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Abstract—Linear Parameter-Varying (LPV) systems are usu-
ally described in either state-space or input-output form.When
analyzing system equivalence between different represeations
it appears that the time-shifted versions of the schedulingignal
(dynamic dependence) need to be taken into account. Thereé
representations used previously to define and specify LPV siems
are not equal in terms of dynamics. In order to construct a
parametrization-free description of LPV systems that ovecomes
these difficulties a behavioral approach is introduced whih
serves as a basis for specifying system theoretic propersieLPV
systems are defined as the collection of trajectories of sysh
variables (like inputs and outputs) and scheduling variabés. LPV
kernel, input-output, and state-space system representamns are
introduced with appropriate equivalence transformations

Index Terms—LPV, behavioral approach, dynamic depen-
dence, equivalence.

I. INTRODUCTION

{A, B,C, D} are functions of the scheduling signat Z —

P, e.g.A: P — R, where the seP C R" is the so called
“scheduling spacelt is assumed thap is anexternalsignal
of the system, i.ep is not dependent om or y. An exact
definition of when this externality property holds fewill be

given later.

In the identification literature, LPV systems are also de-
scribed in the form of (filter-typelhput-output(1O) represen-
tations [10]-[13]:

Mg Np
y(k) = > aip(k)y(k — i) + > b;(p(k)ulk — ), (2)
i=1 j=0
where {a;,b;} are matrix functions ofp. In Equations (la-
b) and (2), the coefficients depend on the instantaneous time
value of p, which is calledstatic-dependenceln analogy
with the LTI system theory, it is commonly assumed that

Many physical/chemical processes encountered in practiepresentations (1a-b) and (2) define the same class of LPV
have non-stationary or nonlinear behavior and often theiystems and that conversion between these representations
dynamics depend on external variables like space-codetinafollows similar rules as in the LTI case (see [14]-[16]).

temperature, etc. For such processes, the theoriiredar

However, it has been observed recently that this assumption

Parameter-Varying(LPV) systems offers an attractive mod-s invalid if attention is restricted to static-dependefitg].
eling framework [1]. This class of systems is particularly Example 1:To illustrate the problem consider the following
suited to deal with processes that operate in varying ojpgratsecond-order SS representation:

of Linear Time-Invariant(LTI) systems. In LPV systems, the
signal relations are considered to be linear, but the paeme
in the description of these relations are assumed to beifunsct

regimes. LPV systems can be seen as an extension of the CT%?Si(k i 1)}

v et ]| ] e A R
y(k) = x2(k).

of a time-varying signal, the so-callestheduling variable With simple manipulations this system can be written in an
p. As a result of the parameter variation concept, the LP&quivalent 10 form:

system class can describe both time-varying and nonlinear k) — k— Mk — 1 & — Mk — 2
phenomena. Practical use of this framework is stimulated by (k) = ax (p( )y )+ aa(p( Ny )

the fact that LPV control design is well developed, extegdin

+ b1(p(k — 1))u(k — 1) + ba(p(k — 2))u(k — 2),

results of optimal and robust LTI control theory to nonlineawhich can clearly not be formulated as (2). O

time-varying plants [1]-[9].

In order to obtain equivalence between the SS and IO

In a discrete-time setting, LPV systems are commonhgpresentations, it is necessary to allow for a dynamic rmgpp

described in astate-spacgSS) form (see [1]-[9]):
w(k) = Alp(k))z(k) + B(p(k))u(k),
y(k) = C(p(k))x(k) + D(p(k))u(k),

(1a)
(1b)

wherew : Z — R™ is the input,y : Z — R™ is the output,

betweerp and the coefficients, i.€.A, B,C, D} and{a;,b;}
should be allowed to depend on (finitely many) time-shifted
instances ofp(k), i.e. {...,p(k — 1),p(k),p(k + 1),...}

[17]. We call such a dependenafynamicin the sequel.
Dynamic dependence has also been encountered and analyzed

r : Z — R™ is the state vector and the system matricas terms of LPV control synthesis (see [18], [19]) and itschee
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is supported as well by LPV modeling of non-linear/time-
varying systems (see Example 2 and [20]). Currently, it is no
well understood how to handle such dependencies in general,
and how to formulate algorithms that provide transfornragio
between the representation forms (an intermediate salfwio

the SISO case is given in [17]).



The necessity of dynamic dependence clearly indicates tlsaucture enabling the use of convex control synthesis and
representations (la-b) and (2) used previously to define aithple stability analysis as extensions of well-worked IoLit
specify LPV systems are not equal in terms of dynamiceesults. However, what makes all this possible is a pagicul
Furthermore, the lack of realization/transformation tiye@s- concept behind the scheduling variableln order to give a
sociated with these representations hinders the use of mémymal definition of LPV systems we first need to clarify the
identification methods based on IO models, like the extensimle of p and its so calleadxternality property
of successful prediction error methods of the LTI case, e.g.Assume that we are given a discrete-time systgmepicted
[10], [11], to provide state-space models for control sesth. in Fig. 1.a, which describes the (possibly nonlinear) dyicam
The lack of understanding of similarity transformation fda- relation between the signals : Z — W, whereW is a
b) is also a source of many pitfalls both for identificatiomdangiven set. Lets C W% (W% stands for all maps fronZ
control synthesis in general [17]. Furthermore, the ctibec to W) containing all trajectories ofv that are compatible
of transfer functions of (la-b) and (2) for each value ofith G. Then we call’® the behavior of the systerg. A
p(k), the so-calledrozen transfer functiongloes not specify common practice in LPV modeling is to introduce an auxiliary
the behavior of the system for non-constant trajectories wdriablep, with rangelP, and reformulat&; as shown in Fig.

