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Abstract—In this note, a discrete-time robust model predictive
control (MPC) design approach is proposed to control systems
described by linear parameter-varying models in input-output
form subject to constraints. To ensure the stability of the closed-
loop system, a quadratic terminal cost along with an ellipsoidal
terminal constraint are included in the control optimization
problem. The MPC design problem is formulated as a linear
matrix inequality problem. Th e proposed MPC scheme is applied
on a continuously stirred tank reactor as an illustrative example.

Index Terms—Linear parameter-varying systems, predictive
control, linear matrix inequalities, stability, robustness.

I. INTRODUCTION

IDENTIFYING linear parameter-varying (LPV) models in

input-output (IO) form [1] from data has become well

supported with several powerful identification approaches and

successful applications, e.g., [2]. However, most of the LPV

controller synthesis techniques have been developed for state-

space (SS) models, e.g. [3]. Obtaining reliable SS realization

of IO models is usually hindered by the so-called dynamic-

dependency problem connected to LPV realization theory [1],

which introduces a significant complexity increase of the

realized models that grows beyond the applicable range of

computational tools. On the other hand, direct identification of

LPV-SS models is still in an immature state either effected by

serious approximations of the data equations or computability

problems for real-world applications. Therefore, it is desired

to synthesize controllers using LPV-IO models directly.

Model predictive control (MPC) has been developed to solve

control problems that have constraints and time delay. In

the SS setting, the MPC problem has received considerable

research interest also addressing the stability issue, e.g., [4],

resulting in several different stabilizing MPC schemes. LPV

systems have been also investigated in the MPC community

and various techniques have been developed. The control

law in most of theses techniques, e.g., [5], is calculated by

repeatedly solving a convex optimization problem based on

linear matrix inequities (LMIs) to minimize a worst-case upper

bound of the cost function involving stability constraints. A

common property of most introduced MPC techniques based

on LPV-SS models is that they rely on the availability of

the system states during control implementation. Besides the
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above mentioned realization problem and immaturity of LPV-

SS identification, the use of observers to estimate the states

may also deteriorate closed-loop performance significantly in

terms of input disturbance rejection when input constraints

become activated [6]. To handle this, a subspace-based pre-

dictive control for LPV systems has been proposed in [7]

without stability guarantee. However, the complexity of this

scheme increases exponentially with the order and number of

scheduling variables.

To cope with the above issues, we develop in this work a

robust MPC approach, which guarantees closed-loop asymp-

totic stability, to control LPV-IO models subject to constraints.

For the sake of simplicity, we focus on the SISO case. To

ensure stability, we utilize the stability framework of [4]. The

proposed MPC design approach is formulated as an optimiza-

tion problem subject to LMI constraints. Employing full-block

multipliers [8] turns the MPC problem into an optimization

problem subject to a finite number of LMI constraints. The

significance of the proposed control approach lies in the fact

that it enables MPC control design directly based on LPV-IO

representations with constraints. In addition, it offers tracking

a given reference signal with integral action and asymptotic

stability guarantee, for which only past values of the system

output and input are required during implementation. The

applicability of the approach is demonstrated on a simulation

study of a continuously stirred tank reactor (CSTR).

Notations: For a sequence z(k) : Z → R, let z[k+i,k+j] ∈
R

|i−j|+1 gather the values of z ordered from the sampling

instant k + i to k + j, i, j ∈ Z. For a matrix Z ∈ R
n×m,

let Zi,j ∈ R
(j−i+1)×m gather the rows of Z ordered from

row i to j. An upper linear fractional transformation (LFT) is

denoted by ∆ ⋆

[
L11L12

L21L22

]

= L22 + L21∆(I − L11∆)−1L12.

II. PRELIMINARIES

An input-output representation of a SISO LPV system in

discrete time can be given by the difference equation

G :
(
1+

na∑

i=1

ai(pk)q
−i
)
y(k)=

nb∑

j=0

bj(pk)q
−ju(k), (1)

or A(q−1, pk)y(k) = B(q−1, pk)u(k), where q−1 is the

backward time-shift operator, na, nb ≥ 0, u(k) : Z → R

and y(k) : Z → R are the control input and the measured

output, respectively. Furthermore, the coefficients ai and bj
are analytic and bounded functions of the scheduling variable

pk = p(k) ∈ P, which is online measurable. For simplicity, we

consider b0(pk) ≡ 0. Assume that P is given by a convex set

P := Co({pv1 , . . . , pvnv
}), where each pvi ∈ R

np corresponds

to a vertex of a polytope and Co denotes the convex hull.

