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Abstract

A common problem in the context of Linear Parameter-VaryligV) systems is how Input-Output
(I0) models can be efficiently realized in terms of State€®p&SS) representations. The problem
originates from the fact that in the LPV literature discréitee identification and modeling of LPV
systems is often accomplished via IO model structures. Weweéo utilize these LPV-IO models for
control synthesis, commonly it is required to transformnthiato an equivalent SS form. In general,
such a transformation is complicated due to the phenomeffiatymamic dependence (dependence
of the resulting representation on time-shifted versiohghe scheduling signal). This conversion
problem is revisited and practically applicable approache suggested which result in discrete-time
SS representations that have only static dependence (@epem on the instantaneous value of the
scheduling signal). To circumvent complexity, a criterisralso established to decide when an LTI type
of realization approach can be used without introducingiicant approximation error. To reduce the
order of the resulting SS realization, a LPV Ho-Kalman typenodel reduction approach is introduced,
which, besides its simplicity, is capable of reducing even-gtable plants. The proposed approaches

are illustrated by application oriented examples.

Index Terms

Linear parameter-varying systems; Realization; Modelioéidn; Input-output representation; State-

space representation; Dynamic dependence.

. INTRODUCTION

The framework ofLinear Parameter-VaryindLPV) systems provides an efficient alternative

for modeling and control of nonlinear/time-varying systemroven by a wide range of successful
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applications from aircrafts [1] to environmental modelif®]. The practical use of the LPV
framework comes from the fact that it offers powerful cotiémosynthesis tools based on the
extension ofLinear Time-Invariant(LTI) approaches, see e.g. [3]-[6].
In the LPV control literature, a discrete-time LPV systentanmonly described in &tate-
Space(SS) representation:
qr = A(p)z + B(p)u, (1a)
y =Cp)x+ D(p)u, (1b)

whereuw : Z — R™, y : Z — R™ andx : Z — R™ are the input, output and state signals of the
system respectively; is the forward time-shift operator, i.gz(k) = z(k + 1), and the system
matricesA, B, C, D are rational functions of the scheduling sigpal Z — P and nonsingular
on P, where the seP C R is the so calledcheduling spacdt is assumed thai is an external
signal of the system and it is online measurable during d¢ieeraln casep is a function of the
inputs, outputs or states of (1a-b), then the LPV systemfesnexl to as aquastLPV system.
Note, that all matrices in (1a-b), defined as

R7xX1u

R X1u

A(p) | B(p) . R
C(p) | D(p) IRy X

, (2)

are dependent on the instantaneous valug, efhich is calledstatic dependence.

In the LPV literature, numerous approaches have been untemtito identify or to model LPV
systems based on various model structures and represestagee [7] for a recent overview and
comparison of these methods. A large class of the availgigeoaches, like [8]-[11], addresses
the identification problem of LPV systems in terms of so ahlleput-Output (I0) model
structures with many applied results like [2], [12]-[14h this class of LPV-10 identification
methods, the deterministic part of the data-generatingesyss commonly described in an LPV-
1O filter form:

Ta

yz—}Zm@M%y+Z;®@Mﬁm 3)

=1
whereg; : P — R™*™ andb; : P — R™*™ are rational matrix functions gf with no singularity
on P andn, > n, > 0. However, the main stream of LPV control synthesis appreads
derived for SS representations, thus to utilize obtaine¥-1® models in the form of (3) for
control synthesis, commonly it is required to transform {@)an equivalent SS form (la-b).

Additionally, in terms of LPV modeling based on first-priptg nonlinear differential equations
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it is also mathematically attractive to first find a LPV reatipn of the underlaying behavior in
terms of an 10 representation and then find a SS realizatiagheofO form, see [7], [15].

It has been recently observed that representations (laeb]3 are not equivalent in terms
of 10-behavior, i.e. in general, an LPV-IO representati@h ¢annot be transformed into (la-
b) without deforming the dynamical relation gf and « [16]. This problem, which has been
unknown before, has caused performance loss and signitidéatlties in applications (e.g. see
[12], [13]) as LPV-IO models had been thought to be realiead LPV-SS models according to
the classical rules of the LTI realization theory. It hasrbdemonstrated in [16] that using such an
intuitive conversion between the two representation siines can lead td0% of output-error
even for slowly varyingp. Furthermore, in the air charge control problemSgark Ignition
(SI) gasoline engine, used in this paper for illustratioP\VL.controllers designed on the SS
realization of an identified high validity LPV-IO model shavsignificant performance loss if
the SS realization is obtained according to the LTI ruleg Section VI).

Since main-stream LPV controller synthesis approachesased on state-space represen-
tations, obtaining SS realization of LPV-IO models has Ipee@an essential task to be solved
in practice. According to a recently developed algebraganiework to give a solution for this
transformation problem, see [7], [17], it has been provext tbr obtaining equivalence between
SS and 10 representations, it is necessary to allow for ardimaapping between the scheduling
signals and the system matrices (dynamic dependencehe.system matrices must be allowed
to depend on finite many time-shifted instance®@), like {...,p(k—1),p(k),p(k+1),...}.
This does increase the complexity of the produced SS modahwmay prevent controller
synthesis or hardware implementation of controller design

In this paper we propose practical and systematic methostsv¥e the problem of transforming
LPV-IO models into LPV-SS forms by avoiding such dynamic elegence on the scheduling
signals. Therefore, we assume that an identified and vatid&@ model of the system is given for
which realization needs to be addressed, in other words,eaéltre only with the realization
problem. Hence, we do not intend to compare performance aritification via LPV-SS or
IO approaches nor posing any of these model structures dnoaetto be superior above the
other. The developed realization approaches propose a wayose the gap between LPV-
IO modeling/identification and control synthesis. Addiiadly, a criterion is also established to

decide when the LTI theory inspired realization can be usébowt introducing a significant
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approximation error. To reduce the order of the resultinge&fization an LPV Ho-Kalman type
of model reduction approach is introduced, which can evdoae non-stable models. All ideas
are illustrated with simulation studies on practical desegxamples.

The paper is formulated as follows: In Section Il, the transfation problem between LPV-
IO and LPV-SS representations is briefly discussed higtihgithe underlaying difficulties and
providing a general solution through an algebraic approslith requires the use of dynamic
dependence. Next in Section Ill, a useful criterion is désad to decide when the classical LTI
realization theory can be applied without serious consecgge and how much can be ’lost’ in
terms of model validity. In Section IV it is discussed in whispecial cases it is possible to
avoid the introduction of dynamic dependence and to proexict realization in terms of an
LPV-SS model with static dependence. This is followed int®acVv by a brief description of the
LPV Ho-Kalman approach being able to reduce non-minimal $8eats resulting from certain
conversion methods. In Section VI, the performance of th@p@sed approaches is evaluated
through modeling and control design for the intake manifafilé spark ignition gasoline engine.

