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Realization Theory for LPV State-Space
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Abstract—We present a Kalman-style realization theory for
linear parameter-varying state-space representations whose ma-
trices depend on the scheduling variables in an affine way
(abbreviated as LPV-SSA). We show that minimality of LPV-
SSAs is equivalent to observability and span-reachability rank
conditions, and that minimal LPV-SSAs of the same input-
output map are isomorphic. We present necessary and sufficient
conditions for existence of an LPV-SSA in terms of the rank of
a Hankel-matrix and a Ho-Kalman-like realization algorithm.

Index Terms—Linear-Parameter Varying Systems, Realization
Theory, Minimality, Hankel-matrix

I. INTRODUCTION

Linear parameter-varying (LPV) systems are linear systems
where the coefficients are functions of a time-varying signal,
the so-called scheduling variable. Control design and system
identification of LPV systems is a popular topic [1]–[11].

Despite these advances, realization theory of LPV systems
has not been completely solved. The goal of realization the-
ory is to characterize LPV state-space representations which
describe the same set of input-output trajectories, and to con-
struct such an LPV state-space representation from a suitable
representation of the input-output behavior.

Contribution: In this paper we present a realization theory
for LPV state-space representations with affine static depen-
dence of coefficients, abbreviated as LPV-SSA. We consider
both the discrete-time (DT) and the continuous-time (CT)
cases. We present a necessary and sufficient condition for
an input-output map to admit a realization by an LPV-SSA.
This condition involves the rank of a suitably defined Hankel-
matrix. We show that a minimal LPV-SSA realization of an
input-output map can be calculated from the Hankel-matrix
using a Ho-Kalman-like realization algorithm. We show that
minimality is equivalent to observability and span-reachability
and that all minimal LPV-SSA realizations of the same input-
output map are isomorphic. The latter isomorphism is linear
and does not depend on the scheduling variable.

Motivation for realization theory: Realization theory can
serve as a tool for analyzing system identification and model
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R. Tóth is with the Control Systems Group, Department of Electrical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands. Email: r.toth@tue.nl.

This work was partially supported by ESTIREZ project of Region Nord-Pas
de Calais, France

reduction algorithms and can be the cradle of new ones. This
was the case for linear time-invariant (LTI) systems, where
it was used for analysis of subspace identification algorithms
[12], parametric identification algorithms [13] and for model
reduction [14]. Realization theory is also useful as a theoretical
tool for control theory. For LTI systems, it was essential in the
proof of many basic results: internal model principle, Bounded
Real Lemma, etc. We expect the same for LPV systems. In
fact, the results of this paper were already used [15]–[18].
Besides, it is important to characterize equivalent LPV model
representations, irrespectively of whether they are obtained via
system identification or from the first principles.

Motivation for LPVS-SSAs: LPV-SSAs are popular mod-
els for control synthesis, model reduction and system identifi-
cation. This popularity is due to the existence of efficient con-
trol synthesis algorithms for LPV-SSAs [1], [2]. In contrast,
control synthesis methods for LPV models with a nonlinear
and dynamic dependence on the scheduling variables tend to
be computationally hard.

Related work: In [4], [19], realization theory was devel-
oped for LPV state-space representations where the system
matrices depend on the parameters in a meromorphic and
dynamic way, i.e., the matrices are meromorphic functions of
the scheduling variables and their derivatives (in continuous-
time), or of the current and future values of the scheduling
variables (discrete-time). The system theoretic transformations
(passing from an input-output to a state-space representation,
transforming a state-space representation to a minimal one,
etc.) of [4], [19] introduce LPV models with a dynamic and
nonlinear dependence on the parameters. In [20], using [21],
realizability of LPV input-output model by LPV state-space
representations with a nonlinear (hence not necessarily affine)
and static dependence is studied. In contrast, we deal with
the realizability of input-output maps and not of input-output
equations, and we are interested in LPV state-space repre-
sentations with affine and static dependence on the parameter.
That is, [4], [19], [20] do not solve the realization problem for
LPV-SSAs. Hankel-matrices and Markov-coefficients of LPV-
SSAs appeared in [5], [7], [10], but in contrast to [5], [7], [10],
in the current paper, these concepts are defined directly for
input-output maps, and they are used to characterize existence
of an LPV-SSA realization of an input-output map. Extended
observability and reachability matrices were also presented in
[4], [22], but their system-theoretic interpretation and their
relationship with minimality were not explored. The problem
studied in [11], namely, the existence of a stable LPV state-
space representation which reproduces a given stable transfer
function for each constant scheduling signal, is related to but
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different from the problem studied in this paper. This paper
is an extended version of [23], [24], which present the results
without detailed proofs and which deal only with the DT case.
A version of the present paper is available in the report [25].
We use realization theory of linear switched systems [26]–
[29] to prove the results of the present paper. Linear switched
systems are a very special case of LPV-SSAs, but the latter
is more general, hence [26]–[29] cannot be directly applied to
LPV-SSA, for that several non-trivial steps are needed.

Outline: In Section II we present the definition of LPV-
SSAs, input-output maps, equivalence and minimality. In
Section III, the main results of the paper are presented. All
proofs are collected in Appendix A.

II. PRELIMINARIES

A. Notation and terminology

Let N be the set of all natural numbers including zero. For
a finite set X , denote by S(X) the set of finite sequences
generated by elements from X , i.e., each s ∈ S(X) is of
the form s = ζ1ζ2 · · · ζk with ζ1, ζ2, . . . , ζk ∈ X , k ∈ N;
|s| denotes the length of the sequence s. For s, r ∈ S(X),
sr ∈ S(X) denotes the concatenation of s and r. The symbol
ε is used for the empty sequence and |ε| = 0 with sε = εs = s.
Denote by XN the set of all functions of the form f : N→ X .
Let Iτ2τ1 = {s ∈ Z | τ1 ≤ s ≤ τ2} be an index set.

Let T = R+
0 = [0,+∞) be the time axis in the continuous-

time (CT) case and T = N in the discrete-time (DT) case.
Note that in both cases we exclude negative time instances.
Denote by ξ the differentiation operator d

dt (in CT) and the
forward time-shift operator q (in DT), i.e., if z : T → Rn,
then (ξz)(t) = d

dtz(t), if T = R+
0 , and (ξz)(t) = z(t + 1), if

T = N. Denote by ξk the k-fold application of ξ, i.e., for any
z : T→ Rn, ξ0z = z, and ξk+1z = ξ(ξkz) for all k ∈ N.

A function f : R+
0 → Rn is called piecewise-continuous,

if f has finitely many points of discontinuity on any compact
subinterval of R+

0 and, at any point of discontinuity, the left-
hand and right-hand side limits of f exist and are finite.
We denote by Cp(R+

0 ,R
n) the set of all piecewise-continuous

functions of the above form. We denote by Cd(R+
0 ,R

n) the set
of all differentiable functions of the form f : R+

0 → Rn.

