Example 1:Suppose that a CT-LFR is given as

i(t) 0 —1 1| z(®)
) [=1]1 0 0 w(t) (4)
y(t) 1 0 0 u(t)
with w(t) = A(p)(t)z(t), A(p)(t) = p(t) and0 < puin < p(t) < Pmax- Then
&(t) = —p(t)z(t) + u(?), (5a)
y(t) = (1), (5b)
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and z(t) = z(t). Based on a Lyapunov argument, it follows that (5a) is asytigally stable
(see [18]). Now by applying the ZOH in terms of Fig. 2a we have:
u(t) = u(kTa) and w(t) = p(kTa)z(kTa), (6)

for t € [kTq, (k+ 1)T4). From (5a) it follows that

z(t) = x(kTq) +/ (—w(r) +u(r)) dr = x(kTq) + /k (—p(kTa)x(kTa) + u(kTq)) dr, (7)

kTq Tq
for t € [kTq,(k + 1)Tq). It is obvious that the integral is over a constant functioo Etate

variation), thus

x((k+1)Tq) = (1 — Tap(kTq))x(kTq) + Tqu(kTq), (8)
implying the DT-LFR:
zq(k+1) 1 —Tq T4 xq(k)
za(k) =11 0 0 wq (k) 9
ya(k) 10 0 ua(k)

with Aq(pa)(k) = p(kTq). The corresponding DT system is asymptotically stabl®,ik I%
(see [18]). This illustrates that the original dynamics lué plant are substituted by a piecewise
linear evolution of the state in this discretization sejtimence the stability characteristics are
altered.

C. First/Zero-order hold approaches

Other methods, like [7], [8], use a mixed discretizatiortisgtof first and zero-order holds,
depicted in Fig. 2b. By considering future samplespofand z in terms of the 10H, the
approximation of the variations of that are coupled witl\ improves. However, this also often
turns out to be a disadvantage, as the resulting DT-LFR dipen future samples qf and
w, which results in a non-causal representation. In case Itheate goal of the discretization
is analysis or simulation, this causality problem might bet disadvantageous (see [7]). For
demonstration, consider the CT-LFR given in Example 1.

Example 2:In the setting of Fig. 2b, (4) implies that

C (bl + DTl + DT) - pTa)s(T)), (20)

and u(t) = u(kTq) for ¢t € [kTq, (k + 1)Tq). By computing the state evolution (7) inside the

w(t) = p(kTa)z(kTq) +

sampling interval one obtains (see [18] for the detailedvdé&on)

(1 S0k 7)) o4 010) = (1= S0 ) o06Ta) + Tauhra, 00)
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J p(t) pa(k)
A
o
A /D ZOH
p(?)
L §
w(t) " z(t) A
w(t) (%)
A | B, B,
Cl Dll D12
— | Dy Dy ————> S g = o
u(t) y(t) ua(k) u(t) y(t) ya(k)
Matrix Continuous
gain block ZOH LTl system Sampling
(@) (b)

Fig. 3. (a) Extraction of the integrator for bilinear distization. (b) Exact ZOH discretization of LFRs.

which implies the DT-LFR:

za(k +1) T=3 =3 0Tl | 2k
1i_Ta _T_d?Td
za(k) = | 2 2 wa (k) (12)
1.0 .00
Yya(k) 10 010 ug(k)

with Ag(pa)(k) = [p((mgmd) p(kOTd)}. It can be proven that even if arbitrarily fast variatiorpgfis
allowed, i.e.p € P%, (11) is asymptotically stable for arty; > 0 (see [18]). (11) gives a rational
approximation of the original state evolution, better tif&) but with a price of non-causality

in the p-dependence and an increase in the dimensions,of
D. Bilinear transformation technique

As an alternative, the time operator in the state-equatnbe extracted as an integrator (see
Fig. 3a) which is discretized via thesubstitution of its Laplace transforiys (see [9], [10]).

For the substitution, the bilinear transformation

1 T 1
_%_dij (13)
5 2z2—-1

is used, resulting in a Tustin type of discretization apphodt can be shown that this intuitive

INote that in this simple example it is possible to introduce-@ependent state transformation to eliminate the nonataus

dependence. However, such an elimination is not possibieieral [7], [8].
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method introduces ZOH only om andp, depicted in Fig. 3b, and it does not restrict variations
of the state. Furthermore, this concept preserves stabilithe original representation. On the
other hand, the formulation of the approach is only basecherahalogy with the LTI case and
it does not give an understanding of the introduced apprations. To demonstrate this method,
again consider the previously investigated example.

Example 3:The bilinear transformation (13) corresponds to the evalnaf the integral (7)

by the trapezoidal formula. Using the nonlinear state fansation

N 1 T T
l’d(k’) = ﬁx(de) -+ %’LU(]{?Td) — %u(de), (14)
the resulting DT-LFR is
Za(k+1) 1 —VTqa VT4 Za(k)
Zd(/{i) == \/ﬂ —%Td %Td wd(k;) (15)
ya(k) VTa —5Ta 5T ua(k)

with Aq(pq)(k) = pa(k) (see [9]). Using a Lyapunov argument, it can be shown that@fiiLFR

is asymptotically stable for any; > 0 and trajectories 0pq : Z — [Pmin, Pmax] (S€€ [18]).
E. Discretization in state-space form
Another discretization approach is to rewrite (1a-b) as BN ktate-spacéSS) representation:
&= A(p)xr + B(p)u, (16a)
y =C(p)z + D(p)u. (16b)

This reformulation is possible if the following (well-pat®ess) condition holds:

Assumption 3:/ — D1;A(p) is invertible for allp € P* andt € R. O
In (16a-b) the matrices are given as (see e.g. [3])

A(p) = A+ BIA(p)(I — DiA(p)) 'Oy, (17a)

B(p) = By + BiA(p)(I — D11 A(p)) ™' Dia, (17b)

C(p) = Cy + D A(p)(I — DuA(p)) ™' Ch, (17¢)

D(p) = Doy + Doy A(p)(I — D1y A(p)) ™' Do (17d)