Moreover, let the rate of variation of the scheduling variable
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GK

y(k)u(k)v(k)e(k)

Fig. 1: Closed-loop interconnection: reference tracking.

dp(k) = p(k)−p(k−1) be bounded such that dp(k) ∈ Pd :=
{dp ∈ R

np | dpmin ≤ dp ≤ dpmax}. Consider the reference

tracking problem depicted in Fig. 1 and assume that there

exists a robust, linear time-invariant (LTI) controller K which

can stabilize the depicted closed-loop system for all p ∈ P. K
with the integral action can be written in an IO form as

KI :
(
1+

nKa∑

i=1

aKiq
−i
)(
1−q−1

)
u(k)=

nKb∑

j=0

bKjq
−je(k) (2)

or AKI(q
−1)u(k) = BK(q

−1)e(k), where e(k) = r(k)−y(k);
let AKI(q

−1) = 1+
∑nKa+1

i=1 aKIiq
−i and bK0 = 0. The closed-

loop behavior of the system shown in Fig. 1 can be described

implicitly in a so-called LPV kernel representation as [1]
[
Ā(pk) −B̄(pk) 0
B̄K ĀKI −B̄K

]

ζ(k) = D(pk)ζ(k) = 0, (3)

where Ā=[1 a1 . . . andy
], B̄=[0 b1 . . . bndu

] are matrix valued

functions, ĀKI = [1 aKI1 . . . aKIndu
], B̄K = [0 bK1 . . . bKndy

]
with ndy = max(na, nKb) and ndu = max(nb, nKa + 1)
and ζ(k) = [y⊤[k,k−ndy ]

u⊤
[k,k−ndu]

r⊤[k,k−ndy ]
]⊤ ∈ R

nζ with

nζ =2ndy+ndu+3. Based on the choice of a latent variable

x(k) = Π1ζ(k) with dimension nx = 2ndy + ndu for the

closed-loop system (3), where Π1 = diag(Π1y,Π1u,Π1y),
Π1y =

[
0 Indy

]
, Π1u =

[
0 Indu

]
, it holds that x(k +

1) = Π2ζ(k), where, Π2 = diag(Π2y,Π2u,Π2y), Π2y =
[
Indy

0
]
, Π2u =

[
Indu

0
]

with Πiy ∈ R
ndy×(ndy+1) and

Πiu ∈ R
ndu×(ndu+1), i = 1, 2. Then, a sufficient condition for

asymptotic stability of the closed-loop system can be derived

as shown in [9], consequently, the controller can be designed.

III. LPV-MPC SCHEME

Next, the proposed MPC technique is developed. Temporar-

ily, assume that the future trajectory of p over the prediction

horizon is available. First, the prediction equation used for

the MPC formulation is established to express prediction of

the future output sequence based on the past measurements

generated by model (1). The LPV system represented by (1)

has an infinite impulse response (IIR) representation in the

form of y(k) =
∑∞

i=0 hi(p[k,k−i])u(k−i), where hi(·) are the

Markov coefficients of the LPV system. For simplicity of the

notation, we use the short form hi(k) = hi(p[k,k−i]). Based

on (1), the Markov coefficients can be computed recursively:

hi(k)=







bi(pk)−
min(i,na)∑

j=1

aj(pk)hi−j(k − j), i ≤ nb,

−
min(i,na)∑

j=1

aj(pk)hi−j(k − j), else.

In case of no additional disturbances, for given p[k,k+N ]

and u[k,k+N−1], the future output of G can be computed as

y(k + j) = θ⊤(k + j)φ(k) +
∑j

i=1 hi(k + j)u(k + j −
i), j = 1, 2, . . . , N , where N is the prediction horizon,

φ(k) ∈ R
na+nb is the regressor vector given as φ(k) =

[y(k − 1) . . . y(k − na) u(k − 1) . . . u(k − nb)]
⊤ and

θ(k + j) ∈ R
na+nb is computed by

θ(k+ j)=−
min(j,na)∑

i=1

ai(p(k+ j))θ(k+ j− i)+
−→
Ij θ̄(k+ j), (4)

j = 1, 2, . . . , N , with θ̄(k + j) =
[
− a1(p(k + j)) . . . −

ana(p(k + j))b1(p(k + j)) . . . bnb
(p(k + j))

]⊤
and

−→
Ij =

diag(
−→
Ijna

,
−→
Ijnb

), where
−→
Ijna

∈ R
na×na ,

−→
Ijnb

∈ R
nb×nb are

obtained by shifting identity matrices of the corresponding

dimensions j columns to the right. In order to provide a

controller with an integral action, an incremental IO model can

be defined by introducing a new input signal as v(k) = u(k)−
u(k − 1). This yields zero steady-state tracking error under

the assumption that that the model gives unbiased steady-state

prediction even in the presence of modeling error, disturbances

or noise. Therefore, the LPV model can be rewritten as

GI : A(q−1, pk)y(k) = B(q−1, pk)(v(k) + u(k − 1)). (5)