B. System theoretic definitions

An LPV state-space (SS) representation with affine linear
dependence on the scheduling variable (abbreviated as LPV-
SSA) is a continuous-time (CT) or discrete-time (DT) state-
space representation of the form

Σ

{
(ξx)(t) = A(p(t))x(t) +B(p(t))u(t),
y(t) = C(p(t))x(t) +D(p(t))u(t),

(1)

where x(t) ∈ X = Rnx is the state, y(t) ∈ Y = Rny is the
output, u(t) ∈ U = Rnu is the input, and p(t) ∈ P ⊆ Rnp is
the value of the scheduling variable at time t, and A,B,C,D
are matrix valued functions on P defined as

A(p) = A0 +

np∑
i=1

Aipi, B(p) = B0 +

np∑
i=1

Bipi,

C(p) = C0 +

np∑
i=1

Cipi, D(p) = D0 +

np∑
i=1

Dipi,

(2)

for every p = [ p1 p2 · · · pnp ]> ∈ P, with constant
matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx and
Di ∈ Rny×nu for all i ∈ Inp

0 . Recall that (ξx)(t) = d
dtx(t)

in CT, and (ξx)(t) = x(t + 1) in DT. It is assumed that P
contains an affine basis of Rnp (see [30] for the definition of
an affine basis). In the sequel, we use the tuple

Σ = (P, {Ai, Bi, Ci, Di}
np

i=0)

to denote an LPV-SSA of the form (1) and use dim (Σ) = nx

to denote its state dimension. Define X = Cd(R+
0 ,X), Y =

Cp(R+
0 ,Y), U = Cp(R+

0 ,U), P = Cp(R+
0 ,P) in CT and X =

XN, Y = YN, U = UN, P = PN in DT. By a solution of Σ we
mean a tuple of trajectories (x, y, u, p) ∈ (X ,Y,U ,P) such
that (1) holds for all t ∈ T. For an initial state xo ∈ X define
the input-to-state map XΣ,xo

and the input-output map YΣ,xo

of Σ induced by xo as
XΣ,xo : U × P → X , YΣ,xo : U × P → Y, (3)

such that for any (x, y, u, p) ∈ X×Y×U×P , x = XΣ,xo
(u, p)

and y = YΣ,xo
(u, p) holds if and only if (x, y, u, p) is a

solution of (1) and x(0) = xo.
We say that Σ is span-reachable from an initial state xo ∈

X, if Span{XΣ,xo
(u, p)(t) | (u, p) ∈ U×P, t ∈ T}=X. We say

that Σ is observable, if for any two initial states x̄o, x̂o ∈ Rnx ,
YΣ,x̂o

= YΣ,x̄o
implies x̂o = x̄o. That is, observability means

that for any two distinct states of the system, the resulting
outputs will be different for some input and scheduling signals.
Let Σ of the form (1) and Σ′ = (P, {A′i, B

′

i , C
′

i , D
′

i}
np

i=0) with
dim(Σ) = dim(Σ′) = nx. A nonsingular matrix T ∈ Rnx×nx

is said to be an isomorphism from Σ to Σ′, if

∀i ∈ Inp

0 : A′iT = TAi, B
′
i = TBi, C

′
iT = Ci, D

′
i = Di.

We formalize the input-output behavior of LPV-SSAs as maps
of the form

F : U × P → Y. (4)
While any input-output map of an LPV-SSA induced by some
initial state is of the above form, the converse is not true. The
LPV-SSA Σ is a realization of an input-output map F of the
form (4) from the initial state xo ∈ X, if F = YΣ,xo . When the
specific choice of the initial state is not of interest, we will say
Σ is realization of F, if Σ is a realization of F from some initial
state xo. An LPV-SSA Σ is a minimal realization of F from
the initial state xo, if Σ is a realization of F from the initial
state xo, and for every LPV-SSA Σ′ which is a realization of
F, dim (Σ) ≤ dim (Σ′). Again, when the specific choice of
the initial state is not of interest, we say that Σ is a minimal
realization of F, if Σ is a minimal realization of F from some
initial state xo.

In the sequel, we assume that Di = 0 for all i ∈ Inp

0 .
Rewriting the results of the paper for the general case is an
easy exercise.

III. MAIN RESULTS

A. Minimality

Theorem 1 (Minimal realizations). Assume that F is an input-
output map of the form (4). Assume that the LPV-SSA Σ
is a realization of F from the initial state xo. Then Σ is
a minimal realization of F from xo, if and only if Σ is



3

observable and span-reachable from xo. Any two minimal
LPV-SSA realizations of F are isomorphic.

The proof is presented in the Appendix. Note that Theorem
1 does not exclude the possibility that two LPV state-space
representations of the same input-output map are related by a
non-constant isomorphism, if these state-space representations
are not minimal or they are not LPV-SSAs, see [31].

Similarly to the LTI case, but unlike for general LPV state-
space representations [19], rank conditions for observability
and reachability can be obtained to verify minimality for LPV-
SSA. To this end, we recall the following definition from [5].

Definition 1 (Ext. reachability & observability matrices). For
an initial state xo, the n-step extended reachability matrices
Rn of Σ from xo, n ∈ N, are defined recursively as follows

R0 =
[
xo B0 . . . Bnp

]
, (5a)

Rn+1 =
[
R0 A0Rn . . . AnpRn

]
. (5b)

The extended n-step observability matrices On of Σ, n ∈ N,
are defined recursively as follows

O0 =
[
C>0 . . . C>np

]>
,

On+1 =
[
O>0 A>0 O>n . . . A>np

O>n
]>
.

(6)

Theorem 2 (Rank conditions). The LPV-SSA Σ is span-
reachable from xo, if and only if rank {Rnx−1} = nx, and
Σ is observable, if and only if rank {Onx−1} = nx.

The proof is given in the Appendix. This theorem leads
to the following Kalman-decomposition for LPV-SSAs. Con-
sider an LPV-SSA Σ of the form (1) and an initial state
x0 ∈ Rnx . Choose a basis {bi}nx

i=1 ⊂ Rnx such that
Span{b1, . . . , br}=Im{Rnx−1} and Span{brm+1, . . . , br}=
(Im{Rnx−1} ∩ ker{Onx−1}) for some r, rm ≥ 0. Define
T =

[
b1 b2 . . . bnx

]−1
, and let Âi = TAiT

−1, B̂i =

TBi, Ĉi = CiT
−1, i ∈ Inp

0 , x̂o = Txo. Then

Âi=

Am
i 0 A′′i

A′i Â′ A′′′i
0 0 A′′′′i

, B̂i=
Bm

i

B′i
0

, Ĉi=
(Cm

i )>

0
(C ′i)

>

>,
x̂o=

[
(xm

o )> x̄>o 0
]>
,

(7)

where Am
i ∈ Rrm×rm , Bm

i ∈ Rrm×nu , Cm
i ∈ Rny×rm ,

xmo ∈ Rrm , A′′′i ∈ R(n−r)×(n−r), B′i ∈ R(r−rm)×nu , C ′i ∈
Rny×(n−r). Clearly, Σ̂ = (P, {Âi, B̂i, Ĉi, 0}

np

i=0) is isomorphic
to Σ and can be viewed as the Kalman-decomposition of Σ.