Finally, the conclusions of the paper are drawn in Sectioh VI

II. THE TRANSFORMATION PROBLEM

In the conversion of LPV-IO models to LPV-SS representaidrholds true in general that
to preserve 10 equivalence of the resulting descriptiogeathic dependence of the coefficients
on the scheduling signal (dependence on time-shifted versionfmust be considered [7],

[17]. To illustrate the problem, investigate the followisgcond-order SS representation:

wi(k+1) | |0 aa(p(k)) | | :(k) N ba(p(F)) (k)

zo(k +1) L ai(p(k)) | | z2(k) bi(p(k))

y(k) = 2 (k).
With simple manipulations this system can be written in aniexent 10 form:

y(k) = ar(p(k—1))y(k—1)+az(p(k—2))y(k—2)+bi(p(k—1))u(k—1)+ba(p(k —2))u(k —2),

which is clearly not in the form of (3) due to the dependencthefcoefficients omp(k — 1) and
p(k—2). We can see from this example that it is necessary to allowyfnamic dependence of the
varying parameters, like state-space matrices or 10 caafii, in order to characterize equivalent

LPV-SS realizations of LPV-IO models. Next, we will invegie how we can reformulate our
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representations to handle such a dynamic dependence inl-fowetled sense and how we can
provide algorithms that characterize equivalent reprisiems. For this purpose we will briefly

introduce the algebraic framework of the so called UBAhavioral approacldeveloped in [17].
A. System representations

In order to describe the functional dependence of a singlevaued coefficient, we employ
functionsr : R® — R that are considered to be in the fieRl= U,c.nR,,, WhereR,, is the set
of essentiallyn-dimensional real-meromorphic functions (being the crdtiof analytical real
functions). In this contex¢ssentiallyneans that(x;,--- ,x,), wherex =[x, ... x, | € R",
does depend on,. The functionr specifies how a corresponding coefficient function (like
{A,..., D} and{a;,b;} in (1a-b) and (3), respectively) depends:omariables, that are selected
— in a unique ordering — from the séqipj};ie:%,,,mp. More specifically, for a giver® with
dimensionn, andr € R,, label the variables;,...,x, of r as(y i, (o1,... according to the

following ordering:

T(CO,I? R CO,TLpu Cl,l? ) C17np7 C—1,17 R C_17np7 C2,17 - )
For a given scheduling signal associate the variablg ; with ¢'p;. For this association we

introduce the operator
o: (R,P*) — R* defined by rop=r (p,ap,q 'p,...),

where X? stands for all maps frorZ to X. Thus the value of apfdependent) coefficient in
an LPV system representation at tirhés given by (r o p)(k).
Example 1 (Coefficient function}:et P = R" with n, = 2. Consider the real-meromorphic

coefficient function : R — R, defined as

1+ X3
T(X17X2,X3) = 1 .
Then for a scheduling signal: Z — R%:
1+ pi(k+1
(0 p)(K) = r(p pos o) (k) = S 2EE L),
On the other hand, if., = 3, then (r o p)(k) = r(p1, p2. p3)(k) = }fi;g’;; showing that the

operatoro implicitly depends om,.
In the sequel the (time-varying) coefficient sequefrcep) will be used to operate on a signal

(like a;(p) in (3)), giving the varying coefficient sequence of the repreations. In this respect
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an important property of the operation is that multiplication with the shift operatpiis not

commutative, in other words
q(rop)w # (rop)qu. (4)

To handle this multiplication, for € R we define the shift operations’, & as

T = 1reR st rop = ro (gp),
S = 1"eR st rop = ro (g 1p),
for all p € (R™)Z. With these notions we can writgr = 77¢ and ¢~'r = % ¢~ which

corresponds to

g(rop)w = (7 op)qw and ¢ '(ropw= (¥ op)g w,

in the signal level. This non-commutativity of multipliean with ¢ in the LPV case is the core
problem of realization.
Example 2 (Shift operators)Consider the coefficient function given in Example 1 with

n, = 2. Then7 is a functionR® — R, given by 7 (o1, Co.2; 1.1, C12, (1.1, Co1.9, Co1) = %

For a scheduling trajectory : Z — R?, it holds that(7 o p)(k) = (r o (qp)) (k) = T2

Next we can introduce discrete-time LPV-IO and SS repregiems that have equivalent 10

behavior. LetR[¢] be the ring of polynomials in the indetermingtend with coefficients inR.
Since the indeterminatgis associated witly, multiplication with¢ is non-commutative ofR [¢],
i.e.&r = 7¢ andré = £% . Then for specified input and output variablgsu) € (R™ x R")Z

of a given LPV systen$ we can introduce th& representatiorof S as

(Ry(q)op)y = (Ru(q) op)u, (5)

where R, € R[¢{]™*™ and R, € R[¢]"™*™ are matrix polynomials with meromorphic coeffi-
cients, e.g.R,(¢) = Y., a:iq" wherea; € R, Ry is full rank anddeg(Ry) > deg(R,). It is
apparent that (5) is the ‘dynamic-dependent’ countergg®)o Furthermore, we can characterize
the solution space of (5) as all maps (af u, p) with left-compact support that satisfy (5). We
recognize (5) to be the representation of an LPV systeif its solution space contains all
trajectories of(y, u, p) that can happen during the operation®fExact characterization of such
behaviors even defining the conditions required $oto be an LPV system are given in [7],
[17].

The natural counterpart of (5) to define SS representaticandiPV systemsS is
(Rw(q) o p)eol(u,y) = (Rr(q) o p)z, (6)
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wherecol(.) denotes the column-vector compositidd, € R[] +m) and Ry, € R[¢]™ "=

are matrix polynomials and is an auxiliary, so calledatent variable = satisfies the property
of a state variable if for every, € Z and each solution&e,, y, u, p) and(xs, y, u, p) of (6) with
x1(ko) = z2(ko) it holds that concatenation &%, y, u, p) and (z2, y, u, p) at kq is a solution of
(6). It can be shown that qualifies as a state variable in (6), if and only if (6) can bétem

in a form wheredeg(R,,) = 0 anddeg(Ry) = 1 [17]. Then the state-space representation can

be formulated as a first-order parameter-varying diffeeeeguation system in the state variable

T as
gz = (Aop)z+ (Bop)u, (7a)
y=(Cop)z+(Dop)u, (7b)
with
A B Rnxxnx Rnxxnu
€ (8)
C D Rnyxnx Rnanu

It is apparent that (7a-b) are the dynamic-dependent cparts of (1a-b). It can be shown
that (7a-b) is equivalent with (5) in the sense that for a igi@V-10 representation (5) there
exists an LPV-SS representation (7a-b) with the same I0vehda he latter means that under
minor restrictions, for all trajectories dfy, u, p) that satisfy (5) there exists a € (R™)% s.t.
(x,y,u,p) satisfies (7a-b).

B. Equivalent state-space forms

To define equality of LPV-SS and LPV-IO representations, wst fnave to clarifystate-
transformationsn the LPV case. Consider an LPV-SS representation givervhybj. LetT €
R™>*™ be invertible (inR™*"x) and consider’, given by

' = (T op)x. 9)
It is immediate that substitution of (9) into (7a) gives
¢(T " op)a’ = (Aop) (T~  op)2’ + (Bop)u. (10)
Due to the fact that (10) is a first-order parameter varyirffigpdince equation w.r.t:’, the latent

varaible 2’ trivially qualifies as a new state variable which yields that equivalent LPV-SS

representation of (7a-b) reads as
TAT | T8

crt | D

(11)
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Similar to the LTI case it can be proven that two LPV stateesp@presentations have the same
IO behavior if and only if their state variables are relaté & state-transformation (9). A major
difference w.r.t. LTI state-transformations is that, ie ttPV case}" is not only a constant matrix
but can be dependent gnand this dependence can be dynamic,T.es R™*"=. Based on the
developed state-transformation and the concept of statergability and reachability matrices,

the classical canonical forms can also be defined (see []).[1
C. Input-output to state-space