As a next step, the discretization formulas of LPV-SS regm&stions derived in [11], [12] are
applied on (16a-b). Then, the resulting discrete-time [$8/representation is transformed to a

discrete-time LFR. This approach provides a wide range lbf &nalyzed methods with criteria
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for the choice of the sampling period. However, conversietwieen LFR and SS representations
is complicated and the resulting DT-SS representationfimigt be realizable by an LFR without

introducing conservatism (see Sec. IV-A).
F. Concluding remarks

The above given overview of the available approaches stgtfest the applied discretization
setting in itself determines the quality of the achievabl& Bpproximation. We have seen
that some approaches suffer from serious approximaticsrseand alteration of the stability
characteristics of the original system. The best propefidow from the setting of Fig. 3 as
the state variation in the sampling interval is not restdctHowever, the applied Tustin method
only provides an approximation, raising the question: cande more in the setting of Fig.
3? In the sequel we intend to focus on this question and extémer successful discretization
approaches for LFR representations similar to the case ¥3® representations (see [11]). We
analyze when it is possible to give an errorless DT projectind how the error introduced by
approximative methods can be determined. As we will see,ti@lds criteria for the choice of

T4 to preserve stability and to achieve a desired performarittetive introduced approaches.

IV. EXACT ZOH DISCRETIZATION OFLFRS

Based on the previous conclusions, we will investigate tvrein approximation-free solution
to Problem 1 exists in the ZOH setting presented in Fig. 3biasdch a method can provide
a practically useful DT projection of CT-LFRs of LPV systenithe following assumption is
introduced:

Assumption 4 (exact ZOH setting)Ve are given a CT-LPV systeid, with CT input signal
u, scheduling signap, and output signal, where« and p are generated by an ideal ZOH
device andy is sampled. Additionally, the ZOHs and the sampling satfsfgumptions 1-2 with
Tq > 0. ]
These assumptions imply that fére Z

u(t) = wq(k), Vtel[kTq,(k+1)Tq), (18a)
p(t) = pa(k), Vte [kTq, (k+1)Tq), (18b)
ya(k) = y(kTq). (18c)
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A. Complete approach

First the complete signal evolution approach [17] of the EFEmework is extended to the
LFR case. Let a CT-LFR be given in the ZOH setting of Fig. 3bsé&&hon Assumption 4, (1a)

can be written as
(1) A BiA(p)(kTa) Bo x(t)

y(t) CQ DglA(p)(l{ZTd) D22 U(]{ZTd)

which corresponds to a DAE. Now in thHé® sampling intervalx(t) reads as

x(t) = x(kTq) —i—/tAx(T) + B1A(p)(kTa)z(7) + Bou(kTq) d7, Vt € [kTq, (k+ 1)Tq). (20)

kTq
If Assumption 3 holds, then (19) is an index-0 DAE, meaninat tils solution can be obtained

by algebraically eliminating the latent variabléo obtain an ODE form. Then, far= (k+1)Tq,
(20) yields

2((k + 1)Tq) = e"APFD g (kTy) + A7 (p) (kTa) (e"APF) — 1) B(p) (kTa)u(kTa).  (21)

Note that invertibility of A(p) is not required for obtaining the solution (nor for the céétion
of the resulting matrix functions), but if it is invertibleje can write the resulting DT description
of the sate-evolution conveniently as (21). This solutimplies a DT realization of the original
system, however as'+4(®) is not a rational function ofA(p), it is not possible to find an exact
DT-LFR which describes the state transition fr@m(kTq), u(kTq)) to z((k + 1)T4) defined by

(21). One option is to introduce

A(p)(kTq) 0

A 1y 7 22
d(pd)() 0 eTaA(p) (kTa) =

and provide a DT-LFR realization of (21), which however ntidie rather unattractive for
controller synthesis due to issues of conservatism.

Now consider the case when Assumption 3 is not satisfieden, (19) is an index-1 DAE,
meaning that its solution (if it exists) can only be obtairt®d differentiating (19) once. In
general, such solution also has no exact DT-LFR realization

These conclusions underline that unlike the LTI and the I98/ases, no exact DT projection

of the dynamics is available in the LFR case under Assumption

Note that invertibility of T — D11 A(p) is only a sufficient but not a necessary condition for the yweedness of LFRs (see
[29)).
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B. Approximative approaches

As we have seen, complete discretization of LFRs is rathificult, thus it is important
to develop approximative methods. By looking at the stagadon of (1a) as a pure ODE,
numerical approximations of the resulting CT solution can dpplied. Then, by using the
algebraic constraints in (1a-b), a DT-LFR can be obtainatddapproximates the original behavior
under Assumption 4. In the literature on numerical methedsh an approach is reported to
work well for DAE’s with index 0 and 1. Using this methodolqdiie following approximative
methods can be derived:

1) Rectangular (Euler’'s forward) methodenote the righthand-side of the state equation in
(1a) by f(z,w,u), SO

f(z,w,u)(t) = Ax(t) + Byw(t) + Bau(t). (23)
Then, t
z(t) = x(kTq) + f(z,w,u)(r) dr (24)

kTq
defines the state evolution of (1a) kT4, (kK + 1)T4). Left-hand rectangular evaluation of (24)

gives that
x((k+1)Tq) = x(kTq) + Taf(z,w,u)(kTq). (25)
Based on this rectangular approach, the DT approximatidi;gf: (S) reads as