Corollary 1. Σm = (P, {Am
i , B

m
i , C

m
i , 0}

np

i=0) is a minimal
realization of F = YΣ,x0 from the initial state xm

o .

Example 1. Consider an LPV-SSA Σ as in (1), with P = R,

A0 =

 0 1 −1
−1 0 1
−1 1 0

 , B0 =

1
0
0

 , C0 =

 1
−1
−1

> , D0 = 0

A1 =

 1 −1 −1
−1 2 0
−1 0 2

 , B1 =

0
1
1

 , C1 =

 2
−2
−2

> , D1 = 0.

Take xo =
[
1 1 1

]>
. It is easy to see that rank{R2} = 2

and rank{O2} = 1. If we set, b1 =
[
1 0 0

]>
, b2 =

[
2 1 1

]>
, b3 =

[
0 0 1

]>
, then {b1, b2} span Im{R2}

and b2 spans Im{R2} ∩ ker{O2}. If we apply the basis
transformation T =

[
b1 b2 b3

]−1
, then we obtain the

matrices Âi = TAiT
−1, B̂i = TBi, Ĉi = CiT

−1, i = 0, 1
and the vector x̂o = Txo are of the form (7), with Am

0 = 2,
Am

1 = 3, Bm
0 = 1, Bm

1 = −2, Co
0 = 1, Cm

1 = 2, xm
o = −1.

By Corollary 1, Σm = (P, {Am
i , B

m
i , C

m
i }

np

i=0) is a minimal
realization of F = FΣ,xo

from xm
o .

Corollary 1 can be proven using Theorem 1 – 2 and
arguments similar to the ones used for LTI systems, therefore
it is omitted, see [25, page 14] for the proof. The matrix
T and hence Σm can easily be computed from Σ, see [25]
for the code. Note that for computing Σm, or checking the
rank conditions of Theorem 2, it is sufficient to compute a
basis of Im{Rnx−1} and ker{Onx−1}, which can be done in
polynomial time w.r.t. np and nx [18, Algorithm 1 – Algorithm
2].

B. Existence of a realization

First, we define the impulse response representation (IIR)
for an input-output map. To this end, we will use the following
notation.

Notation 1. For any sequence s ∈ S(Inp

0 ), for any signal
p ∈ Cp(R+

0 ,P) (in CT) or p ∈ (Rnp)N (in DT), and for any
time instance τ ∈ T, and real number t ∈ [τ,+∞) (in CT)
or integer t ∈ {τ −1, τ, . . . , } (in DT), define the sub-Markov
dependence (ws�p)(t, τ) recursively as follows: for the empty
sequence, s = ε,

(wε � p)(t, τ) =

{
1 for CT or (DT and t = τ − 1)
0 for DT and t 6= τ − 1

.

If s = s′i for some i ∈ Inp

0 and s′ ∈ S(Inp

0 ), then

(ws � p)(t, τ) =

{ ∫ t
τ
pi(δ) · (ws′ � p)(δ, τ) dδ for CT
pi(t)(ws′ � p)(t− 1, τ) for DT

,

where for all δ ∈ T, pi(δ) denotes the ith entry of the vector
p(δ) ∈ Rnp , if i > 0 and pi(δ) = 1 if i = 0.

Definition 2 (Impulse response representation). Let F be of
the form (4). Then F is said to have an impulse response
representation (IIR) if there exists a function

θF : S(Inp

0 ) 7→ R(np+1)ny×(nu(np+1)+1), (8)

such that,
(1) there exist constants K,R > 0 such that

∀s ∈ S(Inp

0 ) : ||θF(s)||F ≤ KR|s| (9)

where ‖.‖F denotes the Frobenius norm;
(2) for every p ∈ P , there exist functions gF � p : T→ Rny

and hF � p : {(τ, t) ∈ T×T | τ ≤ t} → Rny×nu , such that for
each (u, p) ∈ U × P , t ∈ T,

F(u, p)(t)=(gF�p)(t)+

{∫ t
0
(hF � p)(δ, t)u(δ) dδ CT∑t−1
δ=0(hF � p)(δ, t)u(δ) DT

(10)
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Moreover, for any i, j ∈ Inp

0 , s ∈ S(Inp

0 ), let ηi,F(s) ∈ Rny×1

and θi,j,F(s) ∈ Rny×nu be such that

θF(s) =


η0,F(s) θ0,0,F(s) · · · θ0,np,F(s)
η1,F(s) θ1,0,F(s) · · · θ1,np,F(s)

...
... · · ·

...
ηnp,F(s) θnp,0,F(s) · · · θnp,np,F(s)

 .
Then gF � p and hF � p can be expressed via θF as

(gF � p)(t)=
∑
i∈I

np
0 ,

s∈S(I
np
0 )

pi(t)ηi,F(s)(ws � p)(t̄, 0), (11a)

(hF � p)(δ, t)=
∑

i,j∈I
np
0 ,

s∈S(I
np
0 )

θi,j,F(s)pi(t)pj(δ)(ws � p)(t̄, δ̂), (11b)

where t̄ = t and δ̂ = δ in CT, and t̄ = t − 1 and δ̂ = δ + 1
in DT. The values of the function θF will be called the sub-
Markov parameters of F.
Example 2. In order to illustrate the notation above, consider
the case when np = 1. If s = 0101, |s| = n = 4, then, for
DT, (ws � p)(5, 2) = p(3)p(5), and for CT, (ws � p)(5, 2) =∫ 5

2
p(s1)(

∫ s1
2

(
∫ s2

2
(s3 − 2)p(s3)ds3)ds2)ds1. In this case, for

DT, (hF � p)(2, 5) is of the form

θ0,0,F(00)+p(4)θ0,0,F(01)+· · ·+p(2)p(5)p(3)p(4)θ1,1,F(11).

For CT, (hF � p)(2, 5) is of the form

θ0,0,F(ε) + · · ·+ p(5)p(2)θ1,1,F(ε) + · · ·+

+ p(2)p(5)θ1,1,F(101)

∫ 5

2

p(s1)

∫ s1

2

∫ s2

2

p(s3)ds3ds2ds1 + · · ·
.

That is, in DT, (hF � p)(2, 5) is a polynomial of
p(2), p(3), p(4), p(5), while in CT, it is an infinite sum of
iterated integrals.
Example 3. Next, we illustrate how the sub-Markov parame-
ters and the maps (hF�p), (gF�p) relate to F. Let nu = ny = 1
and let F be an input-output map of the form (4) in CT defined
as follows:

F(u, p)(t) = (1 + 2p(t))e2t+3
∫ t
0
p(s)ds+∫ t

0

(1 + 2p(t))e2(t−τ)+2
∫ t
τ
p(s)ds(1− 2p(τ))u(τ)dτ

Then F admits an IIR with

(hF � p)(τ, t) = (1 + 2p(t))e2(t−τ)+3
∫ t
τ
p(s)ds(1− 2p(τ)),

(gF � p)(t) = (1 + 2p(t))e2t+2
∫ t
0
p(s)ds,

and for every s ∈ S(Inp

0 ) which contains k 0’s and l 1’s,

θF(s) = 2k3l
[
−1 1 −2
−2 2 −4

]
. The LPV-SSA Σ from Example

1 is a realization of F from the state xo =
[
1 1 1

]>
.