Now the results of [7], [17], which provide the basis for LPNput-output to state-space
transformation, can be formulated as follows:

Theorem 1:Consider a given LPV-10 representation (5) and defttg) = [ R, (¢) —R,(¢) |-
Assume that (5) is minimal in the sense that(¢) and R, (&) are coprime. Letv = col(y, u)

and select a full row rank’ € R[£] ™ *™ such that for

z = (X(q) op)w, (12)
the latent variabler satisfies the property of state, then there exist uniqueixnftnctions
{A,B,C,D} in R and polynomial matrix functionsX,, X, € RI[{]* with appropriate

dimensions such that
EX(§) = AX(E) + BS, + Xu(§R(E), (13a)

Sy = CX(&)+ DS, + X, (§)R(E), (13b)

whereS, € Ryt gnd S € R *™ ™ gre selector matricégiving v = S,w andy = S, w.
For a proof see [17]. Note that in (12) can be generated frof by using the so calledut-
and-shift operationgsee [18]). Note also that (13a-b) corresponds to a set eatiequations to
be solved in order to obtaifi4, B, C, D} and X,, X,. With the resulting{ A4, B,C, D}, (8) is

a minimal (in terms of state-dimension) state-represemtaif the LPV systens. In the SISO
case minimality is guaranteed for any choice of full rowkak satisfying (12), while in the
MIMO case only appropriate selection strategiesXolead to minimal realizations. Furthermore,
specific choices ofX lead to specific canonical forms, see [17] for more details.

For a simple example consider an LPV-1O representationnginehe form of
-1 -2 -2
Yy=pq y—pq y+pqg-u, (14)
1A matrix with one entry 1 in each row, at most one entry 1 in eaclumn, and all other entries 0 is a selector matrix.
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with P = R. According to the above theorem, by applying (13a-b) With(¢) o p) = [T 0],

we obtain an LPV-SS realization of (14) in the form of

0 ¢*p|d¢*p
Al B
op=11 —gp| O ) (15)
C\|D
0 1 ‘0

with X, =[1 0]" and X, = 0. This LPV-SS form is the so calledompanion-observability

canonicalform of (14). From this example we can see, that via (13a-bgareprovide minimal
SS realization of a given LPV-IO representation and in faet state-transformations we can
characterize all equivalent SS realizations of the systémvever, using the results of Theorem
1 we have no control over the introduced scheduling deparederhich is most likely to be
dynamic and rational. As for the use of common LPV controltlgsis tools most preferably we
need realizations with simple static dependence like timegendence op, the basic question
which rises is how we can arrive at a SS realization where t@idsoscheduling dependence
is “minimal”. So it is important to explore in which cases wancavoid the use of dynamic
dependence, give direct realization forms and what pricenust pay if we restrict ourselves
to static dependence in terms of an approximative reabiaaflhese are the question we intend

to address in the sequel.

IIl. CRITERION OF DYNAMIC DEPENDENCE

In the literature, the issue of dynamic-dependence of thé tdpresentation on the scheduling
parameters is often overlooked when an LPV-IO model is foansed into an LPV-SS repre-
sentation, e.g. [13]. Instead, usually LTI realizationdtyeis used to convert (3) to an LPV-SS
form (1a-b) where the matrices have only static dependddased on this, (3) is commonly
“realized” in terms of canonical forms, like the reachalie o called companion reachability)

form given in the SISO case as

—ai(p) —as(p) ... —ana(p) —an(p)| 1
1 0 0 0
A(p) | B(p) _ 0 : : (16)
C(p) | D(p) S o]
0 0 1 0 0
L al) e ed) | d) |
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10

whered = by andc¢; = b; — a;by and if n, < n,, thenb; = 0 for j > ny,. In [7], [16], it has
been shown that in the equivalent reachable canonical fér(8)othe coefficients have dynamic
dependence op and they become rational functions of the originaland b; coefficients of
(3). This implies that (16) is at best an approximation of thee canonical realization of the
LPV-IO model, and the introduced approximation error casegd be arbitrary large [7].
However, dynamic dependence associated with a SS repaisentf the system commonly
increases the complexity of control synthesis. Thus, itohees a relevant question when this
approximative realization can be used without seriousgoerdnce degradation of the designed
controller. A simple answer is to analyze the error betwéertrtue and the approximative realiza-
tion. Building upon the realization theory derived in [A]can be shown that the approximation
error depends on how the Markov parametgrg:°, of the plant are approximated. For a given
trajectory ofp denoteh(p, ko)(k) the impulse response of the system at tim#or an impulse
applied to the system &k. Thenh(p, ko) (k) = gr—k,(p, k) for k > ko, and h(p, ko) (k) = 0 for
k < ko. Note that in the LPV case the impulse response of the sysegardls on the trajectory
of p and the time instance when the impulse is applied. Consigehie Markov parameters of
(3) with n, = n, = 1 andby(p) # 0, it follows that for a given trajectory of

9o(p, k) = bo(pr),
91(p, k) = —a1(pr)bo(Pr-1) + b1 (pr), 17)
92(p, k) = —a1 (pr) (b1 (Pe-1) — a1 (pr—1)bo(Pr—2))

etc., wherep, = p(k) and it holds true that all solution trajectories of (3) witftlcompact
support satisfy -
y(k) = ap, k)uk —1). (18)
=0

However, if the LTI realization theory is used, it is assuntieat the Markov parameters are
Go(p, k) = bo(px),
G1(p, k) = —a1(pr)bo(pr) + b1(pr), (19)
G2(p, k) = _al(pk)(bl(pk) - al(pk)bo(pk))7

etc. Note the difference of time dependence for each Marlkwameterg; and g;. As for order

na, the firstn, + 1 Markov parameters (with the feedthrough term) completélgracterize the
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11

system dynamics in a functional sense, if

J=sup||lgo(p. k) - gua(0 BT = [90(p, k) - Gna (. R)] 7| (20)

pEPL

is “small,” then the worst-case difference between the I@aber of the approximative and the
true realization can be considered negligible. In (20))|. denotes thé,, norm. However, in
order to quantify what “small” or “acceptable” is from theewpoint of the user or a particular
application we can introduce a relative thresheld- 0 w.r.t. to the/,, norm of the impulse

response of the original Markov parameter sequence:

J=sup ||[go(p. k) - gna(p BT - (21)

peEPZ
In this sense, for a given> 0 and.J # 0 we can consider the worst-case approximation error
to be acceptable if
J

See Remark 1 for an interpretation of the error in this reéegsiense. Note that can be computed
in practice by considering the supremum over the valueg,of.., g, for finite sequences
[p(k) ... plk—ny) ]=[po ... pn, | €P"™T. Then by gridding off"+*' and assuming
an upper bound on the rate of variationgof.e. |p(k) —p(k—1)|| < n, approximate computation
of J becomes available in a lower bound sense. By assuming a sajeftoriesP C PZ of
p that are expected during the operation of the plant, theckespace can even be further
decreased.

