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Abstract—In many practical situations, it is highly desirable
to estimate an accurate mathematical model of a real system
using as few parameters as possible. At the same time, the
need for an accurate description of the system behavior without
knowing its complete dynamical structure often leads to model
parameterizations describing a rich set of possible hypotheses;
an unavoidable choice, which suggests sparsity of the desired
parameter estimate. An elegant way to impose this expectation
of sparsity is to estimate the parameters by penalizing the
criterion with the `0 “norm” of the parameters. Due to the
non-convex nature of the `0-norm, this penalization is often
implemented as solving an optimization program based on a
convex relaxation (e.g., `1/LASSO, nuclear norm, . . . ). Two
difficulties arise when trying to apply these methods: (1) the need
to use cross-validation or some related technique for choosing
the values of regularization parameters associated with the `1
penalty; and (2) the requirement that the (unpenalized) cost
function must be convex. To address the first issue, we propose
a new technique for sparse linear regression called SPARSEVA,
with close ties with the LASSO (least absolute shrinkage and
selection operator), which provides an automatic tuning of the
amount of regularization. The second difficulty, which imposes a
severe constraint on the types of model structures or estimation
methods on which the `1 relaxation can be applied, is addressed
by combining SPARSEVA and the Steiglitz-McBride method.
To demonstrate the advantages of the proposed approach, a
solid theoretical analysis and an extensive simulation study are
provided.

I. INTRODUCTION

System identification is a discipline that deals with the
problems of estimating models of dynamic systems from
input-output data. Even though its birth is dated back in the
era of classical automatic control during the 60’s and 70’s,
by now it has become a mature field with many successful
applications in areas such as economics, mechatronics, ecol-
ogy, biology, communications and transportation [1, 2, 3, 4]. It
also has a close connection with allied fields such as statistics,
econometrics, machine learning and chemometrics [5].

For a system identification procedure to be successful,
two main ingredients are needed: data containing measured
information about the dynamics of the system, and prior
knowledge. Data is provided by an identification experiment,
while the prior knowledge has to be supplied (directly or im-
plicitly) by the user, in the form of assumptions or prejudices.
One of the most important prejudices is the selected model
structure and the corresponding model set within which the
identification method should find an estimate of the plant.
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Such a selection is rather complicated as it is outmost desired
to estimate an accurate model of the real system using as few
parameters as possible. While accuracy is clearly related to
the performance of the application on which the model will
be used, the desire for a minimal parametrization is based on
the parsimony principle (Occam’s razor) and the utilization
complexity in terms of control synthesis, prediction, etc. Since
an optimal choice in this question is rarely known a priori,
a user in identification typically proposes a model structure
capable of explaining a rich set of possible dynamics, and
lets the data decide which sub-structure is appropriate to use.
This is commonly achieved by employing model structure
selection tools (such as AIC, BIC/MDL, cross-validation, etc.).
These tools can be seen as imposing a sparsity pattern on
the parameters, because they determine a model sub-structure
(where the estimated model should be found), by forcing some
of the parameters of the overall model structure to be exactly
equal to zero. Therefore, model structure selection can be
interpreted as the process of imposing a sparsity prejudice.

Many techniques for sparse estimation have been success-
fully used for model structure selection in linear regression set-
tings. For example, in Forward Selection regressors are added
one by one according to how statistically significant they are
[6]. Forward Stage-wise Selection and Least Angle Regression
(LARS) [7] are refinements of this idea. Backward Elimination
is another approach with a long history. Here regressors are
removed one by one based on the same concept of statistical
significance. Another class of methods employ all regressors,
but use thresholding to force insignificant parameters to be-
come zero [8]. In [9], a Bayesian approach to sparse estimation
is developed. Yet another class of methods that can handle all
regressors at once use regularization, i.e., a penalty on the size
of the parameter vector is added to the cost function. The Least
Absolute Shrinkage and Selection Operator (LASSO) [10] and
the Non-Negative Garrote (NNG) [11], are early approaches
based on the idea of using regularization to enforce sparsity.
The LASSO, for example, is based on the minimization of a
least-squares cost function plus the `1 norm of the parameter
vector (which is known to enforce sparsity). More precisely
the LASSO criterion is

min
θ∈R·

V (θ,DN ), (1a)

s.t. ‖θ‖1 ≤ ε, (1b)

where V is the least-squares cost function based on a data set
DN with N samples. For linear regression setups, the above
problem is convex. In fact, one way of viewing (1) is as a
convex relaxation of the combinatorial complexity problem of
minimizing VN (θ) under a constraint on the size of the support
of θ.

Integral to many of the approaches is the use of cross-
validation or some information criterion, e.g., the Akaike
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Information Criterion (AIC) or Generalized Cross-Validation
(GCV). For example, such methods can be used to determine
the constant ε in (1). This means solving (1) and then eval-
uating the performance of the estimate using, e.g., GCV, for
different values of ε and then picking the best ε. While differ-
ent search strategies for the best ε can be derived, a drawback
is that it is necessary to solve (1) multiple times [12, 13]. For
large problems, this can be restrictive. As a first contribution,
we turn the problem “upside down,” starting with a linear
regression structure, and then appeal to AIC to come up with
an “efficient” way to choose the design parameter (which
corresponds to ε in (1b)). We provide an asymptotic analysis
of the proposed estimator, called SPARSEVA, which was
originally proposed in [14].

An additional complication with the LASSO and most
sparse estimation methods is that they can only be applied to
model structures of a linear regression type (i.e., where the cost
function to be minimized by the estimator is quadratic in the
parameters). Some extensions, however, have been conceived
for estimators based on the minimization of a convex loss
function [15, Chapter 8]. This class of estimators can be
easily implemented by using convex optimization tools. For
estimators arising from a non-convex loss function, it is much
more difficult to impose sparsity, because their implementation
can suffer from multiple local minima [15, Chapter 9].

Confinement to estimators with a convex loss function
(identification criterion) is very restrictive. This is because,
in prediction error minimization, many Linear Time-Invariant
(LTI) model structures (such as ARMAX, Output-Error, and
Box-Jenkins [2]) give rise to a non-convex loss function of the
prediction. Even model structures for which this prediction
error function is known to have a single global minimum
(e.g., ARMA structures [2]) may end up having multiple local
optima if an `1 regulation term is added to it to impose sparsity.

In this paper, our second contribution is to extend the
use of convex relaxation techniques for sparsity to general
LTI rational Output Error (OE) type of model structures
estimated using Prediction Error Methods (PEM), where we
allow the noise to be colored. To this end, we first combine
SPARSEVA, and the Steiglitz-McBride method, which is a
technique for the estimation of OE models. Since the Steiglitz-
McBride approach reduces the estimation problem of OE
models to solving a sequence of least-squares estimation
problems, which are convex optimization programs, we can
apply a LASSO penalty to this sequence. This allows to
impose sparsity in the resulting plant model, in case the output
noise is white. We also extend this approach to general colored
noise situations by using a pre-filtering approach with a high-
order ARX, which is a recently proposed extension of the
Steiglitz-McBride method [16].

The paper is organized as follows. The notation used in the
sequel is described in Section II. Section III introduces the
problem formulation. A description of the techniques proposed
is given in Section IV, where we present the SPARSEVA
approach (for linear regression), revisit the classical Steiglitz-
McBride method, and describe a technique for the sparse
estimation of rational plant models, called OE-SPARSEVA,
based on the combination of the first two methods. In Sec-
tion V, we establish the theoretical asymptotic properties
of SPARSEVA and its variants. Section VI presents several
simulation examples that show the properties of our proposed

methods. Finally, the paper is concluded in Section VII. For
the reader’s convenience, most proofs have been collected in
the appendices.

II. NOTATION

X�Y denotes the Hadamard or element-wise multiplication
between two matrices X and Y of the same dimensions. Fur-
thermore, ‖x‖2W := x>Wx for W = W> > 0, ‖x‖22 := x>x
and ‖x‖1 =

∑n
i=1 |xi| with x = [x1 . . . xn]>. Cond(A)

is the condition number of a matrix A in the 2-norm, i.e.,
Cond(A) := ‖A‖‖A−1‖ where ‖A‖ denotes the maximum
singular value of A. Notice that Cond(A) = Cond(A−1) ≥ 1.
Is2s1 = {i ∈ Z | s1 ≤ i ≤ s2} denotes an index set. The vector
containing the signs of a vector x ∈ Rn (in terms of values
±1) is denoted by Sgn(x), while the support of x is denoted
by Supp(x) := {i ∈ In1 | [x]i 6= 0}. For a given T ⊂ In1 , xT
denotes the projection of x to the support T, i.e., [xT]i := [x]i
if i ∈ T and 0 otherwise.
XN

p−→ X denotes convergence in probability [17]. Fur-
thermore, AN = Op(BN ) means that, given an ε > 0, there
exists a constant M(ε) > 0 and an N0(ε) ∈ N such that
for every N ≥ N0(ε), P{|AN | ≤ M(ε)|BN |} ≥ 1 − ε.
Similarly, AN = op(BN ) means that AN/BN

p−→ 0, and
AN �p BN means that, given an ε > 0, there are constants
0 < m(ε) < M(ε) < ∞ and an N0(ε) ∈ N such that for
every N ≥ N0(ε), P{m(ε) < |AN/BN | < M(ε)} ≥ 1 − ε.
xN ∈ As N (x0, P ) means that the sequence of random vari-
ables {xN} converges in distribution to a normal distribution
with mean x0 and covariance P .

In general, all asymptotic statements (of the form yN → y)
are with respect to the number of data samples N tending to
infinity.