p, which is often overlooked in the literature, see [21]4.b, where it holds true that if the loop is disconnected and
[23]. As no global transfer-function theory exists in theMLP p is assumed to be a known signal, then the “remaining”
case, definitions of input-output behavior of (1a-b) and (2glations ofw are linear. Applying this reformulation with
are relevant to be considered in terms of solutions of theaedisconnectegp and assuming that all trajectories pfare
difference equations in the time-domain. These argumenmitowed, i.e.p is a free variable withp € P%, the possible
indicate that the classical definitions of LPV systems arel tlrajectories of this reformulated system will form a beloavi
“assumed” similarity transformation connected to them af’ which will contain % as visualized in Fig. 1.c. This
inadequate, showing that the current LPV system theory dencept of formulating a linear byt-dependent description
incomplete. of G enables the use of simple stability analysis and convex

A parametrization-free definition of LPV systems and aoontroller synthesis, which will always be conservative tw.
algebraic framework where the previously considered repr@, but computationally more attractive and robust than other
sentations and concepts of LPV systems are reestablislapgproaches directly addressify. The scheduling variable
can be found by considering a behavioral approach to thecan appear in many different relations w.r.t. the original
problem. In this paper the behavioral framework, origipallvariablesw. If p is a free variable w.r.tg, then we can
developed for LTI systems [24], is extended to discretestinspeak about drue parameter-varying systemithout con-
LPV systems. In this framework systems are described $ervativeness. However it often happens thadepends on
terms of behaviors that corresponds to the collection of ather signals. In the latter case the resulting system snoft
valid signal trajectories. Our aim is to use the behavioredferred as aguasi parameter-varying systeriio decrease
concept to establish well-defined LPV system represemsiticconservativeness of LPV controller synthesis or modelingd.w
as well as their interrelationships. Our further intentisn such situations, very often the possible trajectories @re
to develop a unified LPV system theory that establishesstricted, for instance by supposing (boundary) regtnst
connections between the available results. on first and higher order derivatives/differencespobr by

The paper is organized as follows: In Section Il LP\éxcluding specific trajectories due to physical constgailr
systems are defined from the behavioral point of view. limis wayp appears to be a free variable of the system, but with
Section IlIl, an algebraic structure of polynomials is imtmoed certain “external” restrictions, hence to express thispprty
to define parameter-varying difference equations as represwe will call p an external variablein the sequel. Based on
tations of the system behavior. This is followed, in Sectiothese concepts, the class Rdrameter-VaryingPV) systems
IV, by developing kernel, |10, and SS representations of LPyan be defined as follows:
systems, together with the basic notions of IO partitiond an Definition 1 (Parameter-varying dynamical systend):pa-
state-variables. In Section V it is explored when two kernelameter-varying systend is defined as a quadruplé =
IO, or SS representations are equivalent. In Section Vivequi(T, P, W,8B), where T is called the time axisPP denotes
alence transformations between SS and 10 representatiensthe scheduling set (i.ep(k) € P), W is the signal space
worked out. Finally, in Section VII, the main conclusiongarand 8 C (W x P)T is the behavior Furthermore, the set
summarized. We only consider discrete-time systems, hewewf allowed scheduling trajectories, = {p € P | 3w €
analog results for the continuous-time case follow in alsimi W” s.t. (w,p) € B} satisfies the externality property in the

way (see [20]). sense that there exists a behad®Brc (W x P)T with p being
a free variable, i.er,B’ = PT, andB C 9B’ such that for

Il. LPV SYSTEMS AND BEHAVIORS eachp € m,% it holds that(w,p) € B’ = (w,p) € B. In

The reason why the LPV framework has become populather words(w, p) € B’ \ B implies thatp ¢ 7, B. O

in practical applications is that it represents an attvacti The setT defines the time-axis of the system, describing
intermediate case between LTI and nonlinear/time-varyimgntinuous-timg€CT), T = R, anddiscrete-timgDT), T = Z,
descriptions. Driven by the need to address the controlwi-cosystems alike, whil&V gives the range of the system signals
plicated plant dynamics in a linear framework, LPV systems. The behaviors C (W x P)T is the set of all signal and
were invented to “embed” nonlinear behaviors into a lineacheduling trajectories that are compatible with the sgste



p B/

o— o—
o— o—

VA 9] v e
o— o—
(a) Original plant (b) Characterization op (c) Relation of the resulting

behaviors

Fig. 1. The concept of LPV modeling.

Note that there is no prior distinction between inputs aratcordance with previous definitions of LPV systems [1]. In

outputs in this setting. this way, the projected behaviors of a givenw.r.t. constant
The scheduling séP is usually a closed subset of a vectoscheduling trajectories define a set of LTI systems:

space. The set of admissible scheduling trajectoriegp,of Definition 4 (Frozen system setlet S = (T,P, W,B) be

defined as therojected scheduling behavior an LPV system. The set of LTI systems

Bp = m,B C P, @) Fs={F=(T,W,8') | 3pe B; with

— = /

describes all possible scheduling trajectories &f Bp in pk)=pePstB = %f’} ©6)
terms of Def. 1 implies that the scheduling variaple %, is called the frozen system set 8f O

is a “structurally free” variable ofS, but not literally as  Naturally, the LPV system concept is advantageous com-
the trajectories ofp can be restricted i3, i.e. 7, is pared to general nonlinear systems, as the relation of the
not necessary equal ®”. A variable with such a property signals is linear. Definition 3 also reveals the advantagaisf