Example 3:Consider an LPV-1O representation (3) with = 9, ny, = 2, P = [-27, 0] where

the parameter dependent coefficients are given as follows:

a1(p) =0.24 +0.1p, as(p) =0.6 —0.1y/—p, as(p) = 0.3sin(p), a4(p) =0.17+ 0.1p,

as(p) = 0.3cos(p), ag(p) = —0.27, az(p) = 0.01p, ag(p) = —0.07,

ag(p) = 0.01cos(p), bo(p) =1, bi(p) =125—p, ba(p)=-02—=p.
Note that all coefficients have static dependence.oA fine grid of P("=+1=10 s constructed,
where each grid point represents a finite sequengesoich that|p(k) —p(k—1)|| < n; = 0.01.
Then (20) and (21) are adopted to computand.J aiming for e = 1%. The maximum ofJ

over the grid points is/; = 0.054, while J = 0.75. SinceJ; < €J, the LTI realization can be
employed to convert this LPV-IO model witly = 0.01 into an adequate LPV-SS form using
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12

for instance the reachable canonical form. To demonsttiadée,satisfying criterion (20) indeed
leads to a SS realization which meets with the expectedtgualierms of approximation error,
the best fit rateBFR) or fit score (see [19])

_ ly(k) — §(k)||2
BFR = 100%. max <1 R =l ,0), (23)

where y,,, is the mean ofy and || . ||; is the ¢/, norm, is used. In other words, tH&FR is
applied to validate the obtained approximate LPV-SS mo#iekach grid point ofP!?, (23) is
used to compute the error between the sequence of Markompteesgy, . . ., g,, Of the true
LPV-IO model (3) and the sequence of Markov parametg(s, k) = D(pk), ..., Gn.(p, k) =
Cpr) TI7" A(pr_i) B(pr_n,) of the LTI realization provided LPV-SS form with matrix func
tions{ A, B,C, D} having static dependence pnNote that bothy,, . . ., g,, andgo, . . ., g,, have
dynamic dependence ard;} are not the same as in (19). The resulting worst &SR over
the grid points iIBFR, = 96.73%. This means that using the LTI realization theory to corttru
an LPV-SS form of the original LPV-IO model leads to an acabj# worst-case approximation
error BFR, if |[p(k) — p(k — 1)|| < n is satisfied. The example can also be repeated with
1y = 0.3. According to (20) the maximum achievellis .J, = 1.26, so.J, > eJ. Therefore
the LTI realization concept in this case is not advised to §eduas the resulting error can be
considerable (larger than the specified 1%). This is prowerdmputing the worst-casBFR,
over the grid points which is onlg7.39% in this case.

In order to find a boundary for which J < ¢.J, the following problem is solved

0= arg%rzlg eJ—J st eJ—J>0. (24)

By solving (24) in this example, the resultimgs 0.0139 which is the maximum allowed rate of
change ofp, in terms of (21), to guarantee that by applying the LTI r=stion theory concept
on (3) the resulting SS form will approximate the 10 behawér(24) adequately (whea is
chosen ad%). The worst case approximation error associated With BFR= 96.27% which
can be considered as a good approximation of the originald@aor of the LPV-IO model.

Remark 1:Note that the considered criterion is applicable both in$h®0 and the MIMO
cases. In the later case, the Markov parameters in (20),ai2Lljnatrix functions and hence the
infinity norm of a multidimensional signals is considerediditionally, the criterion itself can
be formulated in different ways. One can use th@orm or different/ according to the specific

application or needs of the user, for instance, the indigednorm of the error between the
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two models. With respect to the latter case it can be shownftitaan asymptotically stable

LPV system, the induce@ ., norm satisfies

o —

sup H Ei:o gl<p)q uH2 < sup Hh(p7 k)H2 (25)
lull2 <00 [oaips peP?
uz#0, peP” k€EZ

This shows that the criteriori < ¢J in terms of (20) with ar/, norm and with an adequately
large number of Markov parameters can be interpreted asdiogithe?{ ., norm of the error in

a relative sense. However, the error bound is delivered the assumption of static dependence
of the Markov parameters and not directly the error betwéenliT| realization provided SS
model and (3).

IV. DEDICATED LPV-SSREALIZATIONS TO ENSURE STATIC DEPENDENCE

By considering the realization theory briefly discussed atti®n 1l and fully developed in
[7], it can be shown that in special cases there exist waysoaberting LPV-IO models to
LPV-SS realizations without introducing dynamic deperagerHowever, each realization form
is either based on specific assumptions or provides nommaingS realizations, which can be
later converted into minimal realizations using appradgri@ols, see Section V.

A. Shifted form

For the sake of simplicity we consider only the SISO case. &él@r the realization forms
that will be introduced can be extended to the MIMO case inra@gttforward manner similar
to the LTI case. Assume that the LPV-IO model is given in thenfo

Na Ny
y+ Y algp)ay =Y bilg7p)g 7y, (26)
i=1 =0

wherea;, b; : P — R. Note thata; andb; have a special form of dynamic dependence which can
be introduced into the parametrization of most of the atéld.PV-10 identification approaches.

Now introducex; as

y = x1+ bo(p)u, (27a)

np—1 Na—1
g1 = bz biva(q7p)g 7= aia(g'p)g 'y (27b)

i=0 =0

Continue the so called natur;I state construction (seea])

qry = x9 —ai1(p)y + bi(p)u, (28a)

np—2 Na—2
qry = bz biva(q 7P U= aiealq'p)g 'y (28b)

j=0 =0
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until gz, = —a,, (p)y + b, (p)u. Thus we obtain a set of first-order difference equations:

:c1 0 1 0 O | = —ai(p)  bi(p)
’ _ n Y1 (29)
u
L1 0 0 1| |zn, 1 —ap,—1(p) bn,-1(p)
L xna . _0 0_ B xna _ B —ana(p) bna (p) |
Then by using (27a)y can be eliminated from (29) yielding the LPV-SS represamat
[ —ay(p) 1 0 bi(p) — a1(p)bo(p) ]
: 0 :
A B
(p) | BO) | _ (30)
C(p) | D(p) ~an,—1(p) 0 0 1|bp,1(p) = an,—1(p)bo(p)
—an,(p) 0 0| bn.(p) — an.(p)bo(p)
! 0 0 d(p) |

whered = by. This SS realization is minimal in the SISO case and has dalycsdependence.
In the MIMO case, by computing a set of maximally independents of [A, B] in (30), which

corresponds to independent state-variables, minimalkzegan via this approach also follows.
B. Augmented SS form

Assume that the LPV-IO model is given in the form

v+ alg Py =Y bilg 'p)gu. (31)
i=1 j=1

Note thata, andb,; have a special form of dynamic dependence which again cantimuced
into the parametrization of most of the available LPV-IOntigcation approaches. It is also
important that there is no feedthrough term, bg—= 0. Under these conditions, an augmented
equivalent LPV-SS representation is given in a straighvéwd manner as (32). Note that (32) is
not minimal, but has only coefficients with static dependerithis type of augmented SS form
is widely known in the LTI literature and also used in the itiigcation toolbox in MATLAB
[20]. As a next step, an LPV model reduction algorithm, se&tiBe V, can be applied to reduce
the state dimension, but preserve the static dependensedBa Section IV-D, it holds true that
the minimal state dimension allowing static dependencéhef3S form is larger than or equal

to the actual order of the system. Moreover, if the origif@lrhodel is already identified in the
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form of (3), then this approach is still applicable as theultgsg LPV-SS realization will only

be dependent ogp. If p is measurable by a faster sampling rate thaandy, or the variation of

p is much slower than the sampling rate0findy, then dependence ap does not introduce

complexity into the model in terms of control design.