III. PROBLEM SETUP

The most general setup to be considered in this paper is
introduced now. Consider the stable discrete-time LTI data-
generating system

yt =
Bo(q)

Ao(q)
ut +

Co(q)

Do(q)
et, (2)

where et is a Gaussian white noise sequence of zero mean
and variance σ2 > 0, ut is a quasi-stationary signal [2], and

Ao(q) = 1 + ao
1q
−1 + · · ·+ ao

na
q−na , (3a)

Bo(q) = bo1q
−1 + · · ·+ bonb

q−nb , (3b)

Co(q) = 1 + co1q
−1 + · · ·+ conc

q−nc , (3c)

Do(q) = 1 + do
1q
−1 + · · ·+ do

nd
q−nd , (3d)

with q the time-shift operator, θo = [ao
1 . . . a

o
na
bo1 . . . b

o
nb

]
and ηo = [ co1 . . . c

o
nc

do
1 . . . d

o
nd

]. Due to physical insights or
simply to the generality of the representation, we assume as
prior knowledge that only few of the parameters θo are actually
non-zero. Note that for notational convenience, no feedthrough
term is assumed. Based on measurements DN := {ut, yt}Nt=1,
our goal is to estimate a model of this system in the form

yt =
B(q)

A(q)
ut +

C(q)

D(q)
εt, (4)

where
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A(q) = 1 + a1q
−1 + · · ·+ ana

q−na , (5a)
B(q) = b1q

−1 + · · ·+ bnb
q−nb , (5b)

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc , (5c)
D(q) = 1 + d1q

−1 + · · ·+ dnd
q−nd . (5d)

In this paper, we assume that the model structure (4) contains
the true system (2), i.e., there is no undermodelling.

As an intermediate step in the development of a general
sparse estimation procedure for rational model structures (4),
we will first concentrate on systems and model structures
where D(q) = A(q), Do(q) = Ao(q) and C(q) = Co(q) = 1.
For these restricted model structures, the Maximum Likelihood
(ML) and the PEM methods are equivalent to a linear regres-
sion problem [2].

IV. METHODS

In this section, we propose a method for the estimation
of model structure (4) which takes into account (possible)
sparsity in the parameter vector. To this end, first we present
a new method called SPARSEVA (a sparse LASSO-type esti-
mator) for linear regression problems, originally proposed in
[14], which provides automatic tuning of its regularization pa-
rameters. Next, we will revisit the Steiglitz-McBride method,
a well established iterative technique for the estimation of
OE model structures, based on the solution of a series of
linear regression problems. Finally, we show how to combine
these two procedures, the SPARSEVA and Steiglitz-McBride
methods, in order to estimate general sparse rational model
structures.

A. SPARSEVA
1) Assumptions: As mentioned at the end of Section III,

we will first focus on model structures that can be written as
a linear regression. Assume that the data is generated by

YN = ΦNθ
o + EN , (6)

where θo ∈ Rng , EN ∼ N (0, σ2IN ) (with σ2 > 0), ΦN ∈
RN×ng and YN ∈ RN . Furthermore, To := Supp(θo) where
To contains the indexes (positions) of the non-zero elements
of θo, while T̄o := Ing

1 \To denotes the positions of the zeros.
The model chosen to capture the dynamics of (6) is

YN = ΦNθ + EN , (7)

where θ ∈ Rng is unknown (which also means that To is a
priori unknown). With respect to ΦN and its relation to EN ,
we will assume that:

1) N−1Φ>NΦN
p−→ Γ � 0 as N →∞,

2) V (θ̂LS
N ,DN )

p−→ σ2 as N →∞, and

3)
√
N(θ̂LS

N − θo) ∈ As N (0, σ2M), where M is a non-
singular matrix.

Here,

V (θ,DN ) :=
1

N
(YN − ΦNθ)>(YN − ΦNθ), (8)

is the least-squares cost (`2-loss of the prediction), and

θ̂LS
N :=

(
Φ>NΦN

)−1
Φ>NYN , (9)

is the least-squares estimate.

A particular case of interest for us is the ARX model
structure

A(q)yt = B(q)ut + εt, (10)

which corresponds to structure (4) with C(q) = 1 and
D(q) = A(q). This ARX structure can be written in the
linear regression form (7) where YN := [yna+1 . . . yN ]>,
EN := [ εna+1 . . . εN ]>, θ := [a1 . . . ana

b1 . . . bnb ]> and

ΦN =

 −yna · · · −y1 una · · · una−nb+1

...
...

...
...

−yN−1 · · · −yN−na
uN−1 · · · uN−nb

. (11)

(For the sake of simplicity, we assume that na ≥ nb.)
Remark 4.1: Assumptions 1-3 are not necessary conditions

in order to obtain estimates with nice statistical properties (as
seen in Section V). For example, in case σ = 0, i.e., the
data is noiseless, then the least squares estimate will be
exactly equal to θo for N ≥ ng. The case where σ2 > 0 is
certainly more interesting and practically relevant for system
identification. Depending on the particular model structure
considered, general sufficient conditions for Assumptions 1-
3 to hold are global identifiability of the model structure and
persistence of excitation of the input signal [2].

Remark 4.2: Notice that Assumptions 1-3 also hold if ΦN is
deterministic and satisfies N−1Φ>NΦN → Γ > 0 as N →∞.

2) Method: The method we propose for estimating a sparse
θ is based on the following steps:

i) Compute the ordinary least-squares estimate θ̂LS
N via (9).

ii) Obtain a sparse estimate θ̂N by solving

min
θ∈Rng

‖θ‖1, (12a)

s.t. V (θ,DN ) ≤ V (θ̂LS
N ,DN )(1 + εN ), (12b)

where εN > 0 and ng := na +nb. The choice of εN will
be discussed later.

iii) Finally, re-estimate the non-zero elements of θ̂N using
ordinary least-squares. More precisely, let T correspond
to the indexes of the non-zero elements in θ̂N . Define
ΦN,T to be the matrix formed from the columns of ΦN
listed in T and then compute the least-squares estimate
of a θ of reduced dimension based on the model (7)
with ΦN,T . Thresholding is used to determine which
parameters are zero.

When Steps i) and ii) are used, we call this method
SPARSEVA (SPARSe Estimation based on VAlidation), and
the estimate is denoted as θ̂N . When Step iii) is also used,
we call the method SPARSEVA-RE, indicating that the non-
zero parameters are re-estimated (using least-squares); the
corresponding estimate is denoted θ̂RE

N .
For Step ii), we will also consider the following criterion:

min
θ∈Rng

‖wN � θ‖1, (13a)

s.t. V (θ,DN ) ≤ V (θ̂LS
N ,DN )(1 + εN ), (13b)

where wN ∈ Rng

+ is given by [wN ]i := 1/|[θ̂LS
N ]i|γ with

i ∈ Ing

1 and γ > 0 being an arbitrary constant. We denote
the method obtained from Step i) and (13) by A-SPARSEVA
(Adaptive SPARSEVA) and the corresponding estimate by θ̂A

N ;
the method with all three steps, in this case, is denoted as
A-SPARSEVA-RE and the corresponding estimate is θ̂A−RE

N .
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This adaptive version is inspired by the adaptive LASSO [18].
The proposed estimation scheme is summarized in terms of
Algorithm 1. The specific choice of εN is discussed later. It is
important to highlight that both (12) and (13) are convex for
linear regression problems.

Algorithm 1 A-SPARSEVA-RE
Require: a data record DN = {ut, yt}Nt=1 of (2) and the

model structure (10) characterized by the parameters
θ = [a1 . . . bnb ]> ∈ Θ ⊆ Rng . Assume that DN is
informative w.r.t. (10), see [2].

1: Compute θ̂LS
N via (9).

2: Set εN = 2ng/N (or εN = (ng logN)/N ) and compute
V (θ̂LS

N ,DN ).

3: Obtain the sparse estimate θ̂A
N by solving (13). (In the

non-adaptive case, solve (12) to obtain θ̂N )
4: Based on a threshold 0 ≤ ε∗ � 1, select a minimal T ⊆

Supp(θ̂A
N ) such that ‖θ̂A

N,T − θ̂A
N‖1 ≤ ε∗‖θ̂A

N‖1.
5: Estimate θA−RE

N via (9) with ΦN,T .
6: return estimated model (10).

3) Discussion of the method: The idea behind SPARSEVA
is based on Akaike’s Information Criterion (AIC). Let Dval

N
denote a fresh validation data set (corresponding to a different
realization of ΦN and the noise EN ). Then, for linear regres-
sion problems, c.f. [2], it is easily shown that

Eval

{
Eest

{
V (θ̂LS

N ,Dval
N )
}}

=

(
1+

2ng

N

)
Eest

{
V (θ̂LS

N ,DN )
}

(14)

where Eest{�} (Eval{�}) denotes expectation with respect to
the noise in the estimation (validation) data set.

The relation (14) suggests that a way to perform model
selection without using a validation data set is to minimize(

1 +
2ng

N

)
V (θ̂LS

N ,DN ), (15)

with respect to ng, the number of estimated parameters. This
is Akaike’s AIC (or Final Prediction Error, FPE) criterion for
model selection.

In view of this, with the choice εN = 2ng/N , (12) can
be seen as a way to estimate a sparse (due to the `1-norm)
model such that its performance is similar to V (θ̂LS

N ,Dval
N ).

Thus, unlike for the LASSO, there is a natural choice of
the “regularization” parameter εN for SPARSEVA, which
corresponds to a particular level set of the `2-loss function
(8), in which the loss of the sparse solution is expected to
lay. In the LASSO case, the `2 cost of the prediction error
is minimized for a given sparsity level, i.e., ‖θ‖1 < ε, see
(1). As the `1 norm of the optimal estimate for θ is generally
unknown, it is much harder in practice to develop a selection
scheme for ε in the LASSO method. This is the motivation
for introducing (12).

It should be noted that the convex optimization program

min
θ
‖θ‖1, (16a)

s.t. V (θ,DN ) ≤ ε, (16b)

has been used before for signal recovery in the compressive
sensing context [19, 20], i.e., when the number of observations

N is less than the number of estimated parameters ng. Our
contribution lies in the suggestion to use εN according to (12),
in particular with εN chosen by the AIC rule εN = 2ng/N ,
and in the adaptive version (13) inspired by [18].

The use of a threshold ε∗ in Step 4 of Algorithm 1 to de-
termine the support of θ̂AN is considered merely for numerical
purposes: many numerical methods for solving (12) or (13)
(e.g., CVX [21]) deliver a solution θ̂AN which is sparse only
up to some numerical precision (e.g., 10−10). The choice of ε∗
should be made according to the precision of method used to
solve (12) or (13) (typically an order of magnitude larger than
such tolerance). In practice, since such tolerances are much
smaller than the achievable statistical accuracy, the effect of
thresholding with ε∗ is negligible1 (in statistical terms). Notice
that for the theoretical results of Section V we assume infinite
numerical precision, hence we take ε∗ = 0.