I +T4A TyB1 TyabBs
Rirr(S, Ta) ~ Cy Dy Dy | (26)
C(2 D21 D22
with A4(pq)(k) = A(p)(kTq) (see [18]). Note that using a first-order Taylor approxim@tof
eTaAP(ETa)) i (21) (which is called the Euler method) results in the s@iieLFR realization as
(26). It is also important to highlight that the rectangudgaproach gives the same solution as
the full ZOH setting of Fig. 2a with Euler discretization dfet LTI part, suggesting very poor
performance for this method. Therefore, by applying theamgular method on the previously
considered example, the resulting DT description read®9)ps (
2) Polynomial (Hanselmann) methodt is possible to develop other methods that achieve
a better approximation of the complete solution (21) butwiiicreasing complexity. One way

leads through the use of higher-order Taylor expansions@fnatrix exponential:

eTADKT) T S T8 AL () (KTy). (27)
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This gives the following DT-LFR (see [18]):

n E n ! _ 7]
_Z_:_é___o__z_'d_i‘_l_l_‘_Z_l____l__z__4_1___1_?_1___2_4___2__3__4_1___2__?_1___::_:___Z_Ci_?%_i_g_lz;_%4_1___1__?_2_
Ch Dy, 0 0 Dqs
CiA C\B D 0 C\B
SRLFR(S, Td) ~ 1 121 11 102 (28)
ClAn—l ClAn 2Bl ClAn—3Bl Dy ClAn—132
L Gy Do 0 0 Do ]

with Aq(pa) (k) = Ixn ® A(p)(kTq) where® is the Kronecker product. Additionally, the above
defined method is not equivalent to applying polynomial eiszation of the LTI part in the
spirit of Fig. 2a. Considering the previously given example polynomial method with = 2

results in the following DT approximation of (4):

H 2
za(k +1) 1i-Tg —3iTa| | za(k)
za(k) =10 030 wq(k) (29)
0i—1 0 i1
ya(k) 10 00 uq(k)

which is asymptotically stable ify < Iﬁ (see [18]).
3) Pack’s expansion methodA different way of approximating the exponential term in Y21

is to use a rational approximation in the form of a P&d&) expansion:

TP & [T5(TaA(p))] ™ Nij(TaA(p)), (30)

where
Ty(TeA(p)) = Yl st (—TaAP)' (31a)
Nij(TaA(p)) = X HTm = 7 (TaA(p)" (31b)

In general, (30) has a much faster convergence rate than Appyoximation of matrix expo-

nentials by Padé expansions is also viewed as an attragiyeach in the numerical literature

[20], [21]. Substituting (30) into (21) gives

T3 (TaA(p) (kTa))2((k + 1)Ta) & Nij (TaA(p) (kTa))(kTa) + Nij (TaA(p) (kTa)) B(p) (kTa)u(kTa),
(32)

where, fori = 7,

Ni(TaA(p)) = Ap) " (Nu(TaA(p)) — Ti(TaA(p))). (33)
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As T;;, N;; and Nij are rational functions of\(p), there exists a DT-LFR realization of (32).
In the casei = j = 1, Ty (TaA(p)(kTa)) = I — 2+ A(p)(kTa) and Nyi(TaA(p)(kTa)) = I +
2 A(p)(kTq), giving that a minimal DT-LFR realization of (32) reads aeg418])

(I+%A)w | LB LyB, | T.UB,
Cy I+ %AV LCUB, + Dy, OB,  TaC By + Dy
Rrrr(S, Tq) ~ 2 P2 2 s (34)
wn(S T~ G O Duw i D
Cy 0 Doy Dy

with W = (7 — 3 A)~" and Ag(pa)(k) = Lox2 ® A(p)(kTq). Again, it is important to note that
the above defined method is not equivalent to the Padé dimatien of the LTI part in the
spirit of Fig. 2a. Considering the previously given examphe Padé’s expansion method with

(7,7) = (1,1) results in the following DT approximation of (4):

zalk +1) Ti=5 =3Ta | | aa(k)
1:-Ta _T_dde
za(k) =i 2z wa(k) | - (35)
1.0 .00
ya(k) 10 010 ug(k)

It can be easily proven that the above given LFR is asymg@ibyistable for anyry > 0 and
any trajectory ofpq : Z — [Pumin, Pmax] (S€€ [18]).
4) Trapezoidal (Tustin) methodAnother approach is to use different numerical formulas to

approximate (24). By using a trapezoidal evaluation, weiobt

2((k+1)Ta) ~ 2(kTa) + 5 fler, + 5 Flosmas (36)
where f|, = f(z,w,u)(t). Now by applying a change of variables:
Fa(k) = S (I = 3 A) 2(kTa) — Y32 Brw(kTa) — Y52 Byu(kTa), (37)

and assuming that — %A is invertible, substitution of (37) into (36) gives the DFR:

(I+%A) v VIaU B, VTaUB,
SRLFR(S7 Td) ~ \/ﬂCl\P %{Cl\I/Bl + D11 %Cl\IIBQ -+ D12 (38)

VTaCo W T7‘102‘1’31 + Dy %CQ\I]BQ + Doy

with Aq(pa)(k) = A(p)(kTa) and ¥ = (I — 3 A)~'. The trapezoidal approach exactly gives
the same solution as the bilinear method introduced in SkD. ITherefore, by applying this

method to the previously considered example, the resuihglescription reads as in Sec. IlI-D.
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5) Multi-step methods(24) can also be approximated via multi-step formulas lieRunge-
Kutta, Adams-Moulton, or the Adams-Bashforth approacH&y.[However, in the considered
ZOH discretization setting, the sampling period is fixed aadpled data is only available at
past and present sampling instants. Therefore it is coatplicto apply the Runge-Kutta or the
Adams-Moulton approaches. The family of Adams-Bashfort#thmads, on the other hand, does
fulfill these requirements (see [13]). The 3-step versiorthad numerical approach uses the

following approximation ofr((k + 1)Tq):

T
z(kTq) + é (5fk-2yrs — 16 |1z, + 23flxr,) - (39)
Then introducing a new state variable
fa(k) = [ 2T (kTa) flm, Hlheom 1 (40)

leads to the DT-LFR (see [18]):

T EVEE PR
A o 0 B B

Rurr(S,Ta) = | 0o I 0. 0 | 0 (41)
4 0 0 @ Dn Dy,
0y, 0o 0 Dy Dy

with Aq(pa)(k) = A(p)(kTq). Note that multi-step discretization results in simplenfafas but

the state dimension is increased. Applying this method Hergrevious example results in

_ 16Tq 5Tq ' 23Ty ' 23Ty

Za(k+1) 0 012 102 _112 112 Zq(k)
2ak) =10 1 0i 0 o0 [|walk) (42)
palk) | |10 000

for which asymptotic stability can only be analyzed numadhcfor a specificP.