is called external or semi-free Note that this definition of System class over LTV systems: the variation of the system
the behavior allows to include additional restrictions twe t dynamics is not associated directly with time, but with the
possible trajectories op, but keeps the independence pf Vvariation of an external (semi-free) signal. Thus, the LPV
from the signal variables) which is in line with the current modeling concept, compared to LTV systems, is more suitable

concepts of the LPV literature (see Example 2) for non-stationary/coordinate-dependent physical systas it
For a given scheduling trajectory, ¢ B, we define the describes the underlying phenomena directly.
projected signal behavioas Example 2: To emphasize the advantage of LPV systems,
- we investigate the modeling of the motion of a varying mass
By ={weW [ (w,p) € B}. (4)  connected to a spring (see Fig. 2). This problem is one of

B, describes all possible signal trajectories compatiblér wit€ typical phenomena occurring in systems with time-vagyi
p. In case of a constant scheduling trajectgne Bp with Masses like in motion control (robotics, rotating crankisha
p(t) = p for all t € T wherep € P, the projected behavior rockets, etc.). Denote b_yox the positiqn of the varying mass
9B is called afrozen behaviomnd denoted as m. Letks > 0 be the spring constant, introduee as the force
i acting on the mass, and assume that there is no damping. By

Bp = {weWT | (w,p)€B with p(t) =p, Vt € T}. (5) Newton’s second law of motion, the following equation holds

Definition 2 (Frozen systemlet S = (T,P,W,B) be a d <miw > e — kw @
PV system and consideB; for a p(t) = p in Bp. The dt " dt " BT
dynamical systen¥; = (T, W,B;) is called a frozen system ygjng an Euler type of discretization with step size> 0, a
of S. U DT approximation of (7) is

Define ¢ as the unit forward time-shift operator, e.g.
qu(t) = w(t + 1). With the previously introduced concepts, (Taks +m(k))wx(k) — (m(k + 1) +m(k))w(k + 1)

we can define discrete-time LPV systems as follows: +m(k 4+ 1wy (k +2) = T2wp(k), (8)
Definition 3 (DT-LPV system)tet T = Z. The parameter- | is immediate that by taking: as a scheduling variable, the
varying systems is called LPV, if . behavior of this process can be described as an LPV system,
« Wis a vector space arith, is a linear subspace 6¥"  preserving the physical insight of Newton’s second law.eNot

for all p € By (linearity). that m is a free variable in (7), hence the resulting LPV

« For any (w,p) € B and anyr € T, it holds that system withp = m describes the behavior of (7) without
(w( + 7),p(+ + 7)) € B, in other wordsq™® = B conservativeness. On the other hand, viewingas a time-
(time-invariance). U varying parameter, whose trajectory is fixed and known in

In terms of Def. 3, for a constant scheduling trajectoriime, results in an LTV system. Such a system would explain

p(k) = p, time-invariance ofS implies time-invariance of;. the behavior of the process for only a fixed trajectory of the
Based on this and the linearity condition ®,, it holds for mass. Furthermore, in an application it might be advantageo
an LPV system that for each € P with p(k) = p in Bp to restrict the possible trajectories of to a subset oR?, as

the associated frozen systefj is an LTI system, which is in for example during operation of the system it is known that



Also define an operatdp; on R,, with 1 < j < n such that

Gi(r(Cy- e Gr)) i=r(Cy- -+, ¢, 0,...,0). (9)

k
t ® . . .
w(t) Note thatU; projects a meromorphic function to a lower
dimensional domain. Introduce
m(®) R = {r € R | Bn_s(r) # 7} (10)
wr(t) It is clear thatR,, consist of all functionsk,, in which the

variable ¢, has a nonzero contribution, i.e. it plays a role
in the function. Also define the operatdy, : (U;>oR;) —
(U;>0R:), which associates a givenc R,, with ar’ € R/,
|m(k + 1) — m(k)| < 6m. This restriction of the behaviorn > n/, i.e. U,(r) = +/, such thatr'(¢i,...,( ) =
can be exploited to decrease the conservativeness of the LRY,,...,(,,0,...,0) for all ¢;,..., v € R, Bp(r) = r
description and focus the control synthesis on the intexgstandn’ is minimal. In this way,U, reduces the variables of a
operating regime later on. However with such a restrictidianction till ¢,,- can not be left out from the expression because
p = m would not be a free variable anymore, but it wouldt has a nonzero contribution to the value of the functionwiNo
still be external. O define the collection of all real-meromorphic functions hwit
In the sequel, we restrict our attention to DT systems witimite many variables as follows:
W = R™ and withP a subset ofR"z. In fact, we consider
LPV systems described by finite order linear difference equa
tions with parameter-varying effects in the coefficients.

Fig. 2. Varying-mass connected to a spring.