Note that in CT, the right-hand side of (11) is an infinite
sum, which raises the question of its convergence.
Lemma 1. Under the assumptions of Definition 2 in CT, the
infinite sums in the right-hand sides of (11) are absolutely
convergent.

The proof of Lemma 1 is presented in Appendix. We can
show that there is a one-to-one correspondence between input-
output maps admitting an IIR and sub-Markov parameters.

Lemma 2 (Uniqueness of the IIR). If F and F̂ are two input-
output maps which admit an IIR with sub-Markov parameters
θF and θF̂ respectively, then

F = F̂ ⇐⇒ θF = θF̂.

The proof of Lemma 2 is presented in the Appendix. It
turns out that any input-output map which is realizable by an
LPV-SSA admits an IIR, and the sub-Markov parameters can
be expressed via the matrices of this LPV-SSA realization.
Lemma 3 (Existence of the IIR). The LPV-SSA Σ of the
form (1), with Di = 0, i ∈ Inp

0 , is a realization of an input-
output map F, if and only if F has an IIR and, for all i, j ∈ Inp

0 ,
s ∈ S(Inp

0 ),
ηi,F(s) = CiAsxo, θi,j,F(s) = CiAsBj , (12)

where for s = ε, As is the identity matrix, and for s =
s1s2 · · · sn, s1, . . . , sn∈ Inp

0 , n>0, As = AsnAsn−1
· · ·As1 .

The proof of Lemma 3 is given in the Appendix. Finally,
we can formulate the necessary and sufficient conditions for
the existence of an LPV-SSA realization for a given input-
output map in terms of rank conditions for the Hankel-matrix.
To this end, define the lexicographic ordering ≺ on S(Inp

0 )
as follows. For any s, r ∈ S(Inp

0 ), r ≺ s holds if either (i)
|r| < |s| (smaller length), or (ii) 0 < |r| = |s| = n, and
r = r1 · · · rn, s = s1 · · · sn, ri, sj ∈ Inp

0 , and for some
l ∈ {1, · · · , n}, ri = si for i = 1, . . . , l − 1, and rl < sl with
the usual ordering of integers. Note that for all s, r ∈ S(Inp

0 ),
s ≺ sr if r 6= ε. The elements of S(Inp

0 ) can be arranged into
a sequence of ordered elements

ε = s(0) ≺ s(1) ≺ s(2) . . . ≺ s(i) ≺ . . . , (13)
i.e., any s ∈ S(Inp

0 ) arises as the i+ 1th element s(i) of (13)
for some i ∈ N. Then, the so called Hankel-matrix of F both
in CT and DT can be defined as follows.
Definition 3 (Hankel matrix). Consider an input-output map
F which has an IIR in terms of Definition 2, with the sub-
Markov parameter θF. For integers k, l ≥ 0, the Hankel-matrix
HF(k, l) of F is defined as

HF(k, l)=


θF(s(0)s(0)) θF(s(1)s(0)) · · · θF(s(l)s(0))
θF(s(0)s(1)) θF(s(1)s(1)) · · · θF(s(l)s(1))

...
... · · ·

...
θF(s(0)s(k)) θF(s(1)s(k)) · · · θF(s(l)s(k))

 ,
where s(0), s(1), . . . , s(max{k,l}) are as in (13).

That is, the ny(np + 1) × (nu(np + 1) + 1) block of
HF(k, l) in the block row i and block column j equals the
Markov-parameter θF(s), where s=s(j)s(i) ∈ S(Inp

0 ) is the
concatenation of the sequences s(j) and s(i).

Now we formulate conditions for the existence of an LPV-
SSA realization and the correctness of Ho-Kalman algorithm
(see Algorithm 1). To this end, we use the following notation:
consider the sequence (13), and for all µ ∈ N, let

M(µ) = max{i ∈ N | |s(i)| ≤ µ}, (14)
i.e., {s(0), s(1), . . . , s(M(µ))} is precisely the set of all elements
of S(Inp

0 ) of length at most µ.
Theorem 3 (Existence). An input-output map F has a LPV-
SSA realization, if and only if F has an IIR and
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sup
k,l≥0

rank{HF(k, l)} = nF <∞. (15)

Any minimal LPV-SSA realization of F has a state dimension
which equals nF.

Let Σ and xo be the LPV-SSA and the initial state respec-
tively returned by Algorithm 1. If m = n + 1, n ≥ 0, and

rank HF(M(n),M(m−1))= sup
k,l≥0

rank{HF(k, l)} <∞, (16)

then Σ is a minimal realization of F from xo. The condition
(16) holds if there exists an LPV-SSA realization of F of
dimension at most n+ 1.

The proof is given in the Appendix.

Algorithm 1 Ho-Kalman realization algorithm
Require: size parameters n,m ∈ N with m = n + 1, n ≥ 0, a

Hankel matrix HF(M(n),M(m)) for an input-output map
F, where M(n),M(m) are as in (14).

1: Compute the economical singular value decomposition
(SVD) ofHF(M(n),M(m))

HF(M(n),M(m)) = USV >,
where S ∈ Rnx×nx is a diagonal matrix with strictly positive
elements on the diagonal, and nx=rankHF(M(n),M(m)).

2: Consider the decomposition
S

1
2V > = [ R(s(0)) . . . R(sM(m)) ],

where each block R(s(i)) is nx × (nu(np + 1) + 1). Define

R̄ =
[
R(s(0)) . . . R(s(M(m−1)))

]
,

R̃i = [ R(s(0)i) . . . R(s(M(m−1))i) ], i ∈ Inp

0 .

Not that for all i ∈ Inp

0 , κ ∈ {0, . . . ,M(m−1)} there exists
j ∈ {1, . . . ,M(m)} such that s(κ)i = s(j).

3: Let xo ∈ Rnx , Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx ,
i ∈ Inp

0 be such that
Ai = R̃i(R̄>R̄)−1R̄>, i ∈ Inp

0 ,

[xo B0 · · · Bnp ]=R(s(0)),[
C>0 C>1 · · · C>np

]>
: first ny(np + 1) rows of US

1
2 .

4: return : Σ = (P, {Ai, Bi, Ci, 0}
np

i=0) and xo.

Example 4. Consider the input-output map F from Example
3. For every v ∈ S(Inp

0 ), θF(v) = 2α3βθF(ε), where α and β
are the number of occurrences of 0 and 1 in v. From this it
follows that all the columns of HF(n,m) are scalar multiples
of the first column of HF(n,m). Algorithm 1 applied to to

HF(1, 2) =

[
−1 1 −2 −2 2 −4 −3 3 −6
−2 2 −4 −4 4 −8 −6 6 −12

]
yields A0 = 2, A1 = 3, C0 = −2.0245, C1 = −4.0491,
xo = 0.4939, B0 = −0.4939, B1 = 0.9879. It is easy to see
that Σ returned by Algorithm 1 is a realization of F from the
initial state xo. In fact, the LPV-SSA returned by Algorithm 1
is isomorphic to the minimal LPV-SSA Σm from Example 4.
The code implementing Algorithm 1 is available in [25].