V. PROPERTIES OF THE APPROACHES
A. Numerical properties and discretization error

Using a similar line of reasoning as in [11], [12], the dig&tion error of the introduced
approaches can be investigated through their numericakepties. In this section we will briefly

cover how these properties and error bounds apply for theetization methods of Sec. IV.
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1) Local discretization error:Due to the approximative nature of the discretization mesho
developed in Section IV-B it is important to characterize tjuality of approximation for example
in terms of the approximation error of the state evolutioor. fhis purpose the concept bbcal
Unit Truncation(LUT) error, denoted by, € R, is introduced. LetR,(q,pq) and R,(q, pa)
be polynomials in; with p4-dependent coefficient matrices. Choose these polynosuals that
they formulate the state update of the DT approximationdiersame state basis as in the original
CT-LFR: Rrrr(S). In the rectangular, polynomial and the Padé cagg$y, pa) = Aa(pq) and
R.(q,pa) = Ba(pa), where A, and B4 are computed according to (17a-d) for the DT-LFR form,
but in the other cases, they also include the appropriate seEnsformation. For example, in the
trapezoidal case, (36) describes the DT state update te.triginal state basis Ot gr(S). By
using the change of variables (37), we transformed (36) teespond to an LFR state equation.
However in terms of analysis we need (36) to characterizeLthe error w.r.t. z4. This gives

rise to polynomials
Ry(q,pa)(k) = I + % A(pa) (k) + 5 Algpa)(k)g,

Ry(q,pa)(k) = 2B(pa) (k) + 2B(gpa)(k)q,

in the Trapezoidal case and

R.(q,pa)(k) = (I + %TdA(qud)(k)) q - %TdA(qu)(k)q + %TdA(pd)(k)a
Ry(q. pa) (k) = BTaB(¢’pa) (k)q* — 35TaB(qpa)(k)q + 55TaB(pa)(k),

in the Adams-Bashforth case.

By using the introduced polynomials; is defined by

Taekin = (¢"2a — Rx(q, pa)Ta — Ru(q, pa)ua) (k), (43)
for each sampling interval. In (43) = 1 for all single step methods (all considered approaches
except the Adams-Bashforth case) whileequals to the number of steps in case of a multi-
step method (liken = 3 for the 3-step Adams-Bashforth method). Note that LUT repnés
the relative (scaled by,) approximation error of the system dynamics at each sagnplériod,
when the correct sampled continuous statesid inputs: are used for the state update of the DT
approximation. Hence the name ”local”. In the theory of ntioa approximation of differential
equationsg;, is considered as the measure of accuracy [13]. Based onesicajfitulations, the

LUT error of each method can be characterized and formulasbeagiven to calculate an
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upper bound of its norm (see [11] for the details). Based asahexpressions of the LUT
error, it follows that the derived methods are numericaljnsistent and convergent, which
means that by decreasifng the approximation error of the sampled CT behavior also emes

to zero. Furthermore, the order of numerical convergenie [dwest order of derivative of

x being necessary to bound the LUT error) indicates the cgevee rate of this error (see
[13]). The rate of convergence is given in the first row of ®ablfor each method. Methods
with high convergence rate, like the polynomial and Padér@gches, provide more accurate
approximations (with decreasing) than the other methods. However convergence in terms of

the LUT error does not imply that thglobal approximation error
Nke+n = (qnxd - RX(vad)i'd - Ru(vad)ud) (k)v (44)

wheren is the number of steps in the approximation method and the DT approximation of
the state, decreases/converges to zero too. In terms dfgalaapplications, bounds o), have
paramount importance.

2) Stability preservation:Preservation of stability through the discrete time progec can
also be analyzed. Consider the CT-LFR (1a-b). For a constajectory ofp, i.e., p(t) = p for
all t € R, A(p) is a constant matrix ((1a-b) reduces to a LTI system). We (dalb) uniformly
frozen stable if (1a-b) is asymptotically stable for all stamt trajectories op. In terms of
Assumption 2, this means that(p) is Hurwitz for allp € P. An analogous definition of frozen
stability can be given for DT-LFRs. By analyzing the numatistability of the DT projection
(see [11]), it can be concluded that the preservation ofoumffrozen stability of the CT-LFR is
always guaranteed with the trapezoidal and the Padé agpmeaWith respect to other methods,
analytic boundgd, on the sampling period can be given for which preservatidinozien stability
is guaranteed.

3) Adequate discretization step sizén practical situations, the appropriate choice Tof
to arrive at a specific performance in terms of discretizagoror is important. By using the
characterization of the LUT error, upper boundsTgfcan be derived that guarantee a certain
bound on the approximation error in terms of a chosen measijreDefinec, as the supremum

of ||ex|| over all possible state trajectories i yr(S) andk € Z. Also introduce

MM = sup max ||z (t)|| = max |||, (45)
r teER xeX
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Property Complete Rectangular | n'"-polynomial | Trapezoidal Padé(n,n) | Adams-Bashforth
consistency / convergence always 1%t-order n*t-order 2°d_order n*t-order 3*d_order
preservation of stability / N-stalj.  always frozen withT, | frozen withTy | always frozen| always frozen| frozen withTy

preservation of instability

Aq-block complexity

system order

+
not realizable

preserved

1xA

preserved

nxA

preserved

TABLE |
PROPERTIES OF THE DERIVED DISCRETIZATION METHODS

+
1xA

preserved

+
2n x A

preserved

1xA

increased

as the maximum “amplitude” of the state signal for angndp. Also definez,,., as the required

maximum relative local error of the discretization in terofspercentage. Then @ > 0 is

searched for that satisfies

Ex

max
Emax M,

— 100 T4
By using the bounds on the LUT error derived in [11], we canmiolate an upper bound af;

(46)

denoted agy w.r.t. each method, such that (46) is satisfied for the desifg, percentage. Note

that, to derive these criteria, (45) must be bounded, Xanust be confined in a ball (bounded

region) ofR™, which is not an unrealistic assumption in case of asympsaébility of (1a-b) for

all p € P*) and bounded andU. In case of the Pad@, j) approach, exact computation of

corresponds to a heavy nonlinear optimization problem,dvewthe result can be approximated

in a lower bound sense by the performance bound of(thej)-order polynomial method.