R=[JRi, with Ro=R. (11)
i>0
The function classk will be used as the collection of coef-
I11. ALGEBRAIC PRELIMINARIES ficient functions (|Ike{A7 ceey D} and {ai, bj} in (1a-b) and
)) for the representations, giving the basic buildingcklof
V difference equations. These functions are not only used t
ing coefficients as the representation of the behaor express erendence over mu_Itldlmensu;_a‘latht also to enable
aO]d|st|nct|on between dynamic scheduling dependence of the

These difference equations are described by polynomialsCO fficients and the d . lati .
L . . ynamic relation between the signals of
an algebraic ring where equivalence of representations atﬂ%esystem The following lemma is important:

other system theoretic concepts can be characterized Ipjesim Lemma 1 (Field property oR): The setR is a field. [

algebraic manipulations. To prove Lemma 1, the addition and multiplication operators

on R are defined as

_ ) ) ) ~ Definition 6 (Addition/Multiplication operator ofR): Let
First, we define the set of functional dependencies COﬂSl,q-’ ry € R such thatr; € R; andry € R; with 7,5 > 0.

ered in the sequel: If i > j, there exists a unique functiod, € R; such that
Definition 5 (Real-meromorphic function [25])A  real- U.(rh) = 1. Let v = ri. In casei < j, v andr} are

meromorphic functionf : R" — R, is a functionf = #, gefined respectively oR;. Then

whereg,h : R® — R are holomorphic (analytic) functions

andh # 0. O  nBr:=0.00+7r3),  nbr:=0.001), (12)
_Meromorphlc functlpns CO”?'St of all ratlon_al, polyr_10m|alwhere+ and- are the Euclidean addition and multiplication

trigonometric expressions, rational exponential funddi@tc. operators ofR; (or R,). 0

Thus, this class contains the common functional dependsnci™ 54 upori ande the proof of Lemma 1 is straightfor-

that result during LPV modeling of physical systems. Nex

blish laebraic fiefd of a wide cl ¢ multivari {hard and can be found in [20]. In the following, if it is not
we establish an alge raic Tield ot a wide class of mu tivari- necessary to emphasize the difference between the Eurclidia
able real-meromorphic functions from which thedependent

- ) . _ addition andH, we use+ to denote both operators in order to
coefficients of the representations will follow. Variable§ P

. . . ) improve readability. The same abuse of notation is intreduc
these functions will be associated with the elements of ttﬁ& 0

scheduling variable and their time-shifts in order to repré

dynamic dependencies. However to uniquely define these ) )

dependencies (to establish a field) it must be ensured tRatRepresenting scheduling dependence

in terms of an ordering, the “last” variable have a role in The next step is to associate the variables of the coefficient

the considered functions. For instanfgx;,x2) = x; should functions with elements of and its time-shifts, which will

be excluded from the considered set as ofil¢;) = x; is provide the characterization of dynamic dependencieseén th

need to express this functional dependence. To ensure tl@gresentations. Naturally, this association is deperethe

property, we introduce operatoi$; and U, to exclude non- dimension of the scheduling space considered.

unigue functional dependencies in the constructiofRof In case of a scalap, i.e. np = 1, we can associate
Let R,, denote the field of real-meromorphic functions witleach variable{x;,x2,%2,...} of a givenr € R with

n variables. Denote the variables ofra&c R, as(y,...(,. {p,ap,q 'p,¢?p,...} in order to express a given dynamic

In order to re-establish the concept of LPV-IO and S
representations, we introduce difference equations watly-v

A. Coefficient functions



m my on the signal level.
Cor Cor Cor Cor Example 4:Consider the coefficient function given in
: : : : Example 3 withnp = 2. Then 7 is a functionR® — R,
Con, Con, Con, Con, given by 7(Co1, G021, G2, C11,C1,2,Co1) = gt
Gt Ci1 Cit Ci1 For a scheduling trajectory : Z — R2, it holds that
: : : : (7 op)(k) = (ro (qp)) (k) = TZEED. O
Cin, Cin, Cin, Cin, The considered operatorcan straightforwardly be extended
G G G G to matrix functionsr € R">*"" where the operatior is
: : : : applied to each scalar entry of the matrix.
C'lny C—l'nP C—lnIP C—lan
C?l 4?1 C. Polynomials ovefR
(_:21 C-:Zl Next we define the algebraic structure of the representation
we use to describe LPV systems. IntroduBg¢] as all
Fig. 3. Variable assignment by the functions, andm in Def. 7. polynomials in the indeterminaté and with coefficients in

R. R[] is a ring as it is a general property of polynomial
coefficient dependency. For example, the dependelce spaces over a field, that they define a ring. Also introduce
sin(¢~'p) can be expressed in this way by a unique R R[¢] X", the set of matrix polynomial functions with elements
given asr(x1xz,x3) = 2x1 sin(x3). in R[¢]. Using R[¢] and the operatos, we are now able to

Now we can consider the general case. For a givemith  define a PV difference equation:
dimensionnp andr € R,, label the variables of according  Definition 8 (PV difference equation)Consider R(¢) =

to the following ordering: S gt € R[E™ ™ and (w, p) € (R™ x R"™)Z,
T(Co,lv"'7(0,n]?7<1,17"'7<1.,n]_77<*1.,17"'7<*1,HP7<2.,17"')' 3 . 14
. . . . . . R = i * =0
For a given scheduling signa) associate the variabte ; with (R(q) o p)w ;(T op)g'w (14)
qipj. For this association we introduce the operator ) . T .
is called a PV difference equation with ordes = deg(R).
o: (RxP?) —» R”, defined by rop=r(p,qp,q 'p,...). 0O

The value of a g-dependent) coefficient in an LPV system [N this notation the shift operatar operates on the signal
representation is now given by an operatior p) (k). w, while the operatior takes care of the tl_me/sche(_ju_llng-
Example 3 (Coefficient function):et P = R™ with np = dependent coefficient sequence. Since the indeterméie
2. Consider the real-meromorphic coefficient function: ~2associated witly, muﬁplication With(ﬁ_is noncommutative on