Note that not all input-output maps of the form (4) have an
IIR and nor an LPV-SSA realization. Even if an input-output
map has a IIR, the rank condition of Theorem 3 may fail. In
the latter case, the input-output map may have an LPV state-
space realization, but with a more general form of coefficient
dependence, e.g., rational, dynamic, etc.

IV. CONCLUSIONS

We have presented a complete realization theory for LPV-
SSAs, which mirrors the results for LTI, bilinear [32] and
switched linear systems [26]–[28]. In fact, the latter was used
to prove the results of this paper. Future research will be di-
rected towards extending the obtained results to the stochastic
case, and applying them to systems identification and model
reduction of LPV-SSA representations and to control synthesis
for LPV-SSAs.

APPENDIX

A. Proof of Lemma 1, Lemma 2 and Lemma 3

In order to present the proofs of these results for the CT
case, we need the following slight generalization of generating
series from [32], [33]: we define a generating series as a
function c : S(Inp

0 ) → Rnr×nl for some integers nl, nr > 0,
such that there exist K,R > 0 which satisfy ∀v ∈ S(Inp

0 ) :
||c(v)||F ≤ KR|v|. Here, ||.||F denotes the Frobenius norm for
matrices. Note that c is a generating series according to the
above definition, if and only if each entry of c is a generating
series in the sense of [32]. From [32], [33] it then follows
that the infinite sum

∑
v∈S(I

np
0 ) c(v)(wv �p)(t, 0) is absolutely

convergent in the usual topology of matrices. We can then
define the function Fc : Cp(R+

0 ,R
np) → Cp(R+

0 ,R
nr×nl) as

Fc(u)(t) =
∑
v∈S(I

np
0 ) c(v)(wv � p)(t, 0).

We extend the notion of generating series to the DT case.
A function c : S(Inp

0 )→ Rnr×nl is called a generating series,
and we define the function Fc : (Rnp)N → Y = Y N such that
Fc(p)(t) =

∑
v∈S(I

np
0 ) c(v)(wv � p)(t− 1, 0).

Note that ηi,F, θi,j,F, i, j ∈ Inp

0 , from Definition 2 can be
viewed as generating series and hence the functions Fθi,j,F
Fηi,F are well defined on P .

Proof of Lemma 1: Notice that
∑
s∈S(I

np
0 ) ηi,F(s)(ws �

p)(t, 0) = Fηi,F(p)(t) and
∑
s∈S(I

np
0 ) θi,j,F(s)(ws �p)(t, τ) =

Fθi,j,F(qτ (p))(t− τ), ∀δ ∈ T : qτ (p)(δ) = p(τ + δ) and hence
by [32], [33] these infinite sums are absolutely convergent.

For the proof of Lemma 2, we need the following extension
of the results of [34], [35].

Lemma 4. Assume that P ⊆ Rnp contains an affine basis of
Rnp . Then for any two generating series c1, c2,

{∀p ∈ P : Fc1(p) = Fc2(p)} =⇒ c1 = c2.

Proof: Assume that ∀p ∈ P : Fc1(p) = Fc2(p). Note that
ci(ε) = Fci(p)(0), i = 1, 2 and hence c1(ε) = c2(ε). It is left
to show that c1(v) = c2(v) for all v ∈ S(Inp

0 ), |v| > 0. To
this end, for any integer k > 0 define the function Gi,k

Gi,k(p1, . . . ,pk) =
∑

q1···qk∈I
np
0

ci(q1 · · · qk)p1,q1 · · ·pk,qk ,

i = 1, 2, where pl,0 = 1 and pl =
[
pl,1 . . . pl,np

]> ∈
Rnp , l = 1, . . . , k. We show that G1,k and G2,k are
equal on Pk. For DT, this follows from Fci(p)(k) =
Gi,k(p(0), . . . , p(k − 1)) for all p ∈ P , k > 0. For CT,
consider a piecewise-constant p ∈ P , such that there exists
0 < t1, · · · , tk ∈ R, and p1, . . . ,pk ∈ P. such that p(s) =
pi ∈ P, s ∈ [

∑i−1
j=1 ti,

∑i
j=1 ti), i = 1, . . . , k. From [34,
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Lemma 2.1] it follows that for fixed {pi}ki=1, Fci(p)(
∑k
j=1 tj)

is an analytic function of t1, . . . , tk and

Gi,k(p1, . . . ,pk)=
∂kFci(p)(

∑k
j=1 tj)

∂t1 . . . ∂tk
|t1=···=tk=0 (17)

for i = 1, 2. If ∀p ∈ P : Fc1(p) = Fc2(p), then the left-hand
sides of (17) are the same for i = 1, 2, and hence by (17),
G1,k and G2,k are equal on Pk for all k > 0.

To conclude, we show that if G1,k and G2,k are equal on
Pk for all k > 0, then c1 = c2. Notice that ci(q1 · · · qk) =
Gi,k(eq1 · · · eqk) for all q1, . . . , qk ∈ Inp

0 , where e0 = 0
and ei is the ith standard basis vector of Rnp , i.e., all
entries of ei are zero, except the ith entry, which equals
1. Consider an affine basis B = {b0, . . . , bnp} ⊆ P of
Rnp . For all i ∈ Inp

0 , there exist λi,j ∈ R, j ∈ Inp

0 such
that

∑np

j=0 λi,j = 1 and ei =
∑np

j=0 λi,jb
j . In particular,

eik =
∑np

j=0 λi,jb
j
k for all k ∈ Inp

0 , where for k > 0,
eik, bjk denote the kth entry of respectively ei and bj , and
ej0 = bj0 = 1. Hence, ci(q1 · · · qk) = Gi,k(eq1 , . . . , eqk) =∑np

l1=0 · · ·
∑np

lk=0 λq1,l1 · · ·λqk,lkGi,k(bl1 , . . . , blk) for i =

1, 2 and all q1, . . . , qk ∈ Inp

0 . Since for all l1, . . . , lk ∈ Inp

0 ,
G1,k(bl1 , . . . , blk) = G2,k(bl1 , . . . , blk), as bl1 , . . . , blk ∈ P, it
then follows that c1(q1 · · · qk) = c2(q1 · · · qk).

Proof of Lemma 2: The direction θF = θF̂ =⇒ F̂ = F

is trivial. Therefore, we concentrate on proving that F̂ = F
implies θF = θF̂. To this end , notice that for all p ∈ P ,

(gF � p)(t)=
∑
i∈I

np
0

pi(t)Fηi,F(p)(t),

(hF ◦ p)(τ, t)=
∑

q,r∈I
np
0

pr(τ)pq(t)Fθq,r,F(qτ+(p))(t−τ+),
(18)

t, τ ∈ T, τ ≤ t, where τ+ = τ + 1 for DT and τ+ = τ for
CT, and (qτ+p)(t) = p(t+ τ+), ∀t ∈ T.