B. Steiglitz-McBride Method
Consider now an Output-Error (OE) model structure,

yt =
B(q)

A(q)
ut + εt, (17)

which corresponds to (4) with C(q) = D(q) = 1. It is
well known, see [2], that the least-squares estimator θ̂LS

N :=
(Φ>NΦN )−1Φ>NYN (where ΦN is given as in (11)) is biased,
and the cost function of PEM for this model structure is non
convex, hence its minimization is difficult and may suffer from
local minima.

One technique for estimating models of type (17) from least-
squares estimates is the so-called Steiglitz-McBride method
[22]. The idea of this method is to iteratively pre-filter ut and
yt by 1/Â(k)(q) resulting in the filtered data set D(k)

N , where
Â(k)(q) is an estimate of the A(q) polynomial (at step k).
Then, least-squares estimation is applied on D

(k)
N , assuming a

model structure such as (10), which gives estimates Â(k+1)(q)
and B̂(k+1)(q). This procedure is usually initialized by taking
Â(0)(q) = 1, and stopped when the estimates Â(k)(q) and
B̂(k)(q) do not change much from one iteration to the next.

The Steiglitz-McBride algorithm has been extensively stud-
ied in the literature [23, 24]. In particular, it is known to give
unbiased estimates only if the true system belongs to an OE
structure (17), and its global convergence properties are still
largely an open problem. In addition, the Steiglitz-McBride is
not asymptotically efficient for (17).

In [16], an interesting extension of the Steiglitz-McBride al-
gorithm has been developed, which gives consistent estimates
even for Box-Jenkins model structures (4). This extension is
based on a preliminary step, where a high order ARX model

AHO(q)yt = BHO(q)ut + εt, (18)

with

AHO(q) = 1 + aHO
1 q−1 + · · ·+ aHO

m q−m, (19a)

BHO(q) = bHO
1 q−1 + · · ·+ bHO

m q−m, (19b)

is fitted to DN , and used then to pre-filter the data, i.e., to
generate the signals

yF
t := ÂHO(q)yt, uF

t := ÂHO(q)ut.

1Many sparse estimation methods rely in practice on a final thresholding
step for support set recovery (as Step 4 in Algorithm 1), sometimes even
without explicitly saying so.
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This filtered data is then used in place of the original input
and output signals of (17) on which the Steiglitz-McBride
procedure is executed, resulting in estimates of the poly-
nomials A(q) and B(q). The intuition behind this method
is that 1/ÂHO(q) should be a reasonable estimate of the
noise model Co(q)/Do(q), hence the pre-filtering stage should
“whiten” the noise (as seen from the output). This means that
the standard Steiglitz-McBride method could then deliver a
consistent estimate of the polynomials A(q) and B(q).

An important issue regarding the Steiglitz-McBride method
is the stability of the pre-filters Â(k) and AHO: these filters
are not guaranteed to be stable, so if at some iteration the
estimated filter is unstable, the Steiglitz-McBride method
cannot continue. One way to overcome this issue is to split the
unstable filter Â(k) as Â(k)

+ Â
(k)
− , where Â(k)

+ is stable and Â(k)
−

is anti-stable (the constant factor can be arbitrarily assigned
to any of these factors), pre-filter the data forward in time
using 1/Â

(k)
+ , and then use the filter 1/Â

(k)
− backwards in

time. This technique has been used in other contexts within
system identification (e.g., [25]) and it preserves the second-
order properties of the Steiglitz-McBride method (since it
corresponds to the time-domain equivalent of the Sanathanan-
Koerner method [26]).

Some results on the accuracy of the extended Steiglitz-
McBride method are detailed in Section V.

C. Estimation of Sparse Output-Error Models

As mentioned in Section I, SPARSEVA and `1-penalized
estimators cannot be directly applied to model structures such
as (4), because the PEM cost function is non convex. However,
techniques such as Steiglitz-McBride, which rely on least-
squares optimization, can be directly extended to use `1-
penalized estimators in order to deliver sparse models.

Based on the previous discussion, Algorithm 2 provides
estimation of sparse rational OE models (17).

Remark 4.3: Note that in Step 8, A-SPARSEVA can be
used to impose several different sparsity patterns on the A(q)
and B(q) polynomials. For example, if we only want to impose
sparsity on A(q), then the `1-norm in the cost function of
(13) can be modified so that only the coefficients of A(q) are
included.

Remark 4.4: Based on validation data, optimization of εN
can also be applied to recover the exact sparsity structure
of θ. However, re-optimizing such quantity (using e.g. cross-
validation) is equivalent to optimizing for the regulariza-
tion parameter in a standard LASSO estimator (inclusion of
V (θ̂LS

N ,DN ) in (12b) is not necessary). This might refine the
results for relatively small data-lengths N under considerable
noise, but at the expense of a much higher computational load.
Hence a clearly important feature of the proposed SPARSEVA
scheme is an automatic choice of εN guaranteeing a reliable
performance.

V. MAIN RESULTS

In this section, we present the main technical results about
the asymptotic properties of the introduced methods. For
theoretical purposes, we neglect numerical errors due to finite
precision, hence we assume for simplicity that ε∗ = 0.

Algorithm 2 OE-SPARSEVA with Steiglitz-McBride
Require: a data record DN = {ut, yt}Nt=1 of (2) and the

model structure (17) characterized by the parameters
θ = [a1 . . . bnb ]> ∈ Θ ⊆ Rna+nb . Assume that DN

is informative w.r.t. (17) and (17) is globally identifiable
on Θ [2].

1: Let m � na and fit using least-squares the high order
ARX model described by (18) to the measurements DN ,
resulting in ÂHO(q) and B̂HO(q).

2: Filter the data DN as

yF
t := ÂHO(q)yt, uF

t := ÂHO(q)ut.

3: Set k = 0, and let Â(0)(q) = 1, B̂(0)(q) = 0 and
consequently θ̂(0)

N = 0.
4: repeat
5: k ← k + 1 and filter the data DF

N = {uF
t , y

F
t }Nt=1 as

y
F(k)
t :=

1

Â(k−1)(q)
yF
t , u

F(k)
t :=

1

Â(k−1)(q)
uF
t .

6: Fit, using least-squares, a model of the form

A(k)(q)y
F(k)
t = B(k)(q)u

F(k)
t + ε

(k)
t , (20)

resulting in the estimates Â(k), B̂(k) and the associated
parameter vector θ̂(k)

N .

7: until θ̂(k)
N has converged or the maximum number of

iterations is reached.
8: Apply A-SPARSEVA (with least-squares re-estimation) to

the model

A(q)y
F(k+1)
t = B(q)u

F(k+1)
t + ε

(k+1)
t . (21)

9: return estimated model (17).

A. SPARSEVA
We will first investigate the theoretical properties of SPAR-

SEVA and its adaptive variant.
1) Consistency: Regarding consistency of the estimator

w.r.t. (6), we have the following results:
Theorem 5.1 (Consistency of (A-)SPARSEVA): Under the

assumptions of Section IV-A1, and θo 6= 0, the SPARSEVA
and A-SPARSEVA estimators are consistent in probability
(i.e.2, θ̂(A)

N

p−→ θo) if and only if εN → 0. In particular,
‖θ̂(A)
N − θo‖2 = Op(N

−1/2 +
√
εN ) uniformly in θo.

Proof: See Appendix B.
Corollary 5.1 (Exact order of consistency): Subject to the

assumptions of Theorem 5.1, if εN → 0, but NεN → ∞,
then ‖θ̂(A)

N − θo‖2 �p
√
εN (c.f. Section II for the definition

of �p).
Proof: See Appendix C.

2) Sparseness: Since V (θ,DN ) is quadratic, the constraint
(12b) corresponds to an ellipsoid in Θ ⊆ Rng . The solution
to (12a) will be on the boundary of the smallest `1-ball that
intersects this ellipsoid, see Figure 1.a. When the ellipsoid has
the shape as in Figure 1.a, then, as can be seen, the solution
will be sparse. However, with a more tilted ellipsoid as in

2The notation θ̂(A)
N refers either to θ̂N or θ̂AN , depending on the context.
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�1
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a) b)

Fig. 1. The geometry of (12). In a), a sparse solution (θ2 = 0) is obtained
but not in b).

Figure 1.b, the solution will not be sparse. The shape of the
ellipsoid is determined by the regressor matrix ΦN .

Various measures to ensure sparsity have been suggested,
e.g. [27, 28]. The adaptive SPARSEVA (13) is inspired by
[18]. We now establish the exact conditions on εN for the
adaptive SPARSEVA to generate sparse estimates (recovery
of the true support of θo).

Theorem 5.2 (Sparseness of the adaptive SPARSEVA):
Under the assumptions of Section IV-A1 together with
εN → 0 and θo 6= 0, A-SPARSEVA (13) satisfies the
sparseness property (i.e., P{Supp(θ̂A

N ) = Supp(θo)} → 1 if
NεN →∞). If NεN →∞ does not hold, then A-SPARSEVA
does not have the sparseness property.

Proof: See Appendix C.
Remark 5.1: It can be shown that when the regressors are

orthonormal, i.e., N−1Φ>NΦN = I , then Theorem 5.2 holds
also for SPARSEVA.

3) Adaptive SPARSEVA and the Oracle property: From
the preceding results, the adaptive SPARSEVA possesses the
sparseness property if and only if εN is chosen such that εN →
0 and NεN →∞. On the other hand, by Corollary 5.1, such
a choice of εN gives rise to a non efficient estimator (since
the order of convergence of θ̂A

N to θo would be
√
εN , strictly

larger than N−1/2). One way to overcome this efficiency-
sparseness tradeoff is to add Step iii) (see Section IV) so that
the non-zero parameters are re-estimated using least-squares.
Our next result shows that the estimator obtained from the
third step of the adaptive SPARSEVA is asymptotically normal
and efficient.