In practical situations one may be concerned about the maximf the global error, (44)

as a performance measure. Defineas the supremum dffy,|| over all possible state trajectories

of Ry rr(S) andk € Z. Also definen,,.x as the maximal acceptable relative global error of the

discretization in terms of percentage. Then one would lkkehooseT, such that

Ny <

max

Thmax Vg

100

(47)

Unfortunately, characterization of. for the introduced discretization methods requires seriou

restrictions on the considered CT behaviors. However, e @fT, < T4, cmax Can be used as

a good approximation of,..., and therefore the performance bouhdcan be used to bound

the global error as well.
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B. Complexity ofA4

As in LPV control synthesis mostly low complexity (dimensjdype of dependence, structure,
etc.) of A is preferred (see [2]), therefore both for modeling and e discretization purposes
- beside the preservation of stability - the preservatiorhef original A without repetition is
highly valued. This favors approximative methods that gigeeptable performance, but with less
repetition of A in the newA, block. For the rectangular, trapezoidal and the Adams-Batsh
methodsA, = A, making these approaches attractive from this point of videwever, in the
Adams-Bashforth case, discretization also results in tderancrease of the DT system which
yields extra computational load or requires more compddatontroller design depending on
the intended use.
C. Overall assessment

If the quality of the DT model has priority, then the trapetadj polynomial, and the Padé
methods are suggested due to their fast convergence amrddiadgility radius. The Padé:, n)-
method is especially attractive as it merges the good ptiegesf the trapezoidal and polynomial
approaches like preservation of stability and fast coreecg rate for high.. However the price
to be paid is an increased number of repetitions of shélock. The above stated properties
also clearly point out that there exists no 'best’ discagian method as in specific scenarios
one approach can be more attractive than the others. Theechbthe method that is the most
attractive w.r.t. the problem at hand will always be up todlser and may for instance be based
on Table I.

VI. EXAMPLES

In the following a simple example is presented to visuatiagipare the properties of the ana-
lyzed discretization methods. This will be followed by a mamvolved example of discretization
of a LPV controller designed on the throttle body model of @erenotorcycle and assessing the
achieved closed loop performance of the resulting DT cdletro

A. Simulation study of a simple LPV model

Consider the following LFR of a continuous-time SISO LPVigysS:
66 —136: 1 0 |

1 1 i=0.1 -0.1:0.1

August 9, 2011 DRAFT



20

with A(p) = [55] andP = [-1,1]. For each constant scheduling trajecto®rr (S) is
equivalent to a stable LTI system, sbis uniformly frozen stable of.

ConsiderfR rr(S) in the exact ZOH setting of Fig. 3b with sampling periog = 0.02 s.
By applying the discretization methods of Sec. 1V, appradie DT-LFRs of S have been
calculated. For comparison, the full ZOH approach has akenbapplied orfR rr(S). To
demonstrate the performance of the resulting DT descripfithe output of the original system
and its DT approximations have been simulated on the timeriat [0, 1] with zero initial
conditions and for 100 different realizations of whitg and py with uniform distribution
U(—1,1). For fair comparison, the achieved (average) MSIE the resulting output signals
yq has been calculated w.r.t. the outpudf R rr(S) and is presented in Table Il. The relative
worst-case maximum local erréy,., = 100 Tqe, /M ** and global error,,., = 100, /Mmx
of the DT state-signalg, associated with the DT representations have also been d¢echpur.t.
x of Rrrr(S) and presented in Table Il. For the calculationMdf*®* it has been assumed that
X = [-0.4,0.4]?, which has been verified by simulations®f g (S) based ony, pg € U(—1,1)
andz(0)=[0 0]".

Table Il shows that - except for the rectangular, polynoraral the Adams-Bashforth methods
- all approximations converge. As expected, the error ofcthraplete method is extremely small
while the trapezoidal and the Padlg 1) methods give a moderate, but acceptable performance.
Surprisingly, the full ZOH approach also gives a stable ggtipn with an acceptable error. This
underlines that the full ZOH approach can provide effectivgcretization of LFRs in some
cases. However, its weakness is its unpredictable nataeetf® next example).

As a second step, we calculate bourfdsand T, on the sampling period by choosing the
Euclidean norm as an error measure apg, = 1%, with the intention to achieve,,,, = 1%.
The calculated sampling bounds are presented in Tabledtlthe calculation off, it has been
again assumed th& = [—0.4, 0.4]%. The results show that the rectangular method needs a fast
sampling rate to achieve a stable projection and even arfaatepling to obtain the required
performance. The&-order polynomial projection has significantly better bdsirdue to the

2nd-order accuracy of this method. For the trapezoidal and HueRases, the existence of the

*Mean Squared ErrarE {(y — ga)*} :]\}LIHOO% SV E{(y (kTa) — ga (k))?}, ie. the expected value of the squared
estimation error, wher€ is the generalized expectation operator.
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MSE of §q
Tq [S] Complete full ZOH Rectangular| 2"4-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.
2.1072, (50Hz) 1.2-107% | 8.67 -1072 ) ) 1.14 107" | 3.37-107 1 )
5-107%, (0.2kHz) | 6.7-107° | 1.2-1072 ) 2.04-1072 | 9.67-107* | 3.64-107* | 1.14 - 1072
10%, (10kHz) | 5.37 1078 | 5.37 -107% | 2.19-10" 5.37-107% | 9.77-107% | 5.37-107% | 3.15-1077