If F = F̂, then gF � p = F(0, p) = F̂(0, p) = gF̂ � p for all
p ∈ P Using this and (10) it then follows that F = F̂ implies
that for all u ∈ U , p ∈ P , and t ∈ T,

∫ t
0
(hF �p)(δ, t)u(δ)dδ =∫ t

0
(hF̂ � p)(δ, t)u(δ)dδ for CT, and

∑t−1
δ=0(hF � p)(δ, t)u(δ) =∑t−1

δ=0(hF̂ � p)(δ, t)u(δ) for DT.
For DT, one can choose u such that u(δ) = ej , j =

1, . . . , nu, where ej is the jth standard basis vector of Rnu (i.e.,
all entries of ej equal zero, except the jth entry which equals
1) for some δ ∈ [0, t−1] and u(s) = 0 for all s 6= δ ∈ [0, t−1].
By choosing δ = 0, 1, . . . , t−1, j = 1, 2, . . . , nu successively,
from

∑t−1
s=0(hF � p)(s, t)u(s) =

∑t−1
s=0(hF � p)(s, t)u(s) it

follows that (hF � p)(δ, t) = (hF̂ � p)(δ, t) for all δ ∈ [0, t].
For CT, from [36, Theorem 9.3,Chapter 11] it follows that∫ t

0
(hF � p)(δ, t)u(δ)dδ =

∫ t
0
(hF̂ � p)(δ, t)u(δ)dδ for all u ∈ U

implies that (hF � p)(δ, t) = (hF � p)(δ, t) for almost all δ ∈
[0, t] and all t ∈ R+. By [33, Lemma 2.2] Fθi,j,F , Fθi,j,F̂ are
continuous functions. Hence, if p is continuous at 0 from the
right, then by (18), (hF�p)(δ, t), (hF�p)(δ, t) are continuous at
δ = 0 from the right, and therefore (hF�p)(δ, t)=(hF�p)(δ, t)
for almost all δ ∈ [0, t] implies (hF � p)(0, t) = (hF � p)(0, t).

That is, if F = F̂, then, for all p ∈ P , such that in CT p is
continuous at 0 from the right, and for all t ∈ T,

(hF � p)(0, t)=(hF̂ � p)(0, t), (gF � p)(t)=(gF̂ � p)(t) (19)

Fix p ∈ P , t ∈ T and define

Gp,t(x) =

np∑
i=0

xi(Fηi,F(p)(t)− Fηi,F̂(p)(t))

Hp,t(x, x̄) =

np∑
q,r=0

xrx̂q(Fθq,r,F(p)(t)− Fθq,r,F̂(p)(t)),

for x =
[
x1 . . . xnp

]> ∈ Rnp , x̄ =
[
x̄1 . . . x̄np

]> ∈
Rnp , and x0 = x̄0 = 1. We will show that (19) implies that

∀p ∈ P,∀t ∈ T,∀b, b̂ ∈ P : Gp,t(b) = 0, Hp,t(b, b̂) = 0. (20)

Assume that (20) holds for all b, b̂ ∈ P and for any p ∈ P . Let
v0, . . . , vnp

be elements of P which form an affine basis of
Rnp . Then for any x ∈ Rnp , x̄ ∈ Rnp there exist λj , µj ∈ R,
j ∈ Inp

0 , such that
∑np

j=0 λj = 1,
∑np

j=0 µj = 1 and
x =

∑np

j=0 λjvj , x̄ =
∑np

j=0 µjvj . Since v0, . . . , vnp
belong

to P, then by (20), Gp,t(vj1) = 0, Hp,t(vj1 , vj2) = 0, for
all j1, j2 ∈ Inp

0 . Hence, by a direct calculation it follows
that Gp,t(x) = Gp,t(

∑np

j=0 λjvj) =
∑np

j=0 λjGp,t(vj) =

0 and Hp,t(x, x̄) = Hp,t(
∑np

j=0 λjvj ,
∑np

j=0 µjvj) =∑np

j1,j2=0 λj1µj2Hp,t(vj1 , vj2) = 0. Since x, x̄ are arbitrary,
it then follows that Hp,t = 0, Gp,t = 0, and the latter implies
that Fηi,F(p)(t) = Fηi,F̂(p)(t), Fθi,k,F(p)(t) = Fθi,k,F̂(p)(t)

for all i, j ∈ Inp

0 . Since p and t are arbitrary, by Lemma 4,
ηi,F = ηi,F̂, θi,k,F = θi,k,F̂ for all i, k ∈ Inp

0 , i.e., θF = θF̂
We finish the proof by proving that (19) implies (20). In the

DT case, consider any p ∈ P and t ∈ T. Fix any b ∈ P and
define p̂ ∈ P by p̂(t) = b and p(s) = p̂(s) for s = 0, . . . , t−1.
Notice that Fc(p)(t) = Fc(p̂)(t) for any convergent series c.
From (18) it then follows that (gF � p̂)(t) = (gF̂ � p̂)(t) which
implies Gp,t(b) = 0 for all b ∈ P. For any b, b̂ ∈ P define
p̂ ∈ P as p̂(0) = b̂, p̂(t + 1) = b and p̂(s) = p(s − 1)
for all s = 1, . . . , t. Notice that for any convergent series c,
Fc(p)(t) = Fc(q1(p̂))(t), where q1(p̂)(δ) = p̂(δ + 1), δ ∈ T.
Hence, from (18) and (hF � p̂)(0, t + 1) = (hF̂ � p̂)(0, t + 1)

it follows that ∀b, b̂ ∈ P : Hp,t(b, b̂) = 0.
For the CT case, for any p ∈ P and any b, b̂ ∈ P, define

p̂n ∈ P such that for all n ∈ N, n > 1, p̂n(s) = b̂,
if s ∈ [0, 1

n ), p̂n(s) = p(s), if s ∈ [ 1
n , t −

1
n ) and

p̂n(s) = b if s ∈ [t − 1
n ,+∞). From (18) it follows that

Hp̂n,t(b) = (hF � p̂n)(0, t) − (hF̂ � p̂n)(0, t) and Gp̂n,t(b) =
(gF � p̂n)(t) − (gF̂ � p̂n)(t). Notice that p̂n is continuous at
zero from the right. Hence, (gF � p̂n)(t) = (gF̂ � p̂n)(t) and
(hF � p̂n)(0, t) = (hF̂ � p̂n)(0, t). Hence, Hp̂n,t(b, b̂) = 0
and Gp̂n,t(b) = 0. Note that the restriction of p̂n|[0,t] con-
verges to p|[0,t] in L1([0, t],Rnp). From [33, Lemma 2.2],
limn→∞ Fc(p̂n)(t) = Fc(p)(t) for any convergent series
c. Therefore, Hp,t(b, b̂) = limn→∞Hp̂n,t(b, b̂) = 0 and
Gp,t(b) = limn→∞Gp̂n,t(b) = 0.