Theorem 5.3 (The Oracle property): Consider the assump-
tions in Theorem 5.2 and that NεN →∞. Then,

√
N(θ̂A−RE

N − θo) ∈ As N (0,M−1),

where M is the information matrix when it is known which
elements of θo are zero.

Proof: See Appendix D.
Remark 5.2: We remark that it is clear from the proof of

Theorem 5.3 that such result holds if we replace the use of θ̂A
N

as an estimator of the location of the non-zero components of
θo by any other

√
N -consistent estimator of such components.

For example, Remark 5.1 implies that Theorem 5.3 holds for
SPARSEVA-RE when the regressors are orthonormal.

4) Minimax rate optimality: Say that we are interested in
an estimate θ̂N of θo such that the risk R(θ̂N , θ

o) := E{‖θ̂N−
θo‖22} is small. Since the risk R depends on the unknown true
value θo, it is relevant to study the worst-case performance,
supθo∈Rng R(θ̂N , θ

o). In particular, we will focus on the rate
of decay of R with respect to the number of samples N . The
following definition is appropriate:

Definition 5.1 (Minimax rate optimality): The estimator
θ̂N is minimax rate optimal over the class of all estimators
of θo, if supθo∈Rng R(θ̂N , θ

o) converges to zero at the same
rate as inf δ̂∈Rng supθo∈Rng R(δ̂, θo), where δ̂ ranges over all
estimators of θo based on the observation vector YN .

The conditions for adaptive SPARSEVA and its re-estimated
version to be minimax rate optimal are as follows:

Theorem 5.4 (Minimax rate optimality): Under the
Assumptions IV-A1, A-SPARSEVA (13) and θ̂A−RE

N are
minimax rate optimal if and only if εN = Op(N

−1).
Proof: See Appendix E.

Remark 5.3: Theorem 5.4 shows that A-SPARSEVA and A-
SPARSEVA-RE cannot be minimax-rate-optimal and have the
oracle property at the same time. This fundamental tradeoff is
present in all model selection procedures, as shown in [29, 30].

Remark 5.4: The oracle property (Theorem 5.3) seems to
contradict the Cramér-Rao inequality, according to which the
covariance of an unbiased estimator (which does not assume
the sparsity structure of the parameter being estimated) cannot
be smaller than the inverse of the full Fisher information
matrix (which does not assume such sparsity pattern). In fact,
there is no apparent contradiction: all sparse estimators are
indeed “super-efficient”, in the sense that they can beat the
Cramér-Rao bound (when they are tuned to enjoy the oracle
property). The reason is that these estimators are not unbiased,
but only asymptotically unbiased, and they rely on non-smooth
functions, such as the `1 norm, so the conditions for the
Cramér-Rao inequality do not hold for these estimators. This
is a well known issue (see [29]), as sparse estimators can
be seen as a combination of model structure selection and
estimation (or “pre-test estimators”), resembling Hodges-type
super-efficient estimators. This, of course, does not come for
free: as seen in the previous remark, if a sparse estimator is
tuned to satisfy the oracle property, it looses its minimax rate
optimality.

Remark 5.5: Notice that the scaling of the parameters in
θo does not seem to play a major role in the estimation
performance of Algorithm 2, at least asymptotically in N ,
since A-SPARSEVA weights the `1 norm by the inverse of
the estimates in θ̂LS

N , which compensates for the relative size
of the components of θo.

Remark 5.6: As seen in the theorems of this section, the
consistency, sparseness, oracle and minimax-rate-optimality
properties do not depend on constant factors in εN , but
only on its asymptotic rate as a function of N . This comes
from the fact that the described properties are asymptotic in
nature, which means that constant factors may affect the finite
sample behavior of the estimator, but their effect becomes
negligible for large N . The irrelevance of constant factors is
also common in the consistency of standard model selection
criteria; see, e.g., [3, Section 11.5].

B. Steiglitz-McBride method
The modified Steiglitz-McBride method presented in this

paper, which includes a stabilization scheme (based on reflect-
ing the unstable poles of the prefilter) and a high order ARX
pre filtering step, is due to Y. Zhu [16]. This method, as well as
the original Steiglitz-McBride algorithm, can be expected to be
globally convergent if the signal to noise ratio is sufficiently
high (c.f. [23]), but its global convergence properties in the
general case are not well understood yet. However, preliminary



ROJAS, TÓTH AND HJALMARSSON: SPARSE ESTIMATION OF POLYNOMIAL AND RATIONAL DYNAMICAL MODELS 7

results seem to indicate that the equilibrium point of the
modified method is a consistent and asymptotically efficient
estimator of Ao(q) and Bo(q) for general Box-Jenkins model
structures3 (4).

C. OE-SPARSEVA
The combination of A-SPARSEVA and the modified

Steiglitz-McBride method, OE-SPARSEVA, as presented in
Section IV-C, can be expected to have attractive asymptotic
properties. Indeed, by combining the theoretical results of its
components, we obtain the following result:

Theorem 5.5 (Properties of OE-SPARSEVA): Under the as-
sumptions of Section III, OE-SPARSEVA (assuming conver-
gence of the Steiglitz-McBride iterations)

1) is consistent in probability if and only if εN → 0,
2) has the sparseness property, for εN → 0 and θo 6= 0, if

and only if NεN →∞,
3) has the oracle property if εN → 0 and NεN →∞.

Proof: See Appendix F.

D. Equivalence with other sparse estimators
Next, we show how the introduced A-SPARSEVA estimator

is related to the LASSO and the NNG (resembling the proof
of the duality result in [31, Theorem 3]). First, consider the
adaptive version of the LASSO estimator (1) (for γ = 1),
which was first introduced in [18]:

min
θ∈Rng

V (θ,DN ) (22a)

s.t. ‖wN � θ‖1 ≤ εL. (22b)

This estimator can be written in the Lagrangian form

ΛL(θ, λL) = V (θ,DN ) + λL

(
‖wN � θ‖1 − εL

)
, (23)

with λL ≥ 0. The optimum of (22) is obtained at the optimum
of

max
λL≥0

min
θ∈Rng

ΛL(θ, λL). (24)

Similarly, (13) has the Lagrangian:

ΛS(θ, λS) = ‖wN � θ‖1+

λS

(
V (θ,DN )− V (θ̂LS

N ,DN )(1 + εN )
)
, (25)

Notice that both V (�,DN ) and ‖ � ‖1 are convex functions,
V (�,DN ) is strongly convex and all constraints satisfy the
constraint qualification, hence solutions of (24) and (25), i.e.,
(θ̂L(εL), λ∗L(εL)) and (θ̂S(εS), λ∗S(εS)) are unique with no
duality gap.

For a given εL, let εN be such that V (θ̂LS
N ,DN )(1 + εN )

is equal to the minimum value of (22). For this choice of
εN , the feasibility sets UL := {θ ∈ Rng : ‖wN � θ‖1 ≤
εL} and US := {θ ∈ Rng : V (θ,DN ) ≤ V (θ̂LS

N ,DN )(1 +
εN )} are convex and intersect at exactly one point4, θ̂L(εL) =

3Even though it is possible to propose variants of Algorithm 2, where
either, e.g., ridge regression or a sparse estimator are used instead of least-
squares in Steps 1 or 6, preliminary results show that Zhu’s method is already
asymptotically efficient when the iterations from Steps 4-7 of OE-SPARSEVA
are convergent. This suggests that not much may be gained by considering
other variants of Algorithm 2.

4If θS 6= θL both belong to US ∩ UL, then both achieve the minimum of
(22). However, (θS+θL)/2 also belongs to US∩UL (since it is a convex set),
and due to the strong convexity of V , V ([θS + θL]/2,DN ) < V (θS,DN ),
contradicting the optimality of θS and θL. This means that the optimum of
(22) is unique and that US ∩ UL is a singleton.

θ̂S(εN) (c.f. Figure 1). The reverse of this argument also holds
respectively. This shows that if λ∗S 6= 0 and λ∗L 6= 0, then
there is a bijective relation between εL and εN such that θ∗ :=
θ̂S(εN ) = θ̂L(εL). Notice, however, that this relation (which is
induced by the KKT conditions of (23) and (25)) is dependent
on the optimal solution θ∗, i.e., it is data-dependent (center of
US depends on θ̂LS

N and its shape depends on ΦN ).
As a next step, consider the NNG in the form of

min
w̄∈Rng

V (w̄ � θ̂LS
N ,DN ) + λN‖w̄‖1, (26a)

s.t. w̄ ≥ 0, (26b)

which provides the parameter estimate θ̂NNG
N := w̄∗ � θ̂LS

N
with w̄∗ being the optimum of (26). Introduce a new variable
θ = w̄ � θ̂LS

N which, if substituted into (26), gives

min
θ∈Rng

V (θ,DN ) + λN‖wN � θ‖1 (27a)

s.t. θ � θ̂LS
N ≥ 0, (27b)

as [wN ]i := 1/|[θ̂LS
N ]i|. Therefore, by comparing (27) and

(24), as observed in [18], we see that the NNG corresponds
to the adaptive LASSO with an additional sign constraint
(via a suitable, data-dependent, bijection between λN and the
optimal λ∗L).

Based on the previous derivations, the conclusion is that A-
SPARSEVA, the adaptive LASSO and the NNG can be all seen
as the same sparse estimator under a specific choice of their
regularization (penalization) parameter (and an additional sign
constraint for the NNG). This highlights that the real advantage
of the A-SPARSEVA scheme is the automatic selection of this
parameter, implicitly ensuring either the oracle or the minimax
rate optimality properties.

We should emphasize again, however, that the relation be-
tween A-SPARSEVA, the adaptive LASSO and the NNG is in
general data- (or θ∗-) dependent. This means that, even though
their regularization paths are equivalent (modulo monotonic
transformations of their regularization parameters), it does not
seem possible in general to derive a simple, explicit formula
to describe these connections without having first to solve the
respective convex optimization problems. In other words, the
automatic tuning provided by SPARSEVA cannot be easily
translated to the LASSO or NNG formulations.

VI. NUMERICAL EXAMPLE

In this section, we will provide numerical evidence of the
performance of the methods developed in Section IV.