—a1(p) —an,(p) b2(p) by, (p) | b1(p)
1 0 0 0
a0 | B 0 1 0 0 0
p p
o) | D) = 0 0 0 0 1 (32)
P P 0 0 1 0 0
0 1 0
10 0 0 |
C. Observability form
Suppose that the LPV-IO model is given in the form
v+ ailg " p)g 'y = bn, (¢ p)g " u. (33)
=1

Note thata; and b, have a special form of dynamic dependence and the input hatag df

g~ ™. Based on the realization theory of observability candnicems (see [7]), an equivalent
SS realization reads as (34). Note that this LPV-SS re#izas minimal in the SISO case and
has only static dependence. In the MIMO case, a minimal fofr{84) can be computed via
finding the basis of its observability matrix following Yogs selection scheme Il and computing

a state-transformation to obtain a MIMO observability agical form, see [7, Ch.4].

0 1 0o ... 0 0
0

A B : : : :
(p) | B) | _ ‘ (34)

C(p) | D(p) 0 0 .. 0 1 0

—ap,(p) —n,—1(p) —a1(p) | bn.(p)
1 0 ... ... 0 0 |
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D. Elimination of dynamic dependence via state-transfdioma

In case the previous schemes can not be applied, the realizgiproach (13a-b) in Theorem
1 can be used, followed by a search for a state transformatiooh simplifies the coefficient
dependence op to a static relation. In this way, it can be clearly charazeat what is the
minimal achievable complexity of the LPV-SS realizationtloé given model. Such an approach
is tempting from the theoretical point of view but as we wékst has a significant computational
load.

In order to avoid detailed mathematical treatment of thdlemm, we consider the above given
idea in a simple case. For a given SISO LPV-I0O representdipwith n, = 2 and0 < ny, < n,,

an LPV-SS realization of (5) is obtained in the form of

1l B air o | B
Op= | ayn axp|f |Op (35)
C|D
T2 ‘ d
where the coefficients;,...,d € R can have dynamic dependence ;anNote that in terms

of (11), no state transformation can annihilate dynamiceddpnce inD, which implies that a
SS equivalent of (35) exists only in the case ifias static dependence. The latter condition for

the realization of an LPV-IO model in the form of (3) is autdinally satisfied. Consider

M, = mi1 Mag M, = Hi1 Hi12 7 (36)
Ma1 Moo Ho1 22

being full rank matrix functions inR?*? such that
A(p) = (MyAM,) o p, B(p) = (M, B) o p, (37a)
C(p) = (CMy) o p, 1= (M) op, (37b)
where A, B, C' are matrix functions with statip-dependence and means backward time-shift
in the coefficient dependence Iikﬂl op = M; o (¢ 'p). The conditions (37a-b) imply the
existence of a state-transformation such that the regu§@ form with matrice A, B, C, D}
has only static dependence. Furthermore, (37a-b) comespm a system of bilinear equations.

These bilinear equations can be symbolically solved if inssumed thatl, B, C are given

in a canonical form. Consider the example in Section II-C rehee developed an LPV-SS
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realization (15) via (13a-b) of the LPV-IO model (14). By woly (37a-b) w.r.t. (15) we can

arrive at the equivalent LPV-SS representation

- —p 110
A|B _ 0o 0 gp
— op = p 0|1 with M, = av , My = , (38)
C|D L0 p 0
p 0 0 q°p

where the state-space matrices have only static dependEmsalemonstrates that in some cases
it is possible to eliminate the dynamic dependence by usimgle state-transformations.
In case no solution exists for (37a-b), it means that no mahibPV-SS realization of the

model exists with static dependence. In this situation,

mip a2
M1 M1z M3
Ml - mMo1 Moo s M2 - 5 (39)
H21 o2 H23
mg1 132

can be considered wherd; is full column and)/, is full row rank, increasing the freedom of

the coefficient transformations by introducing an extrdestariable. Then, solvability can be

checked again. Note that due to the increased number of\&easbles, uniqueness of the

solution (if exists) in terms ofA/; and M, is not guaranteed. In case of no solution, the
augmentation can be continued till feasibility or when thaniber of state variables exceeds
a limit.

Proposition 1: Consider (3) and assume that an LPV-SS realization of (3)ivengin the
form of (7a-b) with dynamic dependence. If no state-tramsfdgion can be found that leads to
an equivalent SS form of (7a-b) withn, state-variables and with only static dependence, then
an exact SS realization of (3) with static dependence is vaitadle.

The proof of the above given proposition is based on the fait $S realization of (3) can only
introduce maximunm,-order of time shifts in the dependence of the coefficiertshis order
of dynamic dependence can not be annihilatednjaxtra state variables, then it is also not
possible by using.,+1 state variables, hence an equivalent SS realization vaticstependence
does not exist for (3).

It is an important remark that in general it is absolutely go@ranteed that an arbitrary
LPV-IO model has an SS realization with static dependenaaebver, symbolic solution of the

state-transformation problem is a computationally denrapdperation with an exponentially
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increasing memory and computational load. Therefore, rimgeof practical use, elimination of

dynamic dependence via state transformation is limitedralilsscale problems.

V. LPV MODEL ORDER REDUCTION

As we could see in the previous section, in some cases it silgego obtain an equivalent
LPV-SS realization of a given LPV-IO model such that the hasg state matrices have only
static dependence. However, in some of these situatiorspiice we need to pay for such a
realization is the introduction of extra state variable$te® an approximation of such LPV-
SS models with a more economical size of state dimensiongisined in order to decrease the
complexity of control synthesis. So the natural questiat tises is how we can efficiently apply
model reduction of the resulting realizations in order ton@late non-significant dynamics if

needed.
A. Overview of LPV model reduction

Model reduction of LPV systems has been already studiederiitbrature since the middle
1990s and both exact and approximative reduction techsiduave been developed. Exact
reduction techniques, such as [21], aim at a Kalman type obm@osition of the model to
a minimal and an eliminatable part preserving 10 equivaerttowever, in case of identified
LPV models, possibly with some over-parametrization, sdelcomposition is ill-posed due
to the effect of noise on the estimates. On the other hande sainthe discussed realization
approaches introduce extra-states to achieve staticadepee of the resulting LPV-SS form,
hence such states are not eliminatable without using dynha®pendence. This implies that
often only approximative methods can be used to obtain amagsiral model order in the
considered problem setting. In terms of approximative epgines, LTI reduction techniques,
such as coprime factor [22], optimal Hankel norm and baldricencation [23] methods, are
extended to LPV systems and some of these approaches arememied in the Enhanced
LFT toolbox [24], [25]. Model reduction based on balancedntration is a well grounded
scheme in theory and most often used [26]. However, most comamd practical LPV model
reduction techniques that are based on balanced truncattpire quadratic stabilizability and
detectability of the full order model and they can not easifal with unstable models [23].
Both are important restrictions as quadratic stabilizgb#nd detectability of an LPV model are

not always guaranteed and a major application area of syiskentification is to obtain models
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of general unstable plants operated in closed loop. In tHechSe, the basic model reduction
methods in combination with coprime factorization [27] qestral decomposition techniques
[28], can be used to reduce unstable systems. However éxtesdch methods to LPV systems
is accompanied by a significant increase of the complexityhef reduction technique [22].
Thus, conventional model reduction approaches are oftérapplicable to reduce the state-
dimension of the SS realization of identified LPV models. t\exe investigate an alternative

model reduction method to overcome these restrictions.