Now, for given p[k,k+N ] and v[k,k+N−1], the future output

of GI in (5) can be computed as y(k+j) = θ̃⊤(k+j)φ(k)+
∑j

i=1

∑i

l=1 hl(k+j)v(k+j−i), j = 1, 2, . . . , N , where the

vector θ̃(k+ j) ∈ R
na+nb is computed as in (4) except for its

(na+1)th element that is given by θ̃na+1(k+ j) = θna+1(k+
j) +

∑j

i=1 hi(k + j). Therefore, the key prediction equation

for GI with h0(k) ≡ 0 can be given by

y[k+1,k+N ] = H(k)v[k,k+N−1] +Θ(k)φ(k), (6)

where H(k) ∈ R
N×N is a lower triangular Toeplitz matrix

with the Markov coefficients of the system:

H(k)=








h1(k+1) . . . 0
...

. . .
...

N∑

1
hi(k+N) . . . h1(k+N)







,Θ(k)=








θ̃(k+1)

θ̃(k+2)
...

θ̃(k+N)








(7)

Θ(k) ∈ R
N×(na+nb); H and Θ are functions of p[k,k+N ].

Next, the proposed LPV-MPC scheme with stability guar-

antees is formulated. Define the cost function

VN =

Ne∑

i=0

µie
2(k+i−ndy)

︸ ︷︷ ︸

ℓe(i)

+

Nv∑

j=1

ρjv
2(k+j−ndu)

︸ ︷︷ ︸

ℓv(j)

+Vf , (8)

where VN = VN (x0, e0, v[k,k+N−1], r[k+1,k+N ], p[k,k+N ])
with x0 ∈ R

nx is the state vector at instant k and e0 =
e(k) = r(k)−y(k) is the error signal as shown in Fig. 1, Vf =
Vf(x(k+N+1)) defines a terminal cost with x(k+N+1) =
[y⊤[k+N,k+N+1−ndy]

u⊤
[k+N,k+N+1−ndu]

r⊤[k+N,k+N+1−ndy]
]⊤

(to simplify the notation, we drop the arguments) and Ne =
N + ndy − 1, Nv = N + ndu − 1, Nv ≤ Ne. The terminal

cost penalizes the states of the closed-loop system at the end

of the prediction horizon, whereas the stage cost given by

ℓ(e, v)=ℓe(i)+ℓv(j) specifies the desired control performance

via arbitrary values for N,µi > 0 and ρj > 0, see (8). The

proposed MPC control problem can be defined as follows:

min
v[k,k+N−1]

VN , (9a)

subject to u(k + i) ∈ U, i = 0, 1, . . . , N − 1, (9b)

x(k +N + 1) ∈ Xf , (9c)
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with the system dynamics given by (5), where U := {u(k) ∈
R | umin ≤ u(k) ≤ umax} is a compact input set constraint

and Xf ∈ R
nx specifies a terminal set constraint to enforce

the states at the end of the prediction horizon to lie in Xf .

Introduce Xs := {xs ∈ R
nx | xs =

[rs . . . rs us . . . us rs . . . rs]
⊤, ∀(rs, us) ∈ Rs × Us}

as the set of all target steady-states xs, where

Rs := {rs ∈ R | rmin ≤ rs ≤ rmax} and Us := {us ∈ U | (1+
∑na

i=1 ai(ps))rs = (
∑nb

j=1 bj(ps))us, ∀(rs, ps) ∈ Rs × P},

define, respectively, the set of all target steady-state references

rs and the set of the corresponding steady-state inputs us.

Now, consider the following assumptions:

A.1 There is no model error and no disturbances and the

future trajectories of both r and p are known.

A.2 The reference trajectory r is a piecewise constant signal,

and for any target output y(k + N) = rs, rs ∈ Rs, all

steady-states of the system, i.e., x(k+N+1) = xs should

belong to the terminal set Xf , namely, Xs ⊂ Xf .

A.3 Vf(·) is continuous, positive definite ∀x(k) and Vf(0)=0.

A.4 The set Xf is closed.

The closed-loop system can be asymptotically stabilized by

the MPC control law κN (·) if there exists a terminal controller

κf(x(k)) such that the following conditions are satisfied [4]:

C.1 Vf(·) is a Lyapunov function on the terminal set Xf under

the controller κf(·) such that

Vf(x(k + 1))− Vf(x(k)) ≤ −ℓ(x(k), κf(x(k))) < 0, (10)

∀x(k) ∈ Xf , ∀p(k) ∈ P, ∀k > N .