A. SPARSEVA
We illustrate the properties and performance of the SPAR-

SEVA approach and compare it with other methods using
Example 4.1 in [27]. In this example,

Ao(q) = 1, Bo(q) = 3q−1 + 1.5q−2 + 2q−5,

Co(q) = 1, Do(q) = Ao(q) = 1.

This system has a Finite Impulse Response (FIR) structure,
which corresponds to a simple regression setup. To identify
it from data based on the previously proposed estimation
scheme, consider the model structure (10) with na = 0 and
nb = 8, which results in the true parameter vector

θo = [ 3 1.5 0 0 2 0 0 0 ]>.
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Notice that θo is rather sparse. For the purpose of identifica-
tion, estimation and validation data sets have been generated.
According to the experimental conditions discussed in [27],
each data set has been constructed in terms of a regression
matrix ΦN with N independently generated rows where in
each row the components are standard normal with a cor-
relation between the ith and the jth terms of 0.5|i−j|. This
corresponds to N number of independent experiments for each
row, collected into ΦN , which have been conducted on the
system with a single output measurement yt generated by an
AR filtered white noise: ut − 0.5ut−1 =

√
1− 0.25wt with

wt ∼ N (0, 1). Under these conditions, 100 estimation and
100 validation data sets have been generated for each “data
length” N ∈ {10 + 10k}10

k=1 resulting in 11× 100 estimation
and validation data records. The average Signal to Noise Ratio5

(SNR) has been −3.97dB.
Using these data sets, SPARSEVA is compared to the

following methods: LS-ORACLE: least-squares estimate of θ
using ΦTo

(prior knowledge of the non-zero parameters). Note
that this is the ideal estimator and by the Cramér-Rao lower
bound w.r.t. the true support of θo, no other estimator can
perform better. However, it cannot be applied in practice as
the optimal model structure is unknown. LASSO-GCV is the
LASSO,

min
θ∈Rng

V (θ,DN ) + λ‖θ‖1, (28)

where the regularization parameter λ is chosen according to
generalized cross-validation [32], i.e., the λ that minimizes

V (θ̂N ,DN )/(1− p(λ)/N)2 (29)

is chosen. Here p(λ) is the number of effective parameters
defined as

p(λ) = Tr
{
ΦN

(
Φ>NΦN + λW †

)−1
Φ>N

}
, (30a)

W = Diag(|θ̂N |), (30b)

with | · | taken element-wise. Four variants of SPARSEVA
are included: SPARSEVA-AIC/BIC where the constraint εN is
chosen as AIC (εN = 2ng/N ) and BIC (εN = (ng logN)/N ).
A-SPARSEVA-AIC/BIC are the two corresponding adaptive
versions. Notice that the BIC choice for εN satisfies the
condition for sparseness (see Theorem 5.2).

Figure 2 shows the Mean-Squared Error (MSE) of the
parameter estimate as a function of the sample size for
100 Monte-Carlo simulations. Re-estimation is used for the
SPARSEVA-methods. The threshold ε∗ for determining which
parameters are zero and non-zero, respectively, was (somewhat
arbitrarily) set to 10−5. Also re-estimation was tried for
LASSO-GCV, but was found to perform worse than no re-
estimation and has therefore not been included. It can be seen
that above N = 70, the MSE of A-SPARSEVA with BIC
constraint becomes visually undistinguishable from the MSE
of LS-ORACLE6; this agrees with the Oracle property, which
implies that the difference between these MSE’s should vanish
asymptotically with N . Figure 3 shows the average number

5The SNR is defined as SNR := 10 · log10
(
‖yt−vt‖22
‖vt‖22

)
where vt =

Co(q)
Do(q)

et.
6The collapse of the two MSE curves is due to the inherent randomness

of the Monte Carlo simulations, not to the equality of the actual MSE of the
estimators for N ≥ 70.
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Fig. 2. MSE as a function of the sample size N .
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Fig. 3. Percentage of correctly identified zero elements as a function of the
sample size N .

of correctly estimated zero parameters, and we see that this
estimator has the best ability to determine where the zero
elements are located. However, from Figure 2 it can be seen
that for small sample sizes the performance of this estimator
is worse than for almost all other estimators. From Figure 4,
which shows the average number of correctly estimated non-
zero parameters, it is clear that this is due to that this estimator
has problems to identify which elements of θo are non-zero
for small sample sizes.

B. OE-SPARSEVA

Consider the data-generating system (2) described by the
following polynomials:

Ao(q) = 1−0.1972q−2−0.2741q−8, Bo(q) = q−5−8.336q−7,

Co(q) = 1, Do(q) = 1.

This system obviously has an OE type of noise structure.
To identify this system, consider the model structure (17)
with na = 8 and nb = 8. Even if this corresponds to a
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Fig. 4. Percentage of correctly identified non-zero elements as a function of
the sample size N .

rather accurate guess of the original order of the polynomials
involved, the true parameter vector

θo = [ 0 −0.1972 0 0 0 0 0 −0.2741

0 0 0 0 0 1 0− 8.3365 ]

corresponding to the data-generating system is rather sparse.
Again, a Monte-Carlo study is set up, with 100 estimation

and 100 validation data records generated by the system
for each data length N ∈ {200 + 50k}37

k=1, resulting in
37 × 100 estimation and validation data records with length
in the interval [200, 2000]. During each computation, u and e
have been considered as independent realizations of two white
noise sequences with normal distributions ut ∼ N (0, 1) and
et ∼ N (0, σ2) respectively. To study the effect of a change in
the power of the noise for this case, the generation of the data
sequences have been repeated for various standard deviations
variances σ ∈ {0.0087, 0.275, 1.54, 8.71} corresponding to
average SNR’s: 30dB, 15dB, 7.5dB, 0dB respectively. This
resulted in a total of 4 × 37 × 100 = 14800 estimation and
validation data sets defining a serious Monte-Carlo study under
various conditions.

Using these data sets, the OE-SPARSEVA described by
Algorithm 2, with BIC type of εN , LS re-optimization and
maximum number of iterations being equal to 50, and the
OE algorithm of the Identification Toolbox of MATLAB have
been applied to estimate the system in the considered model
set. In order to fairly assess the quality of the estimates, an
SMB-ORACLE estimator in terms of the Steiglitz-McBride
method has been also applied with the priori knowledge of
which elements of θo is zero. The results are compared in
terms of
• The MSE of the prediction ŷθ̂N on the validation data:

MSE =
1

N
E{‖y(k)− ŷθ̂N (k)‖22}, (31)

computed as an average over each 100 runs for a given
N and σ2.

• The average of the fit score or the Best Fit Rate (BFR)

[33]:

BFR = 100% ·max

(
1−
‖y(k)− ỹθ̂N (k)‖2
‖y(k)− ȳ‖2

, 0

)
, (32)

where ȳ is the mean of y and ỹθ̂N is the simulated model
output based on the validation data.

• The `1 parameter estimation error: ‖θ̂ − θo‖1.
• The percentage of correctly estimated zero elements.
The average results of the 100 Monte-Carlo runs in each

cases is given in Figure 5 and the mean and standard deviation
of the parameters are given in the SNR= 7.5dB, N = 2000
case in Table I. From these results it follows that in the low
noise cases (SNR=30dB, 15dB) the proposed OE-SPARSEVA
scheme correctly estimates the true support of θo, i.e., it
correctly identifies the underlying model structure of the
system and hence it achieves the same results as the SMB-
ORACLE approach. The performance difference of the OE
approach and the SMB-ORACLE suggests that the reduction
of the estimation error can be relatively large by using OE-
SPARSEVA in these cases not mentioning the value of really
finding which parameters have no role at all in the considered
model structure. When the noise increases to a moderate level
(SNR=7.5dB), for small data lengths we can observe that OE-
SPARSEVA loses the benefits of the regularized optimization
scheme by over-estimating the possibly non-zero parameters
and achieving worse results than the OE approach. Increas-
ing the number of data points results in a quick recovery
of the algorithm and around N = 800 it starts achieving
similar results as the SMB-ORACLE. We can see that the
performance of OE-SPARSEVA asymptotically converges to
the SMB-ORACLE approach while the OE has a much slower
convergence rate. The same behavior can be observed in the
SNR=0dB case. However, initially, the OE approach provides
better estimates due to misclassification of the zero elements
for this high-noise / low-sample-size scenario. The point of
recovery is around N = 1000 samples, where the correct
estimation of the support becomes more than 50%. This is
followed by a slow, but much steeper convergence to the
performance of the SMB-ORACLE than the OE method. Note
that this performance loss, is mainly due to the inaccurate
estimation of the pre-filters and the small sample size for the
BIC scheme.

VII. CONCLUSIONS
In this manuscript, we have presented two contributions to

the problem of sparse estimation of rational plant structures.
The first contribution is the elimination of the need for

using cross-validation to tune the regularization parameters,
by proposing a new technique, called SPARSEVA, inspired
by the philosophy behind Akaike’s criterion. Numerical sim-
ulations have shown that the adaptive version of this method
performs most favorably. On these examples, the “AIC” choice
εN = (1 + 2ng/N)V (θ̂LS

N ,DN ) seems to give a good
balance between sparsity and model fit. Thus, this method
has the potential to provide a good estimate in one shot.
When the focus is on sparseness, the “BIC” choice εN =
(ng log(N)/N)V (θ̂LS

N ,DN ) ensures this property.
As a second contribution, we have shown that by combin-

ing SPARSEVA with a high-order ARX pre-filtering based
Steiglitz-McBride method, an efficient approach can be de-
rived for the estimation of general rational LTI plant model
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TABLE I
BIAS AND VARIANCE RESULTS OF THE PARAMETER ESTIMATES BY THE SMB-ORACLE, OE AND THE OE-SPARSEVA METHODS IN THE

SNR= 7.5DB, N = 600 CASE.