Proof of Lemma 3: For any (u, p) ∈ U ×P and for any
t ∈ T, 0 ≤ τ ≤ t, define

(hYΣ,xo
� p)(t, τ) =

{
C(p(t))Φ(t, τ)B(p(τ)) CT
C(p(t))Φ(t− 1, τ + 1)B(p(τ)) DT ,

(gYΣ,xo
� p)(t) = C(p(t))Φ(t, 0)xo.

where Φ(t, τ) is the fundamental matrix of A(p(t)), i.e.,
ξΦ(t, τ) = A(p(t))Φ(t, τ), Φ(τ, τ) = Inx . In DT, for τ >t,
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we set Φ(t, τ) = 0. It is then easy to see that for all u ∈ U ,
p ∈ P , YΣ,xo(u, p) (hYΣ,xo

�p), (gYΣ,xo
�p) satisfy (10). We

show that for all p ∈ P , (hYΣ,xo
� p), (gYΣ,xo

� p) satisfy the
other conditions of an IIR representation. To this end, consider
the bilinear system

(ξη)(δ)=A0η(δ) +

np∑
i=1

(Aiη(δ))wi(δ), η(0) = η0,

y(δ)=C(p(t))η(δ).

(21)

Let the initial state η0 of (21) be the ith column of B(p(τ)).
Notice that the ith column of (hYΣ,xo

� p)(t, τ) is the output
of (21) a time t− τ for w(δ) = p(δ+ τ), δ ∈ T in CT, and it
is the output of (21) at time t−τ −1 for w(δ) = p(δ+τ +1),
δ ∈ T in DT. Similarly, if we set η0 = xo, then (gYΣ,xo

�p)(t)
is the output at time t of (21) for w = p. Hence, by [32], [35],

(hYΣ,xo
� p)(τ, t) =

∑
s∈S(I

np
0 )

c(s)(ws � p)(τ+, t−)

(gYΣ,xo
� p)(t) =

∑
s∈S(I

np
0 )

c0(s)(ws � p)(0, t−),

where τ+ = τ , t− = t in CT, and τ+ = τ + 1, t− = t− 1 in
DT, and for all s ∈ S(Inp

0 ), c(s)=
∑
r,q∈I

np
0
pr(t)pq(τ)CrAsBq,

and c0(s) =
∑
q∈I

np
0
pq(t)CqAsxo. Let us define θYΣ,xo

as

θYΣ,xo
(s)=

[
C>0 . . . C>np

]>
As
[
xo B0 . . . Bnp

]
, for

all s ∈ S(Inp

0 ). Then it is easy to see that for all p ∈ P ,
θYΣ,xo

(hYΣ,xo
�p), (gYΣ,xo

�p) satisfy (11). Finally, if define
α = max{||Cq||F | q ∈ Inp

0 } ∪ {||xo||||Bq||F | q ∈ Inp

0 } and
K = α2

√
np(np + 1), R = maxq∈I

np
0
||Aq||F , then θYΣ,xo

satisfies (9). That is, YΣ,xo
has a IIR.

Assume that Σ is a realization of F. Then YΣ,xo = F for
some initial state xo of Σ. From Lemma 2, θYΣ,xo

= θF and
hence θF satisfies (12). Conversely, assume that θF satisfies
(12). Then θF = θYΣ,xo

and thus by Lemma 2 FΣ,xo
= F,

i.e., Σ is a realization of F.

B. Proofs of Theorem 1 – Theorem 3

We start by establishing the relationship between the LPV-
SSAs and linear switched state-space representations (abbre-
viated by LSS-SS), which, in combination with the results of
[26]–[28], will be used to prove Theorem 1 – Theorem 3. To
this end, we introduce the following notation.

Notation 2. For i = 1, . . . , np, let ei be the ith standard basis
vector of Rnp , i.e., all entries of ei are zero, except the ith
entry, which equals 1. Denote Psw = {e0, e1, · · · , enp}, where
e0 is the zero vector in Rnp , and let Psw either Cp(R+,Psw)
(CT) or PN

sw (DT).

Note that LSS-SSs can be viewed as a subclass of the
LPV-SSAs for which the space of scheduling variables is
Psw. For all i ∈ Inp

0 , the element ei of Psw is interpreted
as the ith discrete mode of the LSS-SS. The notions of
realization, minimality, observability, span-reachability and
isomorphism for LSS-SSs from [27], [28] are special cases
of the corresponding concepts for LPV-SSAs, if LSS-SSs
are viewed as LPV-SSAs. For each map F of the form (4)
admitting an IIR, the associated switched input-output map

S(F) : U × Psw → Y is defined as follows. Let θF be
the sub-Markov parameter of F, which is unique by Lemma
2. For each p ∈ Psw, define hS(F) � p : T → Rny and
gS(F) � p : {(τ, t) ∈ T× T | τ ≤ t} → Rny as

(gS(F) � p)(t)=
∑
i∈I

np
0 ,

s∈S(I
np
0 )

pi(t)ηi,F(s)(ws � p)(t̄, 0),

(hS(F) � p)(δ, t)=
∑

i,j∈I
np
0 ,

s∈S(I
np
0 )

θi,j,F(s)pi(t)pj(δ)(ws � p)(t̄, δ̂),
(22)

where t̄ = t and δ̂ = δ, in CT, and t̄ = t− 1 and δ̂ = δ+ 1 in
DT. In DT the right-hand sides of (22) are finite sums. For CT,
by applying Lemma 1 to P = Psw it follows that the right-
hand sides of (22) are absolutely convergent series. Hence,
(hS(F � p) and (gS(F � p) are well defined for all p ∈ Psw.
For any (u, p) ∈ U × Psw and t ∈ T, we define

S(F)(u, p)(t)=(gS(F)�p)(t)+
{ ∫ t

0
(hS(F) � p)(δ, t)u(δ)dδ CT∑t−1
δ=0(hS(F) � p)(δ, t)u(δ) DT.

It is the easy to see that S(F) has an IIR and the corresponding
sub-Markov parameter θS(F) equals θF. Moreover, S(F) is
uniquely determined by F.

Let Σ be an LPV-SSAs
(
P, {(Ai, Bi, Ci, 0)}np

q=0

)
Then, the

LSS-SS S(Σ) associated with Σ is the defined as the LSS-SS
S(Σ) =

(
Psw, {(Ai, Bi, Ci, 0)}np

q=0

)
.

Theorem 4. Let Σ be an LPV-SSA and F an input-output map
admitting IIR.

(1) For every initial state x ∈ X of Σ, S(YΣ,x) = YS(Σ),x.
(2) Σ is a realization of F from the initial state xo if and

only if S(Σ) is a realization of S(F) from the initial state xo.
(3) dimS(Σ) = dim Σ.
(4) Two LPV-SSAs Σ1 and Σ2 are isomorphic if and only

if S(Σ1) is isomorphic to S(Σ2).
(5) Σ is span-reachable from xo if and only if S(Σ) is

span-reachable from xo. Σ is observable if and only if S(Σ)
is observable.