B. Hankel matrix

In the sequel, we introduce a model reduction approach faiMILPV-SS representations
with affine dependence gn The proposed approach is an extension of the Ho-Kalmaizatiah
algorithm well known in the LTI case, see e.g. [29], and itiffedent from optimal Hankel norm
and balanced truncation approaches [23], [24]. The methgutoposed as a tool to assist in
obtaining an economical-size LPV-SS realization of ideediLPV-10 models. Unlike other LPV
model reduction techniques, the proposed technique hemejdition to its simplicity, does not
necessitate quadratic stabilizability or detectabilityhe full order model and it can be employed
for both stable and unstable systems without imposing angifination.

Consider the LPV-SS representation (1a-b), with affine ddpece of the system matrices:

Alp) = Ao + Z Aii(p), B(p) = By + Z Bii(p), (40a)
i=1 =1
C(p) = Co+ ) Cati(p), D(p) =0, (40b)

wherey;(.) : P — R are analytic functions of® and {A;, B;, C;}*, are constant matrices with
appropriate dimensions. Furthermore, for well-posseslités assumed thdty;};*, are linearly
independent of® and normalized w.r.t. an appropriate norm or inner prodDefine
Mlz[ BO an ], Mj:[AoMj_l Aanj_l ] (41)
Inspired by [30], [31], introduce the so callédstep extended reachability matrix of (1a-b) as
Re=[ My ... Myl (42)
where R, € R™*(mXi=4n0)')  The matrixR, is called the extended reachability matrix, as

similar to the LTI case, full rank ofR,, is a necessary condition for reachability of (1a-b),

however, opposite to the LTI case, it is not a sufficient coadi[7], [32]. Let

January 21, 2011 DRAFT



20

Pe=[1 ¢i(p(k)) ... ¢, (p(k) 1", (432)

Kii=P®...Q0 Py ® I, (43b)

My = diag(Ky—ijo, - - - Ki—1ji-1), (43c)

where® stands for the Kronecker product angdis the identity matrix with dimension. Now
it is true that ifx(k — i) = 0 with £ > i > 0, then

z(k) = RiMy; Uy, (44)

whereUy; = [uT(k—1) ... u"(k—1i)|". From (44) it is obvious that for reachability, full-
rank of R, My, is required for allk and every possible trajectory pf Hence full-rank ofR,,,
corresponds to reachability only in a structural sense. ,Niefine

M=lci ..ol 1 Ni=[WA)T ... Wd,,) 1, (459)
Liji =1, ®@ (P, ®- @ Py)T, (45b)
Nki = diag(Lk_i‘o, RN Lk_1|,~_1). (45C)

Based on similar considerations as before, introducé:tbep extended observability matrix as
Ov=[NT ... NJ 1" (46)

where®, € R(" Zia(4n0) ) xns Now it is true fork > i > 0 that

Yii = NkiOiz(k — i), (47)
whereYy; = [ yT(k—i) ... y'(k—1)]. Therefore,
Hij = O/R; € R (v Ziea () )x (ma 23, (4n)') (48)

can be considered as the extended Hankel matrix of (1a-b) # 1, then

CoBy  CoBi  CodoBy  CoAyB
CiBy OBy CiAgBy  CiAB;
CoAoBy CoAgB; CoAB,  CoA2B,
C1AyBy ChAB; C1AZB,  C,A2B,
CoA1By CoA1B; CoA1AgBy CoAiAgBy

For sufficiently largei and j, rank(#;;) = n, which can be considered as the McMillan degree

of (1a-b), in case of a minimal representation= n,.
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C. LPV Ho-Kalman algorithm

To construct a minimal state-space realization of (1a) @) (@ith static dependence we can
proceed as follows. A Hankel matrix of the representationsiafficiently large dimensions is

constructed such thatnk(7#;;) = n holds true. Then for any (full rank) matrix decomposition:

Hiy = HyHa, (49)

with constant matricest?, € ROwXiaa(+m))xn and F, € R Xi0+m)) satisfying
rank(H,) = rank(H,) = n, there exist matrices function(p), B(p), C(p) defined as in (40a-
b), such that the-step observability matrix); and thej-step reachability matriiéj generated

from their constant matrices satisfy

H =0,  Hy,=R,. (50)

The matricesA(p), B(p), C(p) can be computed as follows: When givéh = O;, the matrices
[Cy ... C, ]" can be extracted by taking the first(1+n,) rows and when givett, = R;,
the matrices| B, ... an ] can be extracted by taking the first,(1 + n,) columns. The
matrices{ Ay, ..., A,,} can be isolated by using a shifted Hankel maﬁxj, which is simply
obtained from the original Hankel matrik;;, by shifting the matrix one block column, i.e.

ny(1 4 ny) columns, to the left. It can be directly verified thﬁj can be written as

Hi=0l Ay ... A, J(Ien, @ Rj_1), (51a)

oy

=Hi[ Ay ... A, |(Iipn, ® Hy), (51b)

L2
whereH, is generated froni/, by leaving out the last, (1+ny)’ columns. Under the assumption
that j is large enough that rafK,) = n, there exist pseudo inverse matricé$ and /7, such

that HiH =1, A =1 (52)

These matrices can be computed A$ = (H H,) 'H, and H} = H, (H]H,)"'. As a

consequence, it holds that

~

HI%Z‘AII—HW ®I:I2T) =4 ... An, J. (53)

A reliable procedure to compute the full rank decompositibrt;; is to use thesingular value
decompositior(SVD):
My = UkSiV (54)
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where U, and V}, are unitary matrices antl, is a diagonal matrix with positive entrieg >
.- > oy, referred to as singular values. The choide = UREE, H, = EEVJ directly leads
to H = £ 207, Hf = V. By truncating the resultingl, to generatefl, and /1], the
matrices{ A, ..., A,,} can be calculated according to (53).

As in the LTI case, it is demonstrated here that the LPV Hoakéad algorithm can be applied
to reduce the order or to find a minimal realization with a @mumber of Markov parameters,
provided that certain rank conditions on a finite Hankel madre satisfied. Furthermore for
asymptotically stable systems, it can be shown that the-sfzace model obtained using the
LPV Ho-Kalman algorithm with SVD is balanced, i.e. the catlitability and the observability
gramians of the state-space representation are equal%eff more details. Theoretical error
bounds to characterize the approximation error of the redlunodels has not been developed
yet, remaining to be the objectives of future research os #pproach. However, numerical
approximation of the error between the reduced and themadigilant is computable in a-test
sense with the Enhanced LFT toolbox [24], [25]. An additigm@perty of the algorithm is that
with increasingi and j, the size ofH,;; exponentially increases while increasing results in a
polynomial growth ofH;;. This means that numerical problems and memory limits cacktyu
play a limiting factor if the algorithm is applied for largeae models. Additional numerical
problems can also arise in case of unstable systems whenglo@bwers of{Ao, ce Anw} can
result in a badly conditioned Hankel matrix. The curse of elgionality, which is a drawback
of the algorithm, and the associated numerical problemsbeareduced by applying a kernel
based approach like in [31], numerical regularizationcki&VD algorithms, or Krylov subspace
methods [33].