Method a2 a8 b6 b7
θo -0.1972 -0.2741 1 -8.3365

SMB-ORACLE mean -0.1976 -0.2714 1.0028 -8.3535
std 0.0140 0.0169 0.1818 0.1656

OE mean -0.1975 -02737 0.9937 -8.3490
std 0.0155 0.0157 0.1862 0.1652

OE-SPARSEVA mean -0.1972 -0.2713 0.9985 -8.3507
std 0.0140 0.0166 0.1794 0.1676
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Fig. 5. Monte Carlo simulation results with various SNR’s and data lengths N .
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structures in which the underlying data-generating system is
represented by a sparse parameter vector. A main benefit of the
method, inherited from SPARSEVA, is that the regularization
parameter (or tuning quantity) is automatically chosen, not
requiring cross-validation. The derived approach can be used
to recover the dynamical structure of the system, i.e., for model
structure selection, even in case of heavy over-parametrization
or colored noise settings provided that a sufficiently large
data set is available. The latter has been demonstrated by an
extensive simulation based Monte-Carlo study.

The theory developed in the paper is asymptotic in nature.
An interesting topic for future research is to explore the small-
sample / low-SNR behavior of SPARSEVA, and to consider
corrected versions of AIC or BIC (as choices for εN ) under
these conditions.

APPENDIX A
NOTATION USED IN APPENDICES

The notation

η :=
N

σ2
V (θ̂LS

N ,DN ), (33a)

ξ := [Φ>NΦN ]−1Φ>NEN = θ̂LS
N − θo, (33b)

will be used throughout the appendices.

APPENDIX B
Proof of Theorem 5.1

The proof will be based on the following formulation of
(12) and (13).

Lemma II.1: It holds that

η/N → 1 in probability as N →∞;
√
Nξ ∈ As N (0, σ2M), where M � 0.

Furthermore, problems (12) and (13) can be rewritten as

min
θ∈Rng

‖ω � θ‖1, (34a)

s.t. σ2εNη ≥ ‖θ − (θo + ξ)‖2ΓN
, (34b)

where ΓN := Φ>NΦN , ω = [1 · · · 1]> ∈ Rng for (12) and
ω = wN for (13).

Proof: See Appendix G.
To simplify the notation, define

Ω := {θ ∈ Rng | ‖θ − (θo + ξ)‖ΓN
≤
√
σ2εNη}, (35)

as the constraint set of (34).
Lemma II.2 (Optimality achieved on the boundary): The

optimum of (34), when the elements of w are strictly positive,
is achieved at θ = 0 if 0 ∈ Ω, otherwise it is achieved on the
boundary of Ω, and no nonzero interior point of Ω can be an
optimum point of (34).

Proof: See Appendix G.
Since η/N

p−→ 1 and since 7

1

N
‖z‖2ΓN

=
1

N
z>ΓNz ≥ {λmin(Γ ) + op(1)}‖z‖22,

7The condition limN→∞N−1ΓN = Γ denotes element-wise conver-
gence of N−1ΓN to Γ . Since the eigenvalues of a matrix are continuous
functions of its elements [34, Appendix D], such condition implies the con-
vergence of the eigenvalues of N−1ΓN to the eigenvalues of Γ (appropriately
sorted).

for every z ∈ Rng , (34) gives that

‖θ̂N − θo‖2 ≤ ‖θ̂N − θ̂LS
N ‖2 + ‖θ̂LS

N − θo‖2

≤ ‖θ̂N − θ̂LS
N ‖ΓN√

N
(√

λmin(Γ ) + op(1)
) + ‖θ̂LS

N − θo‖2

≤
√
σ2εNη

N
[λ
−1/2
min (Γ ) + op(1)] + ‖ξ‖2

= σλ
−1/2
min (Γ )

√
εN + op(1) +Op(N

−1/2),

which implies that θ̂N
p−→ θo if εN → 0. Conversely, assume

that lim infN→∞ εN = δ > 0, i.e., that there is a subsequence
{Nk}k∈N ∈ N such that for all k ∈ N, εNk

> δ/2 (say). As-
sume without loss of generality that N1 is large enough so that,
with probability 1− δ (δ > 0), |‖N−1

k ΓNk
‖ − ‖Γ‖| < ‖Γ‖/2

for all k ∈ N; denote this event by S∗. Consider the neigh-
borhood U := {θ ∈ Rng : ‖θ− θo‖2 < σ

√
(δ/12)‖Γ‖−1} of

θo. Then, since for all k ∈ N and x ∈ Rng , under S∗, it holds
that

1

Nk
‖x‖2ΓNk

=
1

Nk
x>ΓNk

x ≤ ‖N−1
k ΓNk

‖‖x‖22 ≤
3

2
‖Γ‖‖x‖22

and ‖θ− (θo + ξ)‖2 ≤ ‖θ− θo‖2 + ‖ξ‖2, it follows that under
S∗:

Ω ⊇

θ ∈ Rng :

√
3

2
‖Γ‖‖θ − (θo + ξ)‖2 ≤

√
σ2εNk

η

Nk


=

{
θ ∈ Rng : ‖θ − (θo + ξ)‖2 ≤

√
2σ2

3‖Γ‖
√
εNk

√
η

Nk

}

⊇

{
θ ∈ Rng : ‖ξ‖2 ≤

√
σ2δ

3‖Γ‖

√
η

Nk
− ‖θ − θo‖2

}
.

This implies that, for all k ∈ N,

P{U ⊂ Ω,S∗} ≥ P

{
‖ξ‖2<

√
σ2δ

3‖Γ‖

√
η

Nk
−

√
σ2δ

12‖Γ‖
, S∗

}

= P

{
‖ξ‖2 <

√
σ2δ

12‖Γ‖
+ op(1), S∗

}
→ P {S∗} = 1− δ,

because
√
Nξ ∈ As N (0, σ2M), i.e., ξ = op(1). Since δ was

arbitrary, this shows that lim supN→∞ P{U ⊂ Ω} = 1, that
is, θ = θo is an interior point of the constraint set of (34) with
non-negligible probability for N = Nk as k → ∞. On the
other hand, by Lemma II.2 the optimum of (34) is achieved
on the boundary of Ω (or at θ = 0 6= θo) 8, which means that

lim inf
N→∞

P

{
‖θ̂(A)
N −θ

o‖2 > min

{
σ

√
δ

12‖Γ‖
, ‖θo‖2

}}
>0,

i.e., (A-)SPARSEVA is not consistent in probability if εN 9 0.

Proof of Corollary 5.1
The corollary follows from the fact (c.f. Lemma II.2) that the

optimum of (34) is achieved on the boundary of the constraint
set Ω (or at θ = 0 6= θo), whose size has order εN , larger
than N−1/2.

8For A-SPARSEVA, since the elements of wN are zero with probability
0, we can restrict ourselves to the event where they are strictly positive.
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APPENDIX C
PROOF OF THEOREM 5.2

Without loss of generality, let us assume that To =
{1, . . . , n1}, with n2 := ng − n1 > 0. Note that such a
condition can be satisfied by reordering the columns of Φ in
(6). Then, the following result holds:

Lemma III.1 (Conditions for sparseness): Under the stated
assumptions for (34), and θo 6= 0, the optimal solution of (34)
(with ω = wN ), θ̂A

N = [(θ̂A,1
N )> (θ̂A,2

N )>]>, with θ̂A,i
N ∈ Rni

(i = 1, 2), satisfies Supp(θ̂A,2
N ) = In1

1 and Supp(θ̂A,2
N ) = ∅,

i.e., recovery of the true support To holds, if the following
conditions hold:

• ΓN > 0,

•
√
σ2εNη < 0.5

√
λmin(ΓN ) min{|[θo]i| : i ∈ In1

1 },
• |ξi| < |[θo]i|, for all i ∈ In1

1 ,

•
√
nCond(ΓN )‖ξ(2)

a ‖∞+√
σ2εNη

λmin(Γ−1
N )

{1 + Cond(ΓN )}‖Γ−1
N ‖‖w

(1)
N ‖2√

‖w(1)
N ‖22 + mini∈In2

1
|[w(2)

N ]i|2

≤
√
σ2εNη

λmin(Γ−1
N )√

‖Γ−1
N ‖

mini∈In2
1
|[w(2)

N ]i|2√
‖w(1)

N ‖22 + ‖w(2)
N ‖22

,

where wN =: [(w
(1)
N )> (w

(2)
N )>]>, according to the partition

of θ̂A
N and ξ

(2)
a corresponds to those ξi which are associated

with the parameters of A in θo,2.
Proof: See Appendix G.

Let us first assume that NεN → ∞. To establish the
sparseness of A-SPARSEVA, we just need to show that the
conditions of Lemma III.1 hold with probability tending to 1
as N →∞. In particular, these conditions can be written as

• Γ + op(1) > 0,

• σ
√
εN + op(1) < 0.5

√
λmin(Γ ) min

i∈In1
1

|[θo]i|+ op(1),

• Op(N
−1/2) < |[θo]i|, for all i ∈ In1

1 ,

• Op(N
−1/2) + σ

√
λmax(Γ ){1 + Cond(Γ )}λmax(Γ−1)·

•
√
εNOp(N

−γ/2) ≤ σ
√
εN

λmin(Γ−1)√
λmax(Γ−1)

(1 + op(1)).

Since εN → 0, NεN → ∞ and γ > 0, all these conditions
hold (separately) with probability tending to 1 as N →∞. By
Boole’s inequality [35], the probability that all of them hold
simultaneously tends to 1 as N →∞. Hence, by Lemma III.1,
A-SPARSEVA has the sparseness property.

Let us assume now that NεN →∞ does not hold. Problem
(34) can be written as

min
θ1,θ2

‖ω(1) � θ1‖1 + ‖ω(2) � θ2‖1 (36)

s.t. σ2εNη ≥
[
θ1 − (θo,1 + ξ(1))

θ2 − ξ(2)

]>
ΓN

[
θ1 − (θo,1 + ξ(1))

θ2 − ξ(2)

]
By Theorem 5.1, ‖θ̂A

N − θo‖2 = Op(N
−1/2), which implies

that ‖θ̂A,1
N − (θo,1 + ξ(1))‖22 = Op(N

−1). Letting θ̂A,1
N

fixed, it follows from (36) that θ̂A,2
N = 0 if and only if

θ̂A
N = [(θ̂A,1

N )> 0]> satisfies the constraint in (36), i.e., if

σ2εNN + op(N) (37)

≥
[
θ̂A,1
N − (θo,1 + ξ(1))

−ξ(2)

]>
ΓN

[
θ̂A,1
N − (θo,1 + ξ(1))

−ξ(2)

]
≥
(
λmin(Γ ) + op(1)

)(
N‖θ̂A,1

N − (θo,1 + ξ(1))‖22 +N‖ξ(2)‖22
)

= σ2λmin(Γ )N‖ξ(2)‖22 +Op(1).