Proof: Proof (1) From Lemma 3 it follows that for all
s ∈ S(Inp

0 ), θS(YΣ,x)(s) = θYΣ,x(s) = θYS(Σ),x
(s) = C̃AsB̃,

C̃ =
[
C>0 , . . . , C>np

]>
, B̃ =

[
xo, B0, . . . , Bnp

]
. By

Lemma 2, θS(YΣ,x) = θYS(Σ),x
implies S(YΣ,x) = YS(Σ),x.

Proof of (2) Σ is a realization of F from the initial state xo

if and only if YΣ,xo
= F. Note that θF = θS(F), and θYΣ,xo

=
θS(YΣ,xo ). Hence, by Lemma 2, YΣ,xo

= F is equivalent to
S(YΣ,xo) = S(F). From Part (1) of the current theorem,
S(YΣ,xo) = S(F) is equivalent to YS(Σ),xo

= S(F), and
the latter is equivalent to S(Σ) being a realization of S(F).

Proof of (3) and (4). Trivial.
Proof of (5). First we show that Σ is span-reachable from

xo if and only if S(Σ) is span-reachable from xo.
To this end, consider the input-to-state map XΣ,xo

of
Σ. Span-reachability of Σ is equivalent to ∀ν ∈ Rnx :
(νTXΣ,xo

= 0 ⇐⇒ ν = 0). For every ν ∈ Rnx , consider the
function Fν(u, p) = νTXΣ,xo(u, p). It is clear that the LPV-
SSA Σν , Σν = (P, {Ai, Bi, ν}

np

i=0), is a realization of Fν from
the initial state xo. It is easy to see that Fν = 0 if and only if
θFν = θS(Fν) = 0 and hence S(Fν) = 0 ⇐⇒ Fν = 0. But
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from Part (1) of the current theorem, S(Fν) = νTXS(Σ),xo
.

Hence, ∀ν ∈ Rnx : (νTXΣ,xo = 0 ⇐⇒ ν = 0) is equivalent
to ∀ν ∈ Rnx : (νTXS(Σ),xo

= 0 ⇐⇒ ν = 0). The latter is
equivalent to span-reachability of S(Σ) from xo.

Next, we show that Σ is observable if and only if S(Σ) is
observable. From Part (1) of the theorem, for any x ∈ Rnx ,
S(YΣ,x) = YS(Σ),x. If YΣ,x1

= YΣ,x2
, then YS(Σ),x1

=
S(YΣ,x1

) = S(YΣ,x2
) = YS(Σ),x2

. Conversely, assume
YS(Σ),x1

= YS(Σ),x2
. Then θYS(Σ),x1

= θYS(Σ),x2
. Note

that for i = 1, 2, θYΣ,xi
= θYS(Σ),xi

. Hence, from Lemma
2, YΣ,x1

= YΣ,x2
.

Let H = (Psw, (Ai, Bi, Ci, 0)
np

i=0) be a LSS-SS.
Define the LPV-SSA associated with H as L(H) =
(P, (Ai, Bi, Ci, 0)

np

i=0). It is easy to see that S(L(H)) = H.
Then from Theorem 4 we can deduce the following.

Corollary 2. If H is an LSS-SS, then H is a realization
of S(F) from the initial state xo, if and only if L(H) is a
realization of F from xo. An LPV-SSA Σ is minimal realization
of F from the initial state xo if and only if the LSS-SS S(Σ)
is minimal realization of S(F) from xo.

Proof of Corollary 2: By Theorem 4, H = S(L(H)) is a
realization of S(F) from xo if and only if L(H) is a realization
of F from xo. Assume that Σ is a minimal realization of F
from xo. By Theorem 4, S(Σ) is a realization of S(F) from
xo. Assume that H′ is an LSS-SS and H′ is a realization
of S(F). It then follows that Σ

′
= L(H′) is a realization

of F. Since Σ is a minimal realization of F, dimS(Σ) =
dim Σ ≤ dim Σ

′
= dimH′ . Conversely, assume that S(Σ) is

minimal realization of S(F) from xo. Assume that Σ
′

is an
LPV-SSA realization of F . From Theorem 4 it follows that
S(Σ

′
) is a realization of S(F), and by minimality of S(Σ)

dim Σ = dimS(Σ) ≤ dimS(Σ
′
) = dim Σ

′
.

Proof of Theorem 1: Follows from Corollary 2, Theorem
4, [27, Theorem 3] (DT), [28, Theorem 3] (CT).

Proof of Theorem 2: From [27, Theorem 4] for DT and
[28, Proposition 1] for CT, it follows that rank{Rnx−1} = nx

if equivalent to S(Σ) being span-reachable from x0. From
[27, Theorem 4] for DT and [28, Theorem 2] for CT,
rank{Onx−1} = nx is equivalent to observability of S(Σ).
The statement of the theorem follows now from Part (5) of
Theorem 4.

Proof of Theorem 3: Notice that θF(s) = θS(F)(s), s ∈
S(Inp

0 ), and when applied to LSS-SSs, the sub-Markov param-
eters from Definition 2 coincide with the Markov-parameters
of [27], [28]. More precisely, the values of θS(F) (both in
CT and DT) coincide with the Markov-parameters defined
in [27, Definition 11] of a suitable discrete-time input-output
map function F̂ : UN × PN

sw → YN. In fact, F̂ is defined as
F̂(u, p)(t) = ηFit(i0 · · · it−1) +

∑t−1
j=0 θ

F
it,ij

(ij+1 · · · it−1)u(j),
for all p ∈ PN

sw, u ∈ UN, t ∈ N, where p(k) = eik ,
ik ∈ Inp

0 , k = 0, . . . , t. By Lemma 3 and [27, Lemma 1],
an LPV-SS (Psw, {Ai, Bi, Ci, 0}

np

i=0) is a realization of S(F)
(in (CT) or (DT)) if and only if (Psw, {Âi, B̂i, Ĉi, 0}

np

i=0),
where (Â0, B̂0, Ĉ0) = (A0, B0, C0), (Âi, B̂i, Ĉi) = (Ai −
A0, Bi − B0, Ci − C0), i ∈ Inp

0 , i > 0, is a realization of F̂.
Notice that HF(M(n),M(m)) = HS(F)(M(n),M(m)) and
that the former definition of the Hankel-matrix coincides with

the one for F̂ (see [27, Definition 13]). Note that Algorithm
1 applied to HF(M(n),M(m)) = HS(F)(M(n),M(m)),
m = n+ 1, coincides with [27, Algorithm 1]. The statement
of the theorem follows from Theorem 4, Corollary 2, and [27,
Theorem 4,6].
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[19] R. Tóth, J. C. Willems, P. S. C. Heuberger, and P. M. J. Van den Hof,
“The behavioral approach to linear parameter-varying systems,” IEEE
Transactions on Automatic Control, vol. 56, pp. 2499–2514, 2011.
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