C.2 The set Xf is positively invariant under the controller

κf(·), i.e., if x(k) ∈ Xf , then x(k + 1) ∈ Xf , ∀p ∈ P.

C.3 κf(·) ∈ U, ∀x ∈ Xf .

Under these conditions, the optimal cost function V ∗
N is a

Lyapunov function for the closed-loop system and its domain

of attraction, denoted by XN , is the set of initial state x0,

initial error e0 and future reference and scheduling trajectories,

r[k+1,k+N ], p[k+1,k+N ], respectively, where the optimization

problem is feasible. The invariance condition imposed on the

terminal region makes the optimization problem feasible if the

initial values are in the domain of attraction, c.f., [4].

Next, we show how Vf(·) and Xf can be chosen to satisfy

the above conditions. In terms of (10), the function Vf(·) can

be chosen to be an upper bound on the value function of the

unconstrained infinite horizon cost of the system states starting

from Xf and controlled by κf(·) [4]. Thus, we choose

Vf(x(k+N+1)) ≥
∞∑

i=N+1

(
µ̃e2(k+i−1)+ ρ̃v2(k+i−1)

)
, (11)

for all x ∈ Xf , ∀p ∈ P where µ̃ > 0 and ρ̃ > 0 are constants.

To verify (11), we need to satisfy

Vf(x(k + i+ 1))− Vf(x(k + i))

≤ −
(
µ̃e2(k + i− 1) + ρ̃v2(k + i− 1)

)
< 0, (12)

for all e(k + i − 1) 6= 0, v(k + i − 1) 6= 0, i ≥ N + 1 and

∀p ∈ P. Then, summing (12) from i = N + 1 to ∞ gives

Vf(x(∞)) − Vf(x(k + N + 1)) ≤ −
∑∞

i=N+1

(
µ̃e2(k + i −

1)+ ρ̃v2(k+ i−1)
)
. If (12) is satisfied, then with Assumption

A.3, we have Vf(x(k+N +1)) ≥ Vf(x(∞)), and hence, (11)

holds. Therefore, Condition C.1 can be verified if there exists

a function Vf(·) that satisfies Assumption A.3 along with (12).

Next, we see how (12) can be attained. If there exists a func-

tion Vf(·) that satisfies Assumption A.3 and the inequality (12),

then it can serve as a Lyapunov function for the closed-loop

system shown in Fig. 1. On the other hand, this also implies the

existence of a control law κf(·) that can drive a state in Xf into

a steady-state point xs ∈ Xf , i.e., limk→∞ ‖x(k) − xs‖ = 0.

Therefore, we need to derive a controller such that (12) holds

for all i ≥ N + 1, and consequently, it guarantees that

x(∞) approaches xs. In other words, we employ (12) to

design the controller κf(·), the existence of which implies

that Vf(·) is a Lyapunov function for the closed-loop system.

This suggests that Vf(·) could be a quadratic function as

Vf(x(k)) = x⊤(k)Pfx(k), Pf = P⊤
f ≻ 0, Pf ∈ R

nx×nx . Then,

based on such a Vf(·), (12) and the application of the S-

procedure and Finsler’s Lemma, we obtain the following

sufficient condition.

Theorem 1. The closed-loop system described by (3)

is asymptotically internally stable and satisfies the L2-

performance constraint ζ⊤(k + i)Qζ(k + i) ≥ 0, where Q =
diag(Q1, Q2), Q1 = diag(−1, 0, · · · ), Q2 = diag(γ2, 0, · · · ),
γ > 0, if there exist a controller κf(·), F̃ ∈ R

nξ×2 and

S=

[
S1 0 −S1

0 S2 0
−S1 0 S1

]

, S1=
[
µ̃ 0
0 0

]

, S2=

[
ρ̃ −ρ̃ 0
−ρ̃ ρ̃ 0
0 0 0

]

,

µ̃ > 0, ρ̃ > 0, where S1 ∈ R
ndy×ndy , S2 ∈ R

ndu×ndu s.t.

Pf = P⊤
f ≻ 0, (13a)

Π⊤
2PfΠ2−Π⊤

1(Pf+S̃)Π1+Q+F̃D(p)+D⊤(p)F̃⊤≺0, (13b)

hold for all p ∈ P.