As
√
Nξ(2) ∈ As N (0, σ2M2) for some M2 > 0,

N‖ξ(2)‖22/σ2 has asymptotically a distribution with un-
bounded support, hence the probability that (37) holds does
not tend to 1 as N → ∞. Hence, in this case A-SPARSEVA
does not have the sparseness property (only if NεN →∞).

APPENDIX D
PROOF OF THEOREM 5.3

Denote by θ̂oracle
N the least squares estimate, which is ob-

tained with the exact knowledge of the true support To, i.e.,
with (9) using ΦN,To

. Furthermore, let M be the asymptotic
information matrix of θ assuming knowledge of To and SN
be the event that Supp(θ̂A

N ) = To. The complement of SN is
denoted by S̄N . This gives that, for every x ∈ Rng ,

P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x}

= P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x|SN}P{SN}+

P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x, S̄N}

= P{[NM ]1/2(θ̂oracle
N − θo) ≤ x}P{SN}+

P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x}P{S̄N}.

where ≤ is taken component-wisely, and M1/2 denotes the
positive definite square root of M . Therefore,

|P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x}

− P{[NM ]1/2(θ̂oracle
N − θo) ≤ x}|

= |P{[NM ]1/2(θ̂oracle
N − θo) ≤ x}(P{SN} − 1)

+ P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x}P{S̄N}|

≤ [P{[NM ]1/2(θ̂oracle
N − θo) ≤ x}+ 1]P{S̄N}

≤ 2P{S̄N}. (38)

Hence, if F (x) denotes the cumulative standard normal dis-
tribution function, then (38) implies that

lim
N→∞

∣∣∣P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x} − F (x)

∣∣∣
≤ lim
N→∞

|P{[NM ]1/2(θ̂A−RE
N − θo) ≤ x}

− P{[NM ]1/2(θ̂oracle
N − θo) ≤ x}| (39)

+ lim
N→∞

∣∣∣P{[NM ]1/2(θ̂oracle
N − θo) ≤ x} − F (x)

∣∣∣
≤ 2 lim

N→∞
P{S̄N}+

lim
N→∞

∣∣∣P{[NM ]1/2(θ̂oracle
N − θo) ≤ x} − F (x)

∣∣∣ = 0,

since θ̂A
N has the sparseness property (i.e., limN→∞ P{S̄N} =

0), and θ̂oracle
N is asymptotically efficient and normal. Equa-

tion (39) shows that θ̂A−RE
N has the Oracle property.
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APPENDIX E
PROOF OF THEOREM 5.4

First notice that inf δ̂∈Rng supθo∈Rng R(δ̂, θo) �p N−1. To
see this, note that the estimator θ̂LS

N is minimax optimal
because it coincides with the maximum likelihood estimator
of θo (which is known to be minimax, see e.g. [36, Sec-
tion 5.3.2]), and for this estimator, the worst-case risk decays
asymptotically as N−1.

Consider now the case εN = Op(N
−1). Then, by The-

orem 5.1, supθo∈Rng R(θ̂A
N , θ

o) = Op(N
−1), which shows

that A-SPARSEVA is minimax rate optimal. To show that
A-SPARSEVA-RE is also minimax rate optimal, denote by
L the subspace of Rng consisting of all points θ ∈ Rng

such that θT̄A
= 0 with TA = Supp(θ̂A

N ); in other words,
L is the set of parameter values with the same support as
A-SPARSEVA. By definition, for all N sufficiently large,
L ∩ Ω 6= ∅ with high probability, because θ̂A

N ∈ L ∩ Ω
with high probability. This implies that, for N sufficiently
large, θ̂A−RE

N ∈ Ω with high probability, since otherwise
V (θ̂A−RE

N ,DN ) > V (θ̂A
N ,DN ), contradicting the optimality

of V (θ̂A−RE
N ,DN ). This observation implies, by following

a similar argument as in the proof of Theorem 5.1, that
supθo∈Rng R(θ̂A−RE

N , θo) = Op(N
−1).

The necessity of the condition εN = Op(N
−1) for min-

imax rate optimality follows from [29, Theorem 2.1] (see
also [30, Theorem 1]). To apply this theorem, restrict εN
to a subsequence {Nt}t∈N such that NtεNt → ∞ as
t → ∞. For this subsequence, according to Theorem 5.2,
both A-SPARSEVA and A-SPARSEVA-RE have the sparse-
ness property, which implies, by [29, Theorem 2.1], that
Nt supθo∈Rng R(θ̂A

Nt
, θo) → ∞. Hence, A-SPARSEVA and

A-SPARSEVA-RE are not minimax rate optimal, unless εN =
Op(N

−1).

APPENDIX F
PROOF OF THEOREM 5.5

The three properties follow from Theorems 5.1, 5.2 and
5.3 (with the asymptotic efficiency of the modified Steiglitz-
McBride method), respectively, if the assumptions of Sec-
tion IV-A1 hold. Therefore, we need to show that such
assumptions are valid.

The third assumption in Section III-A1 follows directly from
the asymptotic efficiency of the modified Steiglitz-McBride
method.

To verify the first two assumptions, notice that the Steiglitz-
McBride iterations (steps 4-7 of Algorithm 2) deliver a poly-
nomial Â(k+1)(q) which is an asymptotically efficient estimate
of Ao(q), i.e., Â(k+1)(q) = Ao(q) +Op(N

−1/2). In addition,
the data satisfies asymptotically an ARX structure of the form

Ao(q)yo,F
t = Bo(q)uo,F

t + vt,

where vt = HN (q)et, with {et} a Gaussian white noise
sequence of variance σ2 and {HN (q)} a sequence of filters
such that sup|z|=1 |HN (z) − 1| = op(1) [37, Theorem 3.1].
Therefore, the application of the filter 1/Â(k+1)(q) yields data
{uF

t , y
F
t } such that

u
F(k)
t = ũo,F

t + op(1)

y
F(k)
t = ỹo,F

t + op(1),

where {ũo,F
t , ỹo,F

t } are such that

Ao(q)ỹo,F
t = Bo(q)ũo,F

t + et.

The regressor matrix fed to A-SPARSEVA-RE then satisfies

Φ
(k)
N = Φo

N + op(1),

where Φ0
N is the regressor matrix obtained from {ũo,F

t , ỹo,F
t }.

Therefore,

1

N
(Φ

(k)
N )>Φ

(k)
N =

1

N
(Φo
N )>Φo

N + op(1),

due to the law of large numbers (see e.g. [2, Theorem 2.B.1]).
Appealing again to [2, Theorem 2.B.1], we obtain

1

N
(Φ

(k)
N )>Φ

(k)
N

p−→ Γ > 0,

for some Γ > 0. This verifies the second assumption of
Section IV-A1. Finally, notice that

V (θ,DN ) =
1

N
‖Y F

N − Φ
(k)
N θ‖22

=
1

N
‖θ −

(
(Φ

(k)
N )>ΦN

)−1
(Φ

(k)
N )>Y F

N ‖22

+
1

N
(Y F
N )>[I − Φ(k)

N

(
(Φ

(k)
N )>Φ

(k)
N

)−1
(Φ

(k)
N )>]Y F

N ,

where Y F
N = [yF

1 · · · yF
N ]>, hence

V (θ̂LS
N ,DN ) =

1

N
(Y F
N )>[I − Φ(k)

N

(
(Φ

(k)
N )>Φ

(k)
N

)−1
(Φ

(k)
N )>]Y F

N .

Now,

Φ
(k)
N

(
(Φ

(k)
N )>Φ

(k)
N

)−1
(Φ

(k)
N )>

=
1

N
Φ

(k)
N

(
1

N
(Φ

(k)
N )>Φ

(k)
N

)−1

(Φ
(k)
N )>

=
1

N
{Φo

N + op(1)}
{

1

N
(Φo
N )>Φo

N + op(1)

}−1

{Φo
N + op(1)}>

=
1

N
{Φo

N + op(1)}

{(
1

N
(Φo
N )>Φo

N

)−1

+ op(1)

}
{Φo

N + op(1)}>

= Φo
N

(
(Φo
N )>Φo

N

)−1
Φo
N )> + op(1),

where we have used [2, Theorem 2.B.1] in the last step.
Therefore,

V (θ̂LS
N ,DN ) =

1

N
(Y FN )>[I − Φ(k)

N

(
(Φ

(k)
N )>Φ

(k)
N

)−1
(Φ

(k)
N )>]Y FN

=
1

N
((Y o

N )> + op(1))

· [I − Φo
N

(
(Φo
N )>Φo

N

)−1
(Φo
N )> + op(1)] · (Y o

N + op(1))

= σ2 + op(1),

using [2, Theorem 2.B.1] again. This verifies the first assump-
tion of Section IV-A1, which concludes the proof.
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APPENDIX G
PROOF OF AUXILIARY RESULTS

Proof of Lemma II.1

The first two assertions follow from the assumptions in
Section IV-A1. Furthermore, expanding (8) and using that(
I − ΦN (Φ>NΦN )−1Φ>N

)
is idempotent gives

N · V (θ,DN ) = ‖θ − (Φ>NΦN )−1Φ>NYN‖2ΓN
+

‖
(
I − ΦN (Φ>NΦN )−1Φ>N

)
EN‖22, (40)

For θ̂LS
N = (Φ>NΦN )−1Φ>NYN , (40) reveals that

1

σ2
V (θ̂LS

N ,DN ) =
1

N

∥∥∥∥ 1

σ
(I − ΦN (Φ>NΦN )−1Φ>N )EN

∥∥∥∥2

2

.