Example 4:Consider an LPV-IO model in the form of (31) with = 3, n, = 2, P = [—27, 0]

and

ar(q~'p) = (0.24 + 0.1 'p), as(q~'p) = (0.6 — 0.1/—¢"'p),  (55a)
as(q'p) = 0.3sin(g"'p), bi(g~'p) = (1.25 — ¢ 'p), (55b)
by(qp) = —(0.2+ /—q~1p), (55¢)

By calculating the augmented SS form, & drder non-minimal LPV-SS representation results
as shown in (32). To compute a lower order representatioheptoduced LPV-SS model, the

LPV Ho-Kalman algorithm is applied.
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According to (55a-b), the state matrices of the obtained-S%v/model are written in terms
of (40a-d) withn, = 3, ¢1(p) = p, ¥2(p) = v/—p andys(p) = sin(p). Next the 3-step extended
reachability R; as well as the 3-step extended observability matrices are constructed in
terms of (42) and (46), respectively. These matrices arcmuft to perform model reduction
by the introduced algorithm. Continuing, the extended Hankatrix 55, see (48), is computed
and an SVD is performed to decompose the Hankel matrix fitpH, and to obtain their
pseudo inverses as in (49), (54). The singular values of thgodal matrix>;, see (48), are
[2.6253, 1.3759, 1.0136, 0.382, 0, ..., 0]. It is clear that the fourth singular value is less
significant than the rest, which suggests that it is posshbpproximate the model with a third
order one. Next, the shifted Hankel mat&g,g is determined and the matrii, is generated.
Finally the matrice By, ..., B, Ao, ..., A
A; € R¥3 B, e R™! C; € RV i = 1,...n,. 3D plots of theFrozen Frequency Response

Cos. .., C’nw} can be calculated using (53). Here

UZTR UZVR)

(FFR) of the LPV-IO model (frequency response of the modet@mstani(k), i.e.p(k) = p for

all k € Z.) and the difference between it and the reduced model foradlies ofP are shown in
Fig. 1. The approximate LPV-SS model preserves the stafier#ence on the scheduling signal
with the same scheduling functions, furthermore it givelRmeed realization with acceptable
representation error (see Fig. 1). In addition, the redud®dSS model is compared with the
LPV-IO model in terms of th&FR of simulated output over a set of 500 random trajectories of
u andp with arbitrary fast variation op. The minimum and the maximum values BFR were
84.21% and 94.75%, respectively. This justifies that the obtained reduced ehed the LPV

Ho-Kalman algorithm gives an acceptable approximatiorhef driginal system.

VI. SIMULATION EXAMPLE (CHARGE CONTROL)

In this section, the methods discussed in Sections IV and eé/tested and compared on
an application-based simulation study. The example censtt here is the air charge control

problem of aspark ignition(SI) engine.
A. The engine manifold

The intake manifold of a Sl engine for air charge control hdsghly nonlinear nature. It is
not an isolated system but part of the overall car model, Zig-he opening of the throttle valve

in the intake manifoldy;,, is used to control the amount of the normalized air changg.. The

speed of the vehicle, influences the internal dynamics of the intake manifold dveléngine
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Fig. 1. 3D plot of the frozen frequency response functionshef LPV-IO model for all values i? (top) and the difference

between these responses and the frozen frequency respomsioris of the reduced model (bottom) (Example 4).

- Mpae ) T, )
intake\ % engine——»{ vehicl
P1 manifold

Fig. 2. Overall system including the engine and the vehiala iclosed-loop setting.

itself. The vehicle model, shown in Fig. 2, has an integrdidweor, thus a negative feedback

is applied betweem, and oy, through a proportional gaif, = % in order to stabilize the

engine speed.

A parameterized nonlinear physical model of the overalicpss was provided and experi-
mentally validated by the IAV GmbH company, Gifhorn, Geriyiasee [34] for more details.
Constructing an LPV model from the physical model has twovthacks:

1) It necessitates approximation of some nonlinear charatits in an ad-hoc manner which

reduces the accuracy of the derived LPV model.

2) It provides a continuous-time LPV model, and digital iemplentation of a controller

designed in continuous-time leads to performance detgitor due to hardware constraints

on the sampling time, herg = 0.01s.
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Therefore LPV identification based on measured data can dxttosidentify a valid description

of the system for which the efficient machinery of LPV contsghthesis can be applied.

B. LPV-10 ldentification/Optimization

The intake manifold dynamics is affected by the pressurewhich is generated inside the
manifold and the engine spegd. Therefore, both signals are considered as schedulinglsign
in the intended LPV model. Using data collected in the cldseg setting of Fig. 2, different
LPV-IO models are identified for the intake manifold of the éBigine with:

1) static-dependence on the scheduling sigriaitg; (p) as in (3).

2) dynamic-dependence on the scheduling sigrmaig;(q < p) as in (26).

3) one-step backward dependence on the scheduling sigialgy'p) as in (31).

4) n,-step backward dependence on the scheduling sighgls(¢ "p) as in (33).

All the coefficient functions are chosen as second-ordeyrmwhials inp; and p, with zero

coefficients for the cross terms, e.g. in case of the mdeJ(p), which has static dependence,

the coefficient functions are given for=1...,n,, j=1,...,n, as
ai(p) = aio + anpr + aiopi + aizps + aiups, (56a)
bj (p) = 0jo + bjlpl + bjgp% + bj3p2 —+ bj4p§. (56b)

It is known that the intake manifold can be well representga@ lsecond-order model, therefore
n, andny, are both chosen to be 2. In the system identification stagecahstant coefficients
{aa}?’y o and {b;}72, ., see (56a-b), are estimated by a least-squares estimigekribwn
that applying a direct estimate in closed loop via a leasaggs approach results in a biased
model. However, there exist many methods to overcome suassae by applying instrumental
variables, nonlinear optimization based techniques liestiould be noted that in the studied case
here we do not take into account any noise source as our aottiésttwhether the different model
structures specified above are able to approximate theemtanifold dynamics. Therefore, the
bias issue does not play a role in this setting. Hence ideatiifin is used as an optimization
tool instead of estimation in a stochastic sense.

All LPV-10 model structures in (3), (26), (31) and (33) can fedormulated as

y(k) =o' (k)0, (57)

where, for instance, with static dependence we have
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o(k) = p(k)@ P(k), (k) =[ —y(k—1) —y(k—2) u(k—1) u(k-2)]'

P(k)=[1 pi(k) pi(k) pa(k) p3(k) 1"
and the constant coefficients are collected in the vettorR?°.

In order to gather informative signals for optimizidg a white noiselV,., see Fig. 2, is
designed with uniform distributiod (760, 6250) and level change at random instances, which are
specified by an additional random variablé), 1) for deciding when to change the level. Another
signalv, see Fig. 2, with the same properties, but witf10, 90), is designed to excite the input-
output dynamics of the system (fromy,,, to m,,.), see [35] for the probability characteristics of
this class of signals. As a consequence, the pressure sgimaernally generated. The required

operating ranges for the different variables to design tipeiti signal are as follows
Y = Mpac € [10,90]%, U = aum € [0,100]%,
p1 € [99,950] hPa, P € [760,6250] rpm.

The input-output data is collected and divided into estiomatind validation sets.

In case of a measurement noise, (57) corresponds to thetemeakead prediction of the
output in a prediction-error identification setting undee asssumption of an ARX noise model.
Here we consider the noiseless case in which (57) gives ttaeedmiation of the model directly.