The proof is omitted due to the lack of space; inequalities

(13a-b) can be solved as a feasibility problem, see [9]. There-

fore, existence of the controller κf(·) satisfying (13a-b) for

all p ∈ P guarantees that Vf(x(k)) is a Lyapunov function

satisfying (12), which implies Condition C.1, and we have

Vf(x(k)) = x⊤(k)Pfx(k), Pf = P⊤
f ≻ 0. (14)

Next, we verify Conditions C.2 and C.3. For C.2, it is

required to specify Xf to be a positive invariant set with the

controller κf(·) [4]. We consider an ellipsoidal terminal set Xf

that is a sub-level set of Vf(·) as

Xf := {x(k) ∈ R
nx | x⊤(k)Pfx(k) ≤ α}, α > 0. (15)

The sub-level constant α in (15) is maximized such that Kfx ∈
U, ∀x ∈ Xf , to provide the positive invariance property for Xf

with the controller κf(·), and hence, Condition C.3 can be

verified. Hence, stratification of Conditions 2 and 3 can be

attained by solving the convex optimization problem

max
α̃

α̃ subject to −umax ≤ α̃‖P−1
f Kf‖2 ≤ umax, (16)

where α̃ =
√
α. Hence, Xf in (15) can be redefined as

Xf := {x(k) ∈ R
nx | x⊤(k)Pfx(k) ≤ αm}, (17)
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where αm is the solution of (16). To ensure the feasibility

of the proposed MPC, the terminal set Xf should also satisfy

Assumption A.2. This can be satisfied by verifying that Xf ⊃
Xs. To fulfill this, introduce

αs = max
xs∈Xs

x⊤
s Pfxs; (18)

then, if αs ≤ αm, see (17), we can verify that Xs ⊂ Xf .

Finally, we summarize the previous results as follows.

Theorem 2. Suppose that Assumptions A.1, A.2, A.3 and

A.4 are satisfied and there exists a terminal cost given by

(14) such that (13) is satisfied and a terminal set given by

(17) such that αm ≥ αs, where αm and αs solve (16) and

(18), respectively. Then, Conditions C.1, C.2 and C.3 are

satisfied. Consequently, the MPC controller derived by solving

the problem (9) asymptotically internally stabilizes the system

(5) for all x0, e0, r[k+1,k+N ] and p[k,k+N ] in the set XN .

Next, the MPC problem (9) is represented as an optimization

problem with LMI constraints; this is the key step to formulate

the robust LPV-MPC scheme in the next section. The cost

function (8) can be rewritten as follows:

VN = V0 +
(
∗
)⊤

M
(
r[k+1,k+N−1] − y[k+1,k+N−1]

)

+
(
∗
)⊤

Rv[k,k+N−1] +
(
∗
)⊤

P̃f x̃(k +N + 1), (19)

where V0=
∑ndy

i=0 µie
2(k+i−ndy)+

∑ndu−1
j=1 ρjv

2(k+j−ndu)
is a constant term, M = diag{µndy+1, µndy+2, . . . , µNe} ∈
R

(N−1)×(N−1), R = diag{ρndu
, ρndu+1, . . . , ρNv} ∈ R

N×N ,

x̃(k + N + 1) = T−1
x x(k + N + 1) with Tx ∈ R

nx×nx is a

state transformation given by Tx = diag(Tx1, Tx2, Tx1), with

Tx1 ∈ R
ndy×ndy , Tx2 ∈ R

ndu×ndu are anti-diagonal matrices

with all nonzero entries equal to one and P̃f = T⊤
x PfTx. Now,

given p[k,k+N ] and r[k+1,k+N ], we can rewrite Problem (9) as

min
β,v[k,k+N−1]

β (20a)

subject to VN ≤ β, (20b)

u(k + i) ∈ U, i = 0, 1, . . . , N − 1, (20c)

x(k +N + 1) ∈ Xf . (20d)

Substituting (7) into (20b), and then applying Schur comple-

ment leads to an LMI constraint for (20b) as












M−1 0 0 r[k+1,k+N−1]−H1,N−1(k)v[k,k+N−1]

−Θ1,N−1(k)φ(k)
0 R−1 0 v[k,k+N−1]

0 0 P̃−1
f

HN+1−ndy,N (k)v[k,k+N−1]

+ΘN+1−ndy,N (k)φ(k)
Tuv[k,k+N−1] + 1ndu

u(k − 1)
r[k+N+1−ndy,k+N ]

∗⊤ ∗⊤ ∗⊤ β − V0













�0 (21)

where 1χ = [1 1 · · · 1]⊤ ∈ R
χ and Tu ∈ R

ndu×Nc is given by

Tu =

[
Tu1 Tu2

1⊤N−ndu+1 1⊤ndu−1

]

,
Tu1 ∈ R

(ndu−1)×(Nc−ndu+1),

Tu2 ∈ R
(ndu−1)×(ndu−1)

with Tu1 being a matrix whose entries are all one and Tu2 is a

lower triangular matrix whose non-zero entries are one. Next,

the control input constraint (20c) can be written as

Ev[k,k+N−1]�c, E=

[
Te

−Te

]