R? — R, defined asr(x;,x2,x3) = . Then for a Rg|mmm, ie. &r = 7€ andrg = £ _ _ _
scheduling signab : Z — R?, (rop)(k) = r(p1, pa, qp1) (k) = In the foIIOW|r!g_We only consider scheduling trajectories f
Lp1(k+D) "o the other hand, ifip = 3, then (r o p) (k) = which the coefficients oRR(£) ¢ p are bounded, so the set of

1=pa(k) Vms(K) _ solutions associated witR(¢) is well defined. PV difference
r(p1,p2,p3)(k) = 1= g, showing that the operatos  oqyations in the form of (14) are used to define the class of
implicitly depends om. L' DT-LPV systems we consider in this paper. It will be shown

In the sequel the (time-varying) coefficient sequeicep)  that this class contains all the popular definitions of LSS
will be used to operate on a signal(like a;(p) in (2)), gViNg 44 10 models.
the varying coefficient sequence of the representationiisn Example 5 (PV difference equationGonsider Example 2.
respect an important property is that multiplication of the | o p = m with scheduling spac® = [1,2] and letw =
operation with the shift operataris not commutative, in other . wr]T. Then the difference equatior; (8), which defines
words ¢(r o p) # (r o p)g. To handle this multiplication, for ihe possible signal trajectories of the DT approximatiothef

. . . e
r € R we define the shift operations’, . _ _ mass-spring system, can be written in the form of (14) with
Definition 7 (Shift operators)Let » € R,. For a given nw =2, ne =1, np = 1:

scheduling dimensionp, denote the variables of as {¢; ;}
based on the previously introduced labeling. The forwdnift-s  (R(q) op)w = (roop)w+ (r1op)quw+ (r20p)g*w = 0, (15)

and backward-shift operators gt are defined as whererg o p = [T2ks +p — T3, riop = [—ap—p 0],

7= U.(romy), = U, (r oma), (13) roop=[gp O]. O
. . " Due to its algebraic structure, it easily follows tHR{¢
whereo denotes function compositiom,, m; € (Rntan:)" g 5 domain, i.e. for allR;,Ry € R[] it holds th;t

andm; assigns each variap{gj tp C(i_—ﬁ-l),j! while ms assigns Ri(€Ra(6) = 0 = Ri(€) = 0 or Ra(€) = 0. Then with
eachGi,; 10 ((;_1); as depicted in Fig. 3. the above defined noncommutative multiplicative ruleg]

_In other words, ifr o p is dependent op and gp, then 77 defines an Ore algebra [26] and it is a left and right Euclidian
s the “same" function (disregarding the number of Va”apledomain [27]. The latter implies that there exists division b

: 5 : .
e?ig}f i']t?els d_epgnd;nn; 0?1]? a_”SE’ 13'1 V\(l:lg;rtehsest,)eng.cr)]tlosos remainder. This means, thatfif;, Ry € R[{] with deg(R;) >
W whitegr =14 ¢ rT=res ponding deg(R2) and Ry # 0, then there exist unique polynomials
qropw= (7 op)qw and ¢ '(ropw= (¥ op)g'w R R’ e R[] such thatR, (&) = Ry(€)R'(€) + R (&) where



deg(R2) > deg(R”). Due to the fact thaR[{] is a domain, property makes it possible to use the developed algebraic
the rank of a polynomiaRk € R[¢]™=*"™" is well-defined [28]. structure to characterize behaviors and manipulationbemt
Denote byspans™ (R) andspan$!(R) the subspace spannedOriginally the injective cogenerator property has beenasho

by the rows (columns) ofR € R[¢] ", viewed as a linear for the solution spaces of the polynomial ring oy in [29].
space of polynomial vector functions with coefficientsin*".  In the Appendix this proof is extended ®[¢].

Then it can be shown that
rank(R) = dim(span’e™ (R)) = dim(spans'(R)).  (16) IV. SYSTEM REPRESENTATIONS
A. Kernel representation

The notion of unimodular matrices, essential to charazseri . he d | q . dkeenel
equivalent representations, is also introduced: Using the developed concepts, we introdkeenel repre-

Definition 9 (Unimodular matrix):Let M e R[¢]»xn. p  Sentation(KR) of an LPV system in the form of (14).
is called unimodular if there existst € R[€]"*" such that Definition 10 (DT-KR-LPV representation)the parameter
MT(E)M(€) = T and M(€)MT(€) = I. 0 varying difference equation (14) is called a discrete-thae
Any unimodular matrix ope>rator iR[¢] > is equivalent nel representation, denoted B (S), of the LPV dynamical

to the product of finite many elementary row and columfyStems = (Z, R, R™", %) with scheduling vectop and
operations [27]: signalsw, if

1) Interchange row (column)and row (columny. B = {(w,p) € (R™ x R"™)% | (R(q) op)w =0}. (18)
2) Multiply a row (column)i on the left (right) by a € R, O
r #0. Itis obvious that the behavi® associated with (14) always
3) Fori # j, add to row (column); row (column)j corresponds to a LPV system in terms of Def. 3. It is also
multiplied by £”, n > 0. important, that the allowed trajectoriesyoin terms of (18) are
Example 6 (Unimodular matrix)The matrix polynomials hot restricted by (14) (only thogee (R™*)% are excluded for
M, Mt e R[€]>*2, defined as which a coefficient; o p is unbounded). This is in accordance
Y ot T Lt € —er] with the classical concept_qa‘ being an externgl _variable of
M(¢)= [rlé e 4 } MT(¢)= [ e o } 5, the system. One can also include further restrictionssen=