Hence, for a set of input, scheduling signals and output data

M= L k), p2(k),y(k)], k=1,...,N};

the least-squares parameter estimate for (57)

(k)0)*, (58

Mz

Oy := arg mﬂglo Vn(0,2ZY), where Vy(0,ZV) _%
can be obtained by linear regression. k_l
The above given procedure has been adopted to calculatel@R¥edels for the intake
manifold with different structures. Table | shows a comgami between the resulting models
in terms of the BFR of the simulated outputs, where all of ¢hesdels are simulated using
the same set of validation data. It is clear that the obtamedels with the structures (3),
(26), (31) and (33) give almost the saBER =~ 95% which shows that all these structures are

approximating well the intake manifold plant.
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TABLE |
BFR OF THE ESTIMATED MODELS FOR THE INTAKE MANIFOLD PLANT

Mio(p) | Molgop) | Mol 'p) | Molg "p)
BFR % | 96.47150| 95.72519 | 96.03974 | 93.95923

C. LPV-SS Realization

Next, the identified LPV-IO models are transformed to LPV{8&ns by using the approaches
introduced in Section IV. Regarding the mod®l;o(¢'p), a non-minimal 3-order LPV-SS
model is produced via the augmented SS form. Therefore, thEa&iman algorithm is employed
to obtain a reduced®order LPV-SS model. It is worth to mention that the obtained-minimal
LPV-SS model is quadratically not stabilizable, which me#mat model order reduction based
on balanced truncation with fixed similarity transformatidke [23] can not be used to reduce
the order of the model. In addition, without quadratic dtahbility and detectability properties,
simple and practical LPV controllers based on quadrafic performance, e.g. [36], cannot
be synthesized. Interestingly, the resulting reduced S3Vvmodel based on the Ho-Kalman
algorithm is balanced and quadratically stabilizable aatectable; this means that the lack of
quadratic stabilizability of the non-minimal model is due the 'additional’ state, which has
been removed by the Ho-Kalman algorithm. However the redlwd®/-SS model approximates
the original model only witlBBFR = 75.58%.

Next, LPV controllers are synthesized based on all the toamed LPV-SS models, and the
resulting controllers are implemented on the original m@dr model of the intake manifold. This
step is performed in order to assess the approximationtyulithe different model structures

and the different input-output to state-space transfaonatmethods in terms of control design.

D. Control Design

The linear matrix inequalities optimization-based LPV oler synthesis technique proposed
in [36] is used to design controllers for the transformed LtV models with a mixed-sensitivity
loop shaping technique. This method is based on a polytgpecesentation of the LPV-SS
models, therefore an affine representation of the systemaeatas in (40a-b) is necessary. The
performance requirements for the closed-loop are speased

. arise time oft, = 0.15s, a settling time of, = 0.3s.
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TABLE I

BEST INDUCED/2 GAIN FOR EACH DESIGN

Konio ) | BEoio(gon) KfmIo(q”p) Kfmlo(q*"ap)
v | 20.3987 1.1205 1.1091 2.8549

« overshootM, < 5%, steady state errat,, < 1%.
« constraint on actuator usage.
These objectives are translated into shaping filters

_ 00224002 0000643z — 0.0002439
T 209998 0 T 2+ 0.9956 ’

to shape respectively the sensitivity and the controlisieitg of the closed-loop. With these fil-

Ws

ters a generalized plant formulation of the models can bstoatted. For consistent comparison,
the same shaping filters are used for all synthesis probl€hen the mixed-sensitivity criterion

is minimized such that the induced gain, of both the sensitivity and the control-sensitivisy,
less than some prescribed valye> 0. According to these considerations, controllers of order
five have been computed and the best achieved performanee 4ntbr each design is given

in Table Il. The controlletyy, ) is based on an LPV-SS model converted from the 10 model
Mio(p) using the LTI rules. As a common property of the LMI-basedtlgris approaches,
the order of any of the designed controllers is equal to tlikeroof the generalized plant that
includes in addition to the system, the weighting filters arfadst order pre-filter, which is used

here since theé matrix is parameter dependent, see [36] for more details.

E. Evaluation

Finally, all controllers are applied to the nonlinear plegsimodel of the intake manifold.
Fig. 3a-e demonstrate the tracking of the normalized airgeha = m,.. at different levels
and periods of a specified typical trajectory with the difer controllersKo, ), Koo (gop)s
Koo (g-1p) AN Kon,, (—nap), FESPECtively. In general, with all designed controllesssept/on, ),
mua. fOllows the given reference trajectory in a satisfactorynmer, with a rise time, maximum
overshoot and steady state error within the limits whichehbeen specified above. Even the
controller Koy, 4-1,),» Which has been designed based on the worst approximatel nnadeely

the reduced augmented model, shows reasonable trackihgastteptable transient response,
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see Fig. 3c. The best performance is achievedby,, ,.p,). This is not surprising as the model
Mio(q © p) have a high quality fit 0P5% and the used SS realization is exact, while in the
Mio(q 'p) case the order reduction decreased the quality5té. The second best result is
provided by Koy, (,—rapy due to the fact that the initial fit ofdt;o(¢ "*p) was worse than
Mio(q ¢ p). On the other hand, the high-quality modl, (p) based controllef oy, ), which
has been synthesized based on a SS model constructed bylthddsl violates the constraints
on t,,ts, M,, e~, See Fig. 3a. In order to achieve the performance of the atbetrollers by
Koo, the shaping filters have been re-tuned and the best achpmréaimance is shown in
Fig. 3e, which still violates the requirements 81}, in addition to the undesired oscillations in
the control signal.

This example demonstrates the following: The proposedtires of LPV-IO models in (26),
(31) and (33) can provide a good approximation of the origsystem and can be used for
the purpose of control synthesis based on the associatbdatean approaches. Furthermore,
using the LTI rules to obtain an SS realization for an LPV-I@dal may lead to an inadequate
approximation of the true dynamics, possibly resulting isignificant performance loss of the
closed-loop control.

Based on the previous discussion the following practicalica$ can be given: In order to
ensure low complexity of the control design phase, LTI cosiom rules to get the SS realization
should be tested first by adopting the criterion in Sectidniflit turns out that the LTI rules
provide a poor SS realization, an LPV-IO model with any of geictures in Subsection IV-A
or IV-C can be identified and via the proposed SS realizatgpr@aches an adequate LPV-SS
model of the plant can be obtained with static dependencéhdse realizations are exact, initial
model fit indicates the expected performance of the desigoatioller on the true system. If
these structures do not result in an acceptable model farrttlerlying process, then the structure
in Subsection 1V-B can be adopted with the model reductigor@gch in Section V to provide

minimal SS realization on the possible expanse of modelityual

VIlI. CONCLUSIONS

An equivalent representation of an LPV-IO model in LPV-S&fpin general necessitates
dynamic dependence of the state-space realization on thedsling signal. Neglecting this

fact can cause a significant performance loss in the contrsigd phase. On the other hand,
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Fig. 3. Tracking ofmuna. with the designed controllers.

the presence of dynamic dependence leads to difficultieenms of controller design and
implementation. To deal with this problem, practical anstsynatic methods have been proposed.
First a criterion has been introduced to decide when the bmVersion rules can be used without
serious consequences and how much can be lost in terms ofl vadithty. Then a realization
algorithm was provided that is capable of yielding a miniistate-space realization of any LPV-
IO model with the introduction of dynamic dependence. Ineor avoid dynamic dependence
of the resulting SS realization, four pragmatic approadtaa® been proposed to convert LPV-10

models to LPV-SS realizations without introducing dynarmependence. It was observed that
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in some situations the restriction of static dependencaerr¢alization results in a non-minimal

SS model. To obtain an economical SS representation of sugmented SS models even if

they are unstable or not quadratically stabilizable an@aable, an LPV Ho-Kalman type of

model reduction approach has been developed. Finally cgtplity and usefulness of all ideas

have been demonstrated by solving the charge control probfean SI engine.
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