, c=

[
1Numax−1Nu(k−1)
−1Numin+1Nu(k−1)

]

(22)

with Te ∈ R
N×N being a lower triangular matrix whose non-

zero entries are all one. Finally, the terminal set constraint

(20d) using (17) can be written as an LMI constraint as








P̃−1
f

HN+1−ndy,N (k)v[k,k+N−1]

+ΘN+1−ndy,N (k)φ(k)
Tuv[k,k+N−1] + 1ndu

u(k − 1)
r[k+N+1−ndy ,k+N ]

∗⊤ αm









� 0. (23)

Therefore, Problem (9) can be presented as an optimization

problem with LMI constraints as follows: At any time instant

k, given x0, e0, p[k,k+N ], r[k+1,k+N ] , P̃f , αm and appropriate

values for N and the matrices M and R, solve

min
β,v[k,k+N−1]

β subject to (21), (22), (23). (24)

This problem is solved online at each time instant k, where

N,M,R are tuning parameters. Also, P̃f and αm should be

obtained offline by solving the feasibility problem (13) and

the optimization problem (16), respectively.

IV. ROBUST LPV-MPC SCHEME

We propose in this section an MPC scheme based on

the above formulation to design a robust MPC for LPV-

IO models in which at every sampling instant k the in-

stantaneous value of p is given and its future values, i.e.,

p(k + 1), p(k + 2), . . . , p(k +N), required to compute H(k)
and Θ(k), are uncertain. Therefore, in (19), the worst-case

cost over all possible future scheduling values is considered.

We then employ the full-block multipliers introduced in [8],

to provide an optimization problem with a finite number of

LMI constraints. Bounds on the rate of variation of p and

on its values will be exploited to verify these LMIs at the

vertices of a subset of P that reduces conservatism of the

design. The robust MPC design introduced here is based on

the full-block S-procedure, which can be used to convert an

uncertain matrix inequality to a finite set of inequalities using

full-block multipliers, see [8] for more details.

At a sampling instant k, if each of the constraints (21) and

(23) can be represented as a certain quadratic form, the full

block S-procedure can be used to transform each of them

into a form which enables solving the optimization problem

(24) without knowing the required future values of p. The

first step is to formulate each of the constraints (21) and (23),

respectively, as

F⊤(p)WF(k)F (p) � 0, (25a)

G⊤(p)WG(k)G(p) � 0, (25b)

where F (p) ∈ R
nF×(2N+nx), nF = 4N + nx + na + nb +

ndu + 1, and G(p) ∈ R
nG×(nx+1), nG = N + nx + na +

nb + ndy + ndu + 2 are matrix valued functions of H and

Θ, and WF ∈ R
nF×nF and WG ∈ R

nG×nG are matrix valued

functions of r, v, which are not given due to space restrictions.

As a consequence, (25a) and (25b) can replace (21) and

(23), respectively, in the optimization problem (24). Next, we

transform both F (p) and G(p) into an upper LFT form as

F (p) = ∆F ⋆

[

F11F12

F21F22

]

, G(p) = ∆G ⋆




G11G12

G21G22



 , (26)
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such that ∆F=diag{p1IrF1 , . . . , pnpIrFnp
},∆F ∈ ∆F, ∆G=

diag{p1IrG1 , . . . , pnpIrGnp
},∆G ∈ ∆G, where ∆F(k) =

{∆F(k) ∈ R
n∆F

×n∆F |p
i
(k) ≤ pi ≤ pi(k), i = 1, 2, . . . , np},

∆G(k) = {∆G(k) ∈ R
n∆G

×n∆G |p
i
(k) ≤ pi ≤ pi(k), i =

1, 2, . . . , np}, n∆F =
∑np

i=1 rFi
, n∆G =

∑np

i=1 rGi
, pi(k) =

max(N ·dpmax i+pi(k), pmin i) and p
i
(k) = min(N ·dpmin i+

pi(k), pmax i). Now, if the LFTs (26) are well-posed, then we

can apply the results of [8] to the conditions (25a-b). There-

fore, at the sampling instant k, given x0, e0, r[k+1,k+N ], p(k),

the parameters P̃f and αm, which can be computed offline, and

the design parameters N , M and R, the optimization problem

(24) associated with the robust MPC design considered here

can be written as follows:

min
β,v[k,k+N−1],ΞF,ΞG

β (27a)

subject to Ev[k,k+N−1] � c, (27b)

[∗∗
]⊤

[

ΞF 0
0 WF

][F11 F12

I 0
F21 F22

]