B, like bounding the first or higher order differences of

are unimodular ad/ ()M (&) = MT (€)M (&) = I. Note that p etc. However, to preserve the generality qf thg developed
&r1 # 1€ due to the non-commutativity of the multiplicationframework, we do not consider such restrictions in terms of

by £ on R[¢]. [0 representations.
Another important property aR[¢] > is the existence of a Based on the concept of rank, the following theorem holds:
Jacobson form (generalization of the Smith form): Theorem 2 (Full row rank KR representation)et 8 be
Theorem 1 (Jacobson form [27]Let R € R[¢]™ > given with a KR representation (14). The®, can also be
with R # 0 andn = rank(R). Then there exist unimodularrepresented by & e R[¢] "™ with full row rank. O
matrices)M; € R[¢]™*™ and M, € R[¢]""*™ such that The proof of this theorem is given in the Appendix.
My (&)R(&)M;(€) = { Q((f) 8 } , (17) B. 10 representation
Partitioning of the signals into input signalsu € (R™v)Z
where Q = diag(ry,...,r,) € R[¢]™*™ with monic non- and output signalg € (R™)Z, i.e. w = col(u,y), is often
zeror; € R[¢]. Furthermore, there exigt € R[¢] such that considered convenient. Such a partitioning is called an 10
rig1(&) = gi(§ri(§) fori=1,...,n—1. O  partition [24].
Due to the algebraic structure GR[¢] *", the proof of  Definition 11 (IO partition of a LPV systeml:et S =
Th. 1 similarly follows as in [27]. (z,R"™ R™ 9B) be an LPV system. The partitioning of the
Example 7 (Jacobson form)Consider signal space aB™ = U x Y = R™ x R™ and partitioning
_ _ of w € (R™)Z correspondingly withu € (R"™)% and
R(§) = [ rjf 1 +1§ _% } e RIEP, y € (R™)% is called an 10 partition ofS, if

1) u is free, i.e. for allu € (R")%Z andp € Bp, there
exists ay € (R™)Z such that(col(u, y), p) € B.
2) y does not contain any further free component, i.e. given

where r is a meromorphic function and = ¢. Then the
Jacobson form oR? is

1 0 0 u, none of the components gfcan be chosen freely for
M (&)R(&)M. = , ’ ;
HOREM() [ 0 1+7+& 0 ] everyp € Bp (maximally free). O
0o o0 1 An 10 partition implies the existence of matrix-polynomial
My(&)= [ 1? 0 ] , My(O)=| 0 1 7 0 functionsR, € Ri¢]™ "™ and R, € R[{]™*™ with Ry full
- 1 -1 -1 ¢ row rank, such that (14) can be written as
Now it is possible to show that there exists a duality (Ry(q)op)y = (Rulg) op)u, (19)

between the solution spaces of PV difference equationstend Lith ne — n + nv and the corresponding behavidi is
polynomial modules iR [¢] *" associated with them, which W= ¥ P 9
is implied by a so-calledhjective cogeneratoproperty. This  {(u,y,p) € (Ux Y x P)* | (Ry(q) o p)y = (Ru(q) o p)u},



with U = R™ andY = R™. An IO partition defines a causal (Z, R™,R™" x R"-, B,), where the so-calletull behavior
mapping in case the solutions of (19) are restricted to hafte 81, of this system is defined as

compact support. Otherwise, initial conditions also nm4ge]. . - orZ

Similar to the LTI case, LPV systems with no free variables oL = {(w, wr,p) € (R™ x R™ x R™)™ | (21) holds.
are called autonomotisNow it is possible to introduce 10 Additionally, B = (, ,%Br, is introduced as thenanifest
representations of DT-LPV systems: behaviorassociated withs; .

_ Definition 12 (LPV_-IO representation)The discrete- Example 9 (Latent variable representatiorBy consider-
time 10 representation of an LPV syste® = (Z,P C jng the DT system in Example 5 with schedulipg= m
Rme, Retne, 95) with 10 partition (u,y) and scheduling andp — [1, 2], the following latent variable representation of
vector p is denoted byRo(S) and defined as a parameterine model has the same manifest behavior:

varying difference-equation system with ordey.

S S (Tgkg +*Zl)) —gﬁ i g . (22)
iop)dy = (bjop)du. 20 peap [ ]: P
;(a p)q'y JZ:%(J p)q’u (20) (—g-1p) 0 |LwF 01

d This can be proved by substituting the third row of (22) into

wherea; € R™ ™ andb; € R™*™ with a,, # 0 an .
' {lge second row, giving

b,, # 0 are the meromoriohic parameter-varying coefficien

of the matrix poiynomials.Ru(g) = 30", b;¢? and full row w1 = (p+ ¢ 'p)wx — pquwx. (23)
rank Ry (§) = > .7 a;&" with n, > ny, > 0. O o . _ _
It is apparent that (20) is the “dynamic-dependent” countepubstitution of (23) into the first row of (22) gives a PV
part of (2). difference equation in the variables andwg, which is equal
Example 8 (10 partition and representationjn  Example 1O (8). O