Emax Of Zq
Tq [S] Complete | full ZOH | Rectangular| 2"-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.
2-1072, (50Hz) 0.02% | 27.43% ) ) 4.68% 12.58% )
5-107%, (0.2kHz) |  0.01% 1.71% ) 1.85% 1.51% 1.25% 12.36%
107, (10kHz) 0.06% 0.06% 0.06% 0.07% 0.07% 0.06% 0.16%
Timax Of &q
Tq [S] Complete| full ZOH | Rectangular| 2"?-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.
2.1072, (50Hz) 0.02% | 78.92% ) ) 75.47% 143.37% )
5-1072, (0.2kHz) | 0.01% 5.87% ) 6.62% 5.47% 2.84% 17.97%
107%, (10kHz) | 0.03% 0.03% 0.06% 0.03% 0.03% 0.03% 0.10%

TABLE I
DISCRETIZATION ERROR OFS, GIVEN IN TERMS OF THE ACHIEVED AVERAGEMSE, £1ax AND Tjmax FOR 100
SIMULATIONS. *) INDICATES UNSTABLE PROJECTION TO THE DISCRETE DOMAIN

Criteria
Rectangular 274_polynomial Trapezoidal Padé(1,1) Adams-Bashforth
Tq[s] | 1.76-1073, (0.6kHz) | 1.04 - 1072, (96.3Hz) 00 oo 2.86 - 102, (0.3kHz)
Tq[s] | 1.02-1073, (1.0kHz) | 2.52-107%, (0.4kHz) | 3.16 - 1073, (0.3kHz) | > 2.52-107*, (0.4kHz) | 1.80 - 1072, (0.6kHz)

TABLE 1l
STABILITY (Tq) AND PERFORMANCE(Tq) BOUNDS USING THEEUCLIDEAN NORM AND €max = 1%.

transformation is always guaranteed because all frozeeneidues ofR rr(S) are complex
valued and are in the left half-plane.

The derived bounds are used to choosg, dor the calculation of the discrete projections.
The T4 bounds of Table Il represent the stability boundary, tfeeeT, < T, is used as a new
sampling-time in each case. As a next step, discretizatbfd rr (S) with Ty = 5-1073 s, the
half of the stability bound, for the polynomial method, are calculated. The simulatiesuits
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Fig. 4. Prototype of an electronic throttle body for a rackebi

for this case are given in the second row of Table Il. The regéar method again results in
an unstable projection, while the Adams-Bashforth metheshs to be stable, but its numerical
stability is not guaranteed for all trajectories of. The trapezoidal and the Padé methods also
improve significantly in performance, however the Padérnse& outperform the trapezoidal
method due to its faster convergence rate. The achieygdof each approximative method is
above the aimed 1% which is in accordance with thgir

Finally, discretizations ofR;pg(S) with Ty = 10~* s, the1/10*" of the T4 bound for the
rectangular method, are calculated and simulated. Thdtseare given in the third row of
Table II: the rectangular method converges and also theo&pation capabilities of the other
methods reach the numerical step-siz8—¢) of the continuous-time simulation. By looking
at the achieved,,,., all the methods obtain the aimed 1% error performance wigchn
accordance with theiT; bound. Note thaf),... iS also less than 1%, proving the concept that
by choosing the sampling period to achieve a small localrethe expected global error will

also be small/approximately equal to the aimed bound.

B. Electronic throttle control

In the automotive industry, electronic throttle actuati®negarded as a solution for the air loop
control problem for modern combustion engines. A more ateucontrol of the air inflow to
the engine allows better control of the air-fuel mixturelwihe results of improved combustion
and reduced pollution. Motorcycles, especially race hilkes very sensitive to small changes
of the air-fuel mixture which are due to the highly nonlinéehavior of the throttle position.
Electronic throttle actuation is an emerging technologwrder to optimize the performance of

race bikes.
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In [22] a recently developed prototype of alectronic throttle bodfyETB), depicted in Fig. 4,
for a race bike has been successfully modeled as an LPV sy$¥mrespect to the developed
model, a continuous-time gain-scheduled LPV-PID corgroas synthesized to regulate the
throttle gap based on the demand of the driver. The concegtagram of the LPV control
loop is illustrated in Fig. 5. Here,(¢) denotes the reference signal for the throttle position, i.e
the demand of the driver.(t) is the input of the controller, i.e., the tracking errgr, is the
output of the controller, i.e., the PWM signal applied to D€ motor armature, while\, (¢)
denotes the actual position of the throttle. Analysis offggsional drivers’ behavior has pointed
out that the fastest full-open/full-close maneuver lagigraximately 100 ms, i.e., the reference
signalry(t) is a low frequency signal with a band limit of 20 Hz. By anahgithe dynamical
behavior of the throttle body w.r.t. the control synthesisiglem, the scheduling signalt) of the
controller has been selected to be the requested positiatioa Ary(t). In order to implement
a causal filter to estimate this signaly,(¢) is computed by considering (at the current time
instantt,) the averaged value of the set-point derivativegff) — averaged over a time window
[to — 7,t0] — and propagating it forward ovety,t, + h| by assuming that it remains constant
over the latter time interval. The values bfand = have been experimentally tuned to 7 ms
and 100 ms, respectively. The controller has shown goodpeence both during simulation
study and experimental verification. During implementatia 1 kHz sampling rate has been
used, due to physical limitations of the processing unid, toe discrete-time form of the design
was obtained via a full ZOH-approach. Here we intend to stooky discretization affects the
performance of the designed CT controller and how the speauifiperties of the discretization
approaches assist or hamper to obtain an adequate digpnmentation of the control design.
Furthermore, it is also interesting to check whether thetrofier can be implemented in DT
with a slower sampling rate without sacrificing the perfonme of the current implementation.
The latter would be essential to reduce the cost of the psotgsinit, providing a cost-effective
high-performance solution to the manufacturer.