≻0,
[∗ ]⊤ΞF

[
I

∆Fi

]

≺0,

ΞF22 ≻ 0,
(27c)

[∗∗
]⊤

[

ΞG 0
0 WG

][G11 G12

I 0
G21 G22

]

≻0,
[∗ ]⊤ΞG

[
I

∆Gi

]

≺0,

ΞG22 ≻ 0,
(27d)

i=1, 2, . . . , 2np , where ΞF∈R
2n∆F

×2n∆F , ΞG∈R
2n∆G

×2n∆G ,

ΞF =

[
ΞF11 ΞF12

Ξ⊤
F12 ΞF22

]

, ΞG =

[
ΞG11 ΞG12

Ξ⊤
G12 ΞG22

]

.

Next, as P is a convex polytope and the blocks ∆F and ∆G

have linear dependence on p, the LMIs (27c) and (27d) are

only required to be solved at the vertices of P, see [8]. Finally,

we summarize the proposed robust MPC design as follows.

Theorem 3. Suppose that Assumptions A.1, A.2, A.3 and A.4

are satisfied, and there exists a matrix Pf = P⊤
f ≻ 0 that

satisfies conditions (13) ∀p ∈ P, and a scalar αm that solves

the problem (16) such that αm ≥ αs, where αs is a scalar that

solves (18). Then, Conditions C.1, C.2 and C.3 are satisfied.

Consequently, the robust MPC controller derived by solving

the problem (27) stabilizes asymptotically the system (5) for

all initial values of x0, e0 and r[k+1,k+N ] for all time samples

greater than the sampling instant k if the problem (27) has a

feasible solution at the sampling instant k.

V. NUMEICAL EXAMPLE

In this section, the performance of the proposed MPC

scheme for LPV-IO models is demonstrated using a simulation

study. The CSTR system is a challenging chemical process for

nonlinear (NL) modeling and control [10]. The first-principle

based model is given in [10] as

ĊA(t) = q(CA0(t)− CA(t))/V − k0CA(t)e
−E

RT(t) , (28a)

Ṫ (t) = q(T0 − T (t))/V +∆Hk0CA(t)e
−E

RT(t) /ρCp

+ ρcCpcqc(t)
(

1− e
−hA

qc(t)ρCp

)

(Tc0 − T (t))/ρCpV, (28b)

where CA is the product concentration in mol/L, T is the

temperature of the reactor in K, qc is the coolant flow rate in

L/min, CA0, T0 are the feed concentration and temperature,

respectively, and Tc0 is the inlet coolant temperature; see

[10] for the other parameters. Let CA and qc, respectively,

be the measured output and the manipulated variable [10].

The considered operating points corresponding to qc vary

from 97.265 to 110.032 L/min, which provide an operating

range for CA between 0.08 and 0.13 mol/L [10]. The variance

of the process dynamics over the range of qc is shown

in Fig. 2 (solid line), indicating strong nonlinearity of the

process [10]. To implement the proposed MPC scheme, a

discrete LPV-IO representation for the NL description (28),

in the operating region defined above, is developed using the

Jacobian linearization [1]. Therefore, the NL model has been

linearized around 20 operating points that provide a set of local

LTI-IO models. To achieve appropriate discretization of these

models theoretically a sampling time T ∗
s = 2π

20ωbw
= 2 sec is

needed, where ωbw is the largest control bandwidth required

to regulate each of the LTI models. However, it was observed

that Ts = 8 sec based MPC design using models discretized

with Ts could achieve the same performance as T ∗
s with less

computation time. Next, a polynomial interpolation scheme of

the coefficients, see [2], has been applied to construct a global

LPV-IO model with the scheduling variable CA. This provides

the LPV-IO model:

CA(k)= −a1(pk)CA(k−1)−a2(pk)CA(k−2)+b1(pk)qc(k−1)
+ (1 + a1(pk) + a2(pk))CAs − b1(pk)qcs, (29)

where CAs and qcs are steady-state values, p(k) = CA(k−1),
a1(pk) = a10+a11pk+a12p

2
k, a2(pk) = a20+a21pk+a22p

2
k,

b1(pk) = b10+ b11pk+ b12p
2
k. In order to remove the offset in

the LPV-IO model we introduce a virtual input q̃c as follows:

b̃1q̃c(k−1)=b1qc(k−1) + (1+ a1 + a2)CAs − b1qcs, (30)

where b̃1 is a freely chosen constant that can be used to

improve numerical properties. To assess the quality of the

derived model, Fig. 2 shows the variance of the LPV-IO

model dynamics (dashed line) over the specified range of qc in

comparison with that of the NL model. This demonstrates that

the LPV model has captured the dynamics of the NL model.