5, the sampled force variable, is a free variable as it ~Elimination of latent variables is always possibleft] .
represents the inhomogeneous part of difference equatjon ( Theorem 3 (Elimination property)Given a LPV latent
Thus the choice ofv = [y u]T = [wx wp|" yields a valid Vvariable systen{Z, R, R"* x R"t, By,) with a signal vari-
|O partition. Withm being the scheduling signal, the discreteable w, a latent variablewr,, and scheduling variable,
time PV behavior can be represented in the form of (20) withere exists ar’ € R[¢]*"” which defines a LPV-KR

polynomials representation of3 = 7, ;) Br. O
) For a proof see the Appendix. Now it is possible to define
Ry(§) = a0+ ai€ +a26", Ru(§) = bo, the concept of state for LPV systems.
which have coefficientsuzg o p = T2k, + p, a3 op = —p — Definition 13 (Property of state)Let (Z, Rz, R"™" x R"-

qp, azop = qp, by op = T3. Obviously, R, (¢) has full B1,) be a LPV latent variable system. Then the latent vari-

row rank. This implies that?, (¢) and R,(¢) define an 10 able wr, is a state if for everyky € Z and (wi, w1, p),

representation of the model with coefficients as above]  (w2,wr,2,p) € Br With w1 (ko) = wr,2(ko) it follows that
For LPV systems, the notion of transfer function or frethe concatenation of these signalskatsatisfies

quency response in the classical sense has no mearfingful — A (wo. w c B 24

interpretation. By using the approximative transfer-fimm (w1, we.1,p) ko( 2, WL2,P) b (24)

calculus of LTV systems based on a formal series approaghen 3, is called a state-space behavior, and the latent
[31], some interpretation of these notions can be given RV L variablew, is called the state. ]

systems. However, the direct extension of this approxireati 14 gecide whether a latent variable is a state, the following
transfer functlop calculus to the class of systems comstiefnaorem is important:
here is not available yet. Theorem 4 (State-kernel formYhe latent variablewr, is
a state, iff there exist matrices, € R™*™ andrg,r; €
C. State-space representation R™*™. such that the full behavio®B;, has the kernel repre-

In the modeling of dynamical systems, auxiliary variable¥entation:
(often calledlatent variabley are commonly used [30]. The rww + rowy, + riqur, = 0. (25)

natural counterpart of (14) to cope with such variables is The proof of this theorem is given in the Appendix. Now we

(Rw(q) o p)w = (Ry(q) © p)wr, (21) formulate the DT state-space representation, based on an 10
. ) partition (u, y), as a first-order PV difference equation system.
wherew, : Z — R™ are the latent variables anfl, < Definition 14 (DT-LPV-SS representatiorijhe  discrete-

RI]™*"t. The set of equations (21) is called latent {ime state-space representation §f = (Z,P C R",
variable representatiorof the LPV latent variable system pny+ny B), with scheduling vectop is denoted bgﬁss(g)

1it is possible that the freedom of the componentsuotan change for and defined as a first-order parameter-varying difference

specific scheduling trajectories. In this case, the autmusmpart of the €quation system in the latent variable Z — X:
behavior is related to the scheduling dependent natureeofyktem.
250me authors [21]-[23] introduce LPV transfer functionghwiarying gr = (Aop)z+ (Bop)u, (26a)
parameters. As they commonly refer only to the collectiotrarisfer functions -
associated withZg, this notion of the LPV transfer function is misleading. y= (C Op)x + (D op)u7 (26b)



where (u,y) is the 10 partition ofS, z is the state-vector, and behaviorss, B’ C (R™" x R"*)Z are called equivalent if
X = R" is the state-space, B |3y, = B’ [s,ns,, i.€. their behaviors are equal for all
B 7 i mutually valid trajectories op. O
Bss = {(v,2,y,p) € (Ux X x ¥ x P)* | (26a-b) hold , Example 11 (Almost everywhere equivalend®y: contin-
is the full behavior of (26a-b)® is equal to the manifest uing Example 5,
behavior of (26a-b), i.eB = m, ,, ,Bss, and (

|: A | B :| |: R’ﬂ,xxnx | RnxXnU :|

1) (3 s+ () s s 0

C | D Ry xnx | R Xnu has the same solutions as (15) except for those trajectories
) ) o ] of p = m, wherem(k) = 0 for somek € Z. Thus,

Note that m%ss, the latent variable: trivially fulfills the this KR representation and (15) are equivalent in the almost
state property. It is apparent that (26a-b) are the "dy”am'@verywhere sense. O

dependent” counterparts of (1a-b). To characterize equivalence algebraically, we introdutde u
Example 10 (SS representatiorontinuing Example 9, q4ylar transformations just as in the LTI case [24]:

the LPV-SS representation of the model follows by taking Theorem 5 (Unimodular transformationonsider R €
[y u]" = [wx wr|" as the 10 partition and: = wy, as R ™ and M’ € R, M” e RIg|mxm
the state: with M’, M" unimodular. For a givems, define R'(¢) =
_ 100 Tk +p —T3 Y M'(&)R(¢) and R"(£) = R(§)M"(€). Denote the behaviors
qr = v o ) : / 1" / N
1o p—q p O u corresponding toR, R’ and R” by 9,8’ and B” with
y = [ 0 1 ] . scheduling spac® C R™ and signal spac& = R"™¥. Then
= — 1 . .
ap B |s31,,ms3];= B’ |‘BPQ‘B§ while B |‘Byﬁ‘3§’ andB” |‘Byﬁ‘3§’ are
By substitution of the second equation into the first one, tlisomorphic. O
state equation in the form of (26a) results, while the secondThe proof of this theorem is given in the Appendix. Further-
equation gives the output equation in the form of (26b). Thusore, if R € R[] > is not full row rank, i.erank(R) =

the corresponding SS representation is n < n,, then there exists a unimoduldf € R[£]™ > such
_ptTi | o that M(R(E) = [ (R'(€))" 0]', whereR € R[¢]™ ™
Aop | Bop q*lga ‘ d ?s full row rank and the corresponding behaviors are egeial
{W’W} =|1 1+ | 0 |- O interms of Th. 5.
0 qj}p | 0 Definition 16 (Equivalence relation)tntroduce the symbol