The gain-scheduled PID controllétp;p was designed based on the interpolation of PID
controllers optimized for some fixed throttle positionsnide for a constant scheduling trajectory

p(t) = p, with p € P, Kpyp is equivalent with an LTI-PID controller having the transfenction

B 1 sTp(p)
Cols) = Ke (1 e T sTD<p>/N) ’ (48)
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Estimation of
A’I‘e(t)

p(t)

ue(t) Ye() A1)

CT-PID

v+

h 4

Y

v

’l"e( t)

Throttle Body

Fig. 5. Conceptual diagram of the LPV-PID based control ef tiirottle-gap.

where
Kp:=3.5-10%

Tp(p): =0.00p+0.003, N :=10,
dy do

Ti(p) : = —0.3074 p* 4+ 0.6981 p* —0.5325p + 0.165 .

73 T2 71 T0
The interpolated PID controller, with the above given speaiions, has a minimal CT-LFR

realization in the form of

0 0 0 0 0 0 0 1

0 —& 0 0 0 -9 N N
Ty n . m 0o 0o 0

0 T0 T0 T0
0 0 1 0 0 0 0 0
Furr(Kem) = | 0 1 0 0 0 0
d1 dq

0 —% 0 0 0 o JET N

0 0 i 0 0 0 0 0 . |
K KpN ' Kpri Kpr Kpr: Kpdy KpdiN |

L0 dPo - 71”?0 o 71”302 o 71”303 o 50 Pdo | KP(N_'_ 1>_

and with a delta block\ (p)(t) = Isxs - p(t).

First, we investigate the approximation of the behaviofigfr (pip) W.r.t. the proposed dis-
cretization approaches using the physically possiktéliz maximum of the sampling frequency.
According to this, considefR;rr(Kpp) in the exact ZOH setting of Fig. 3b with sampling
period Ty = 1072 s. Based on the discretization approaches of Sec. IV, DToxppations
of Rrrr(Kpip) have been calculated similarly as in the previous examptee Nhat in the

considered discretization setting we only aim at the stode discretization of the given LFR,
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which refers to an open-loop setting. Therefore, in ordedlemonstrate the performance of the
resulting DT controllers, we first focus on their open-loom@dation error and only later we
will test their closed-loop behavior. In order to faciléen open-loop comparison of the CT and
DT-PIDs, the continuous-time closed loop system, depioteéig. 5, has been simulated on the
time interval [0, 1] with zero initial conditions in MTLAB. During the simulation a sinusoidal
reference signaly(t) = 5 + 5 sin(2.5¢t) has been applied and tlepE45 numerical solver has
been used with a variable step size having a maximurmoof. The results of this simulation
are depicted in Fig. 6, where in the bottom figure it can be $eaithe red throttle demand has
been well tracked by the actual throttle position given meblAll signals of the closed loop have
been recorded with a sampling period10f ¢ s. These signals were down sampledfo= 103
s and the resulting DT signalgq(k) = u.(kTq) andpq(k) = p(kTq) have been used to simulate
the response of the obtained discrete-time controller lap gaoposed methods. The resulting
DT output signalg), are depicted in Fig. 7a. The achieved MSEjgf has been calculated w.r.t.
the sampled outpug.(kTq) of Rrrr(Kpip) and is presented in Table IV. The relative worst-
case maximum local errat,,,, and global error,,.. of the DT state-signalg$, associated with
the DT controllers have been also computed w.r.t. to theestiginals ofR rr (pp) and are
presented in Table IV. During the calculation df™*, X = [-5-1073,5 - 107%]* was used in
accordance with the amplitudes of the state-signaligfg (Cpip) during the CT simulation.
From Table IV it is apparent that the rectangular, #é-order polynomial and the 3-step
Adams-Bashforth approaches do not provide numericallyeaent approximations while the
complete approach has a negligible approximation errorxpeated. The Padgl, 1) approach
provides the best result among the approximative methodge whe trapezoidal one gives
somewhat moderate results. The large MSE values of the pafgaroximation are due to the
extremely large value of. aroundt = 0.01, see the upper part of Fig. 6. As the trapezoidal
approach averages the state-evolution over the sampleaht# inherently has a relatively large
error Enax = 36%) for such huge variations. This is why the Padél) approach achieves a
better performances(,.. = 2.36%) as it approximates the complete approach rather than the
state-evolution itself. In line with the previous observas in [22], the full ZOH approach also
provides a convergent approximation, however with the twhtSE. This immediately shows

that by applying the Pad@, 1) or the trapezoidal approach in the implementation of thettler
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controller, the performance loss of the CT design can beedsed.

To analyze the approximation capabilities of the methods,mext can calculate the bounds
T4 and T4 on the sampling period by choosing the Euclidean norm as aw ereasure and
Emax = 10%, with the intention to achieve,,., = 10%. Note thatT, is infinite as the PID
controller contains an integrator part, which is not asystipally stable. The calculatet,
bounds are presented in Table V. During the calculatiorT ofthe regionsP = [0,1] and
U = [-1,1] have been used which were obtained from the simulation teestilthe CT-PID
controller (see Fig. 6).

As a next step, discretization O rr(Kpip) has been computed via all approaches using
Tq = 2.5 -107%, the sampling period where th&-order polynomial approach achieves the
aimed worst-case numerical error. As we can see from TabjealVapproaches improve in
performance, the rectangular method becomes convergéile the 3-step Adams-Bashforth
approach still diverges. Comparing the maximum of the LUbremwe can see that, as expected,
the 224-order polynomial approach achieves the aimgg. = 10%. Due to its faster convergence
rate, the Pad&1,1) method has even better performance in all measures thag"therder
polynomial. However, the Trapezoidal approach still hasamd error, even larger than the
rectangular approach in almost all measures, which is diie &ratic behavior around= 0.01.

On the other hand, respecting the bounds, its maximum LU®r as below 10%. An also
interesting observation is that contrary to the previousngxe, the full ZOH approach has a
poor performance, especially in terms of the MSE of the aitpampared to the other methods.
This clearly shows the unpredictable behavior of this @szation scheme.