These two observations imply that

(1 + εN )V (θ̂LS
N ,DN ) ≥ V (θ,DN ),

or, equivalently,

εNV (θ̂LS
N ,DN ) ≥

∥∥θ−(θo + (Φ>NΦN )−1Φ>NEN
)∥∥2

ΓN
.

Proof of Lemma II.2

If 0 ∈ Ω, then it trivially follows that θ = 0 is the unique
optimum of (34). Now let us assume for the rest of the proof
that 0 /∈ Ω. Notice that ‖ω� · ‖1 is a norm in Rng . Since Ω is
a closed set in the topology of ‖ · ‖ΓN

, it is also closed in the
topology of ‖ω� · ‖1 (since all norms in Rng are topologically
equivalent [38, Problem 15.7]). Hence, dist(Ω, 0) = inf{‖w�
θ‖1 : θ ∈ Ω} =: δ > 0, and there is an element θ∗ ∈ Ω such
that ‖w � θ∗‖1 = δ. Such θ∗ is an optimum of (34).

Let us assume that an interior point of Ω, say θ̄, achieves
‖ω � θ̄‖1 = δ, and consider a neighborhood U := {θ ∈ Ω :
‖ω � (θ − θ̄)‖1 < λ} ⊂ Ω, where λ < δ. Then the point
θ̃ =
(
(‖ω � θ̄‖1 − λ/2)/‖ω � θ̄‖1

)
θ̄ satisfies

‖ω � (θ̃ − θ̄)‖1 =

∥∥∥∥ω � [(‖ω � θ̄‖1 − λ/2‖ω � θ̄‖1

)
θ̄ − θ̄

]∥∥∥∥
1

=

∥∥∥∥‖ω � θ̄‖1 − λ/2‖ω � θ̄‖1
− 1

∥∥∥∥ ‖ω � θ̄‖1 =
λ

2
,

hence θ̃ ∈ U ⊂ Ω, but

‖ω � θ̃‖1 =

∥∥∥∥ω � [(‖w � θ̄‖1 − λ/2‖ω � θ̄‖1

)
θ̄

]∥∥∥∥
1

,

= |δ − λ/2| < δ.

Based on the above relation, θ̃ achieves a lower cost than θ̄.
This contradiction implies that no interior point of Ω can be
optimal.

Proof of Lemma III.1

First notice that due to the second and third assumptions
of the lemma, ‖θ − (θo + ξ)‖2ΓN

≤ σ2εNη can hold only if

θ = [θ(1) θ(2)]> with θ(i) ∈ Rni (i = 1, 2) and θ
(1)
k 6= 0 for

every k ∈ In1
1 . Otherwise, if [θ(1)]k = 0 for some k ∈ In1

1 ,

|[θo]k| = |[θ(1)]k − [θo]k| ≤

√√√√ n∑
i=1

[θi − ([θo]i + ξi)]2

= ‖θ − (θo + ξ)‖2 ≤
1√

λmin(ΓN )
‖θ − (θo + ξ)‖ΓN

≤ 0.5 min
i∈In1

1

(|[θo,1
1 ]i|),

which is a contradiction. Now, let us further partition θ(2) as
θ(2) =: [(θ

(2)
a )> (θ

(2)
b )>]>, where θ2

a corresponds to those
[θ(2)]i which are associated with the parameters of A, and
partition wN and ξ accordingly. Note that these parameters
are exactly the zero parameters allocated at A. θ(2)

a is defined
respectively. Our goal is to show that this partition leads to a
contradiction if na > 0.

By the assumptions of the lemma, 0 /∈ Ω, hence by
Lemma II.2, the optimum lies in the boundary of Ω. There-
fore, the optimality conditions for problem (34), omitting the
complementary conditions, are [39, Section 28]

0 ∈ ∂θ(‖ω � θ‖1 + (µ/2)[‖θ − (θo + ξ)‖2ΓN
− σ2εNη]),

µ ≥ 0, ‖θ − (θo + ξ)‖2ΓN
= σ2εNη, (41)

for some µ, where ∂θf(θ) denotes the subdifferential of a
function with respect to θ. Note that the regularity conditions
for (41) to be necessary and sufficient hold, since the constraint
set contains an interior point, e.g., θ = θo + ξ. After some
algebra, using facts such as ∂‖x‖1 = Sgn(x), and the partition
of θ, θo and w, we can rewrite (41) as θ(1) − (θo,1 + ξ(1))

θ
(2)
a − ξ(2)

a

−ξ(2)
b

 = − 1

µ
Γ−1
N

 w
(1)
N � Sgn(θ(1))

w
(2)
N,a � Sgn(θ

(2)
a )

w
(2)
N,b � Sgn(0)


µ ≥ 0, ‖θ − (θo + ξ)‖2ΓN

= σ2εNη. (42)

We can partition Γ−1
N according to the partition of θ as

Γ−1
N =:

M11 M1,a M1,b

Ma,1 Ma,a Ma,b

Mb,1 Mb,a Mb,b

 ,
which, together with (42), gives

θ(2)
a = − 1

µ
[Ma,a −Ma,bM

−1
b,bMb,a][w

(2)
N,a � Sgn(θ(2)

a )]

+ ξ(2)
a −Ma,bM

−1
b,bξ

(2)
b (43)

− 1

µ
[Ma,1 −Ma,bM

−1
b,bMb,1][w

(1)
N � Sgn(θo,1)]

Note that Ma,a − Ma,bM
−1
b,bMb,a > 0 (since ΓN > 0 [34,

Theorem 7.7.6]). Therefore, (43) and the assumptions of the
lemma imply the sparseness of θ̂A

N by noting that

0 <

na∑
i=1

[w
(2)
N,a]i|[θ(2)

a ]i| = q>θ(2)
a = (44)

− 1

µ
q>[Ma,a −Ma,bM

−1
b,bMb,a]q + q>

(
ξ(2)
a −Ma,bM

−1
b,bξ

(2)
b

− 1

µ
[Ma,1 −Ma,bM

−1
b,bMb,1][w

(1)
N � Sgn(θo,1)]

)
< 0,
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where q = w
(2)
N,a � Sgn(θ

(2)
a ), which is a contradiction.

However, to establish (44) we still need to prove that the first
term of the second line of (44) dominates the second term. To
this end, notice first that

µ ≥ 1√
σ2εNη

√
λmin(Γ−1

N )

√
‖w(1)

N ‖22 + ‖w(2)
N,a‖22

µ ≤ 1√
σ2εNη

√
‖Γ−1

N ‖
√
‖w(1)

N ‖22 + ‖w(2)
N ‖22.

Based on these inequalities, we have
1

µ
|q>[Ma,a −Ma,bM

−1
b,bMb,a]q|

≥ 1

µ
λmin{Ma,a −Ma,bM

−1
b,bMb,a}‖w(2)

N,a‖
2
2

≥
√
σ2εNη‖w(2)

N,a‖22√
‖Γ−1

N ‖
√
‖w(1)

N ‖22 + ‖w(2)
N ‖22

1

‖(Ma,a −Ma,bM
−1
b,bMb,a)−1‖

≥
√
σ2εNη‖w(2)

N,a‖22√
‖Γ−1

N ‖
√
‖w(1)

N ‖22 + ‖w(2)
N ‖22

1∥∥∥∥∥
[
Ma,a Ma,b

Mb,a Mb,b

]−1
∥∥∥∥∥

≥
√
σ2εNη‖w(2)

N,a‖22√
‖Γ−1

N ‖
√
‖w(1)

N ‖22 + ‖w(2)
N ‖22

λmin

{[
Ma,a Ma,b

Mb,a Mb,b

]}

≥
√
σ2εNη

‖w(2)
N,a‖2 mini∈In2

1
|[wN ]i|2√

‖w(1)
N ‖22 + ‖w(2)

N ‖22

λmin(Γ−1
N )√

‖Γ−1
N ‖

,

(using [34, Section 0.7.3 and Theorem 4.3.15]) and∣∣∣∣q>(ξ(2)
a −Ma,bM

−1
b,bξ

(2)
b

− 1

µ
[Ma,1 −Ma,bM

−1
b,bMb,1][w

(1)
N � Sgn(θo,1)]

)∣∣∣∣
< ‖ξ(2)

a ‖2‖w
(2)
N,a‖2 + ‖Ma,bM

−1
b,b‖‖ξ

(2)
b ‖2‖w

(2)
N,a‖2+√

σ2εNη
{
‖Ma,1‖+ ‖Ma,b‖‖M−1

b,b‖‖Mb,1‖
}
‖w(1)

N ‖2‖w
(2)
N,a‖2√

λmin(Γ−1
N )

√
‖w(1)

N ‖22 + ‖w(2)
N,a‖22

< ‖ξ(2)
a ‖2‖w

(2)
N,a‖2 +

‖Ma,b‖
λmin(Mb,b)

‖ξ(2)
b ‖2‖w

(2)
N,a‖2

+

(
‖Ma,1‖+

‖Ma,b‖‖Mb,1‖
λmin(Mb,b)

) √
σ2εNη‖w(1)

N ‖2‖w
(2)
N,a‖2√

‖w(1)
N ‖22 + ‖w(2)

N,a‖22

< ‖ξ(2)
a ‖2‖w

(2)
N,a‖2 +

‖Γ−1
N ‖

λmin(Γ−1
N )
‖ξ(2)

b ‖2‖w
(2)
N,a‖2+√

σ2εNη

λmin(Γ−1
N )

{
1 +

‖Γ−1
N ‖

λmin(Γ−1
N )

} ‖Γ−1
N ‖‖w

(1)
N ‖2‖w

(2)
N,a‖2√

‖w(1)
N ‖22 + ‖w(2)

N,a‖22
≤ √ngCond(ΓN )‖ξ(2)

a ‖∞‖w
(2)
N,a‖2+√

σ2εNη

λmin(Γ−1
N )

1 + Cond(ΓN )}‖Γ−1
N ‖‖w

(1)
N ‖2‖w

(2)
N,a‖2√

‖w(1)
N ‖22 + min

i∈In2
1

|[w(2)
N ]i|2

.

These inequalities, together with the last assumption in Lemma
III.1, imply (44). This concludes the proof.
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