The MPC design is performed based on the LPV-IO model

CA(k)=−a1(pk)CA(k−1)−a2(pk)CA(k−2)+b̃1q̃c(k−1). (31)

Now, at each sampling instant, the MPC algorithm computes

q̃c. Then, the value of qc is obtained from (30), which in turn

is applied to the NL model. Next, the performance of the

0 20 40 60

0.08

0.10

0.12

0.14

time (min)

C
A

Fig. 2: Open-loop simulation of the CSTR system.

proposed MPC scheme is demonstrated on simulation for the
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CSTR NL model (28). The scheduling variable p = CA is

assumed to take values in the range P = [0.08, 0.13]. The

input constraint is defined as |q̃c| ≤ 1.5 and the reference to

be tracked is given in advance as shown in Fig. 3 (solid line).

In order to find the terminal cost Vf(·), the feasibility problem

defined by (13a-b) has been solved to obtain the matrix

Pf ∈ R
6×6 and the terminal controller κf(·), with nKa = 1

and nKb = 2. Next, the ellipsoidal terminal set Xf in (17) is

constructed offline by computing the value of the parameter

αm by solving Problem (16) and verifying it by solving

Problem (18); we obtained αm = 0.748 and αs = 0.685,

hence αm > αs. Given Pf and αm, which parameterize

Vf(·) and Xf , respectively, the proposed MPC schemes can be

applied. The tuning parameters have been chosen as ρ = 300,

µ = 3×105, N = 4 and Nc = 3 to achieve a desired regulation

of the CSTR. Then, the robust LPV-MPC scheme has been

implemented by solving its associated optimization problem

at each sampling instant k to obtain the optimal control law

online. To reduce the conservatism, we considered the bounds

on the rate of change of p as |p(k) − p(k − 1)| ≤ 0.00015.

Based on such bounds and the value of N , a reduced parameter

set P̂(k) < 0.1 · P can be considered. The resulting control

structure has been validated via a simulation study using the

original NL model (28). Stability of the closed-loop system

over the entire operating region and feasibility of the optimiza-

tion problem at all sampling instants have been achieved by the

MPC design. The evolution of the output and the control input

with the MPC controller are shown in Fig. 3. The closed-loop

performance of the system with the proposed MPC scheme

shows satisfactory tracking capability at different operating

conditions and the integral action guarantees zero steady-

state tracking error asymptotically. To assess computational

complexity, the mean and standard deviation of the CPU time

required to solve the optimization problem at each sampling

instant was 5.0351± .5947 s on a 2.13GHz processor.

Note that an LPV-SS representation for the CSTR system

using (28a-b) can be obtained using a set of local LTI-

SS models. Unfortunately, interpolation of the state space

matrices often leads to unreliable models, and hence, a more

computationally demanding behavioral interpolation scheme

is advised in the H2/H∞ sense (see [11]). Then, existing

LPV-SS based MPC techniques, e.g., [5], can be utilized to

design a controller, which could achieve comparable results

as above. Furthermore, T as one of the system states should

be measured or estimated to operate the MPC-SS controller,

which rises further complications in practice. For the proposed

scheme, that is not required. On the other hand, in several

chemical processes, like co-polymerization process, deriving

first principle models is a challenging and often infeasible

task; therefore, data-driven techniques appear to be attractive

alternatives. Unfortunately, while LPV-IO identification offers

powerful tools to estimate models under real word assumption

on disturbances and measured noise affecting the captured

data, LPV-SS identification is underdeveloped [1]. Existing

MPC tools are mostly for SS models and hence, an LPV-

SS realization for the identified LPV-IO model should be

obtained. As shown in [1], such LPV-SS representations will

be more complex than the original LPV-IO model to preserve

equivalence. Therefore, the proposed MPC scheme offers a

practical solution as it works directly for LPV-IO models.

0.08

0.10

0.12

0.14

C
A

0 5 10 15 20 25 30
80

100

120

time (min)

q c

Fig. 3: Closed-loop performance with the proposed robust

LPV-MPC scheme: Reference tracking (top); Control input.

VI. CONCLUSION

This note has proposed an MPC design method to control

LPV-IO models subject to input constraints with stability guar-

antee. The proposed LPV-MPC scheme characterizes a robust

strategy to counteract the worst-case possible uncertainties of

the scheduling variable. To guarantee closed-loop asymptotic

stability, an appropriate quadratic terminal cost is added to

the quadratic finite horizon cost function of the online MPC

optimization problem and an ellipsoidal terminal set constraint

is included. A simulation study on a CSTR NL model has

demonstrated the applicability of the MPC design scheme.
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Sweden, 2013.