Next, we investigate discretization with all methods usipag= 10~*. From Table 1V, it follows
that all methods with this sampling period achieve the aimgd = 10% bound and in case
of the Pad&(1, 1) and the2"-order polynomial approaches the MSE{pf becomes negligible
compared to the amplitude gf. However, the Trapezoidal and the Adams-Bashforth appesac
perform poorly, especially in terms af,.. and ... Even the full ZOH approach seems to
perform better in terms of these error measures. From thierpred open-loop simulation it
seems that the Padé, 1) approach provides the best discretization of the LPV-PlDtradler
for all practically interesting values @f; and it can be shown that it remains to perform better

than the Trapezoidal approach even Tgr> 10~3. This seems to give the conclusion that the

August 9, 2011 DRAFT



27

Padé(1, 1) approach provided DT LPV controller will perform better thine one based on the
trapezoidal approach. To investigate this, the closeg-loehavior of the DT LPV controllers
obtained by all approaches has been analyzed w.r.t a reajss$ profile, see Fig. 8. This gas
profile in terms of demanded throttle position has been dembduring a test track lap performed
by a professional driver. Using this gas profile the CT LPY2-Riontroller has been simulated
together with its DT projection via all approaches underiows values ofTy. The results are
visualized in Fig. 10 in terms of the MSE ¢f;(k) w.r.t. the gas profiley(kT,). In this figure, the
performance of the CT controller is given by a black solig)iwhile the achieved performance
of the DT controllers, produced by each discretization meéths given for equidistant values
of T4 on the rangg10~*,2 - 1073]. The response of the simulated closed-loop system is given
on Fig. 9 w.r.t. to the CT-PID and the controllers providedthg convergent approaches for
Tq = 1073. From these figures it becomes evident that the Trapezoi@#haod provides an
excellent steady performance in terms of tracking for aluea of T, in the considered region.
The Pad&1,1) method in closed-loop performs significantly worse thanrduthe open-loop
simulations as betwees - 10~* and 10~2 even the full ZOH approach performs better. At
Tq = 1.5- 1072 the full ZOH approach based controller is not able to stabithe loop any
more which is quickly followed by the divergence of the Pddél) method based controller
atTy = 1.6-1073. As expected from the open-loop simulations, the Adamddath approach
based design only provides a stable, but well-performingtrofier atT, = 10~* and the2»-
order polynomial approach starts to diverge ab@ye= 5 - 10-%. What is interesting is that
the rectangular method performs well til} = 7 - 10~* and then it quickly becomes unstable.
As an overall conclusion it follows that contrary to the opeap simulation study it turns out
that the Trapezoidal approach provides the best DT coatrall terms of tracking, which is
followed by the full ZOH approach, while the Padé 1) does not seem to be an attractive
choice at all. Explanation of this result lies in the facttttiee considered discretization setting
and the provided analysis in this paper have focused on Hred stlone discretization of an
open-loop LPV system. In that case, we could see that thelame methods in this example
achieved the performance suggested by the theory. Howases, well-known in the LTI case,
discretization w.r.t. a system in a closed-loop considgariosed-loop performance measure is a

different problem setting. This underlines that the restdported in this paper are the first steps
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MSE 0f fjca

Ta [S] Complete | full ZOH | Rectangular| 2"¢-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.

1073, (1kHz) | 6.20 -107° | 1.08 - 107 ) ) 7.46 -10° | 6.62 - 10*

1.23 - 103 4.60 - 10° 2.15 - 102
5.47 -10° | 1.00 - 10°

2.5-107%, (4kHz) | 6.23 -107*° | 1.03 -10° | 1.83-10°
107*, (10kHz) | 6.19 - 107 | 1.70 -10° | 2.57 -10* 2.52 - 10" 7.28 - 10*

Emax Of Zq
Tq [S] Complete| full ZOH | Rectangular| 2"?-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.
1072, (1kHz) 0.00% | 25.35% ) ) 36.00% 2.36% )
2.5-1072, (4kHz) 0.00% 3.78% 1.99% 0.16% 9.02% 0.06% ()
10~*, (10kHz) 0.00% 0.74% 0.33% 0.01% 3.61% 0.01% 6.95%
fmax Of Zq
Tq [S] Complete | full ZOH | Rectangular| 2"-polynom. | Trapezoidal| Padé(1,1) | Adams-Bash.
1073, (1kHz) 0.00% 31.72% ) ) 24.51% 2.36% =)
2.5-1072%, (4kHz) 0.00% 8.95% 3.73% 0.31% 8.06% 0.13% )
107%, (10kHz) |  0.00% 3.54% 1.40% 0.05% 3.45% 0.02% 6.95%

TABLE IV
DISCRETIZATION ERROR OFS, GIVEN IN TERMS OF THE ACHIEVEDMSE, £ax AND 7jmax FOR THE INVESTIGATED STATE
TRAJECTORY *) INDICATES UNSTABLE PROJECTION TO THE DISCRETE DOMAIN

Criteria

Rectangular 22d_polynomial Trapezoidal Padée(1,1) Adams-Bashforth

1.26 - 1074, (7.93kHz) | 2.42-107%, (4.12kHz) | 3.06 - 10~%, (3.27kHz) | > 2.42-107%, (4.12kHz) | 2.09 - 10~*, (4.78kHz)

TABLE V
PERFORMANCE(T4) BOUNDS USING THEEUCLIDEAN NORM AND Emax = 10%.

towards providing theoretically well-understood solagdor the DT implementation of CT-LPV

controllers preserving their closed-loop performanceictviis the aim of future research.

VIlI. CONCLUSIONS

In this paper, discretization approachesliokar fractional representation$LFR’s) of LPV
systems were introduced using an exact ZOH setting whereatt&tion of the state coupled by
the scheduling dependent-block is not restricted inside the sampling interval. Thisvides
an advantage over existing methods to reduce the introdidisecktization error. The developed
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Fig. 6. Closed-loop response of the system with the CT-Plitrotier for a sinusoidal gas profile: controller input (king
error) uc(t), scheduling signap(t), controller output (actuation).(t), system outputA.(t) (blue, bottom subfigure) and the
tracked gas profile (red, bottom subfigure).

approaches were analyzed in terms of applicability and migadeproperties, giving an overview
of which methods are attractive depending on the aim andeagbhie sampling period of the
discretization. lllustrative examples were provided teeginsight into the derived methods and

their properties.
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