~ to denote the equivalence relation bfiR[¢] " (all poly-

nomial matrices with finite dimension) for ar--dimensional
V. EQUIVALENCE RELATIONS scheduling spaceR; € R[¢]™*™ and R, € R[¢]r2>mn

Using the behavioral framework, it is possible to considevith i = argmax;c(;23(n;) andj = {1,2} \ i are called

equivalence of kernel representations, 10 represengtowm equivalent, i.e.R, % R, if there exists a unimodular matrix
state-space forms via equality of the represented belwavior function M e R[¢]™ ™ such that

A. Equivalent kernel forms M(&)R;(§) = [ Rjo(g) } % Zj_n . (28)
In the LTI case, two DT kernel representations are equiva- ' ’
lent, i.e. they define the same system, if their associatedwbe  This implies that if R < R,, then the corresponding
iors are equal. Similar to the LTI frameworR,, Ry € R[¢] behaviors withP C R™ andW = R"" are equal (almost
are expected to define an equal behavior if they are equivalemerywhere). Using® we can define equivalence classes as
up to multiplication by ar € R, r # 0. However,r can be a follows:
rational function for which(r o p)(k) = oo for somep € PT Definition 17 (Equivalence classfor a givennp, the set
andk € Z. The associated behavior of a kernel representatiéii* C (JR[¢] *  is called an equivalence class, if it is a
in terms of (18) is defined to contain only those trajectorigraximal subset of JR[¢] " such that for allR;, Ry € &
of p for which a solution exists. The latter is guaranteed by holds thatR; ~ R.. O
the boundedness ofo p. In this way, the behavior oR; is An equivalence class defines the set of all KR representa-
equal to the behavior oR2(§) = rR;(&) except for those tions which have equal behavior. Furthermore it is an olwiou
trajectories for which- ¢ p is unbounded. consequence, that all in a given&™* have the same Jacobson
To consider equality of LPV-KR representations with thiform. An important subset of an equivalence class contaias t
phenomenon of singularity in mind, we define the restrictiosp-called minimal representations:
of B to Bp C Bp as Definition 18 (Minimality): Let R € R[£]™*™". ThenR is
o = called minimal if it has full row rank, i.erank(R) = n,. O
Bz, = {(w’p) €B|pe %P}' (27) Consider a minimabik (S) described by a full row rank
The equivalence of LPV-KR representations can now be € R[{]™*"%. Let R(§) = [R'(§) R"(§)] where R’ €
introduced in aralmost everywhersense: RI&]™>™ has full column rank. Note that such form can
Definition 15 (Equivalent KR representationsiwo kernel always be obtained by the permutation of the signal vargable
representations with polynomialg, R’ € R[] *™", P =R" and itis not unique. Consider., = deg(r],) wherer/, results



from the Jacobson form (see Th. 1) Bf. Assume that?’ is Consider the unimodular matrix/ € R[¢]?*? given by
chosen w.r.t.R such thatnge, is maximal. It follows from 1 0
Th. 5, that all KR representations in the equivalence cldss o ME)op= { gpg 1 } ,
Rk (S) have the sameuqe,, hencenge, can be called the qp S
degree of these representations. It can be also shown fi&n
this degree is equal to the required minimal number of state & p 1
variables in a SS realization ®k(S), hencenge, can be (M(f)Ry(ﬁ))OP—[ 0 ¢ } (M(§)Ru(§)) op= { » }
considered as the order, i®lcMillan degreeof S.

Example 12 (LPV equivalence relation and minimality): This implies that(Ry, R;,) = (M Ry, M R,) and (Ry, R.)
Let the KR representatiofix (S) of an DT-LPV systemS are equivalent fornp = 1 in terms of Th. 5. From Def. 20 it

with P C R be given by follows that®;0(S) is not minimal asdeg(Ry) = 2 is larger
thandeg(R!) = 1. On the other hand, itis trivial thaR’ , R))
_|a —ap 0 plgp) : y) = , v
R()op= p  —p + x 0 § defines a minimal 10 representation 8f By computing the
) Jacobson form ofz{, the McMillan degree ofS is 1. O
—p(p®) 0| o2 '
+ 0 0 £,

Then, there exists a unimodular matix ¢ R[¢]?>*2 C. Equivalent state-space forms

We can also generalize the equivalence concept to LPV-

M) op= [ 0 1 aw } SS representations. To do so, we first have to clarify state-
Lope== transformations in the LPV case.
such that By definition, the full behavior of LPV-SS representation is

' nex(nvtnu) and a first-order
pEp2E —p RI(€) represented by a matriR,, € R"* and a
(M(ER(E)) op = { 0 0 ] = [ E polynomial Ry, € R[¢]™*"* in the form

From Th. 5 it follows thatk ~ R'. Furthermoreyank(R') = 1 (Rw o p)eol(u, y) = (Ri(q) o p)z. (31)
implies thatrank(R) = 1, henceR’ is minimal while R is not.

By computingna.g of R, the McMillan degree ofs is 1.1 Similar to the LTI case, left and right side multiplication

of Ry, and Ry with unimodular M; € RI[¢]™*™ and
M, € R[¢]™>"* leads to R, (§) = Mi({)Rw, Ri(£) =

B. Equivalent 10 forms M (&) R (€)M2(§). In terms of Th. 5, the resulting poly-
The introduced equivalence concept generalizes to LPV-fomials R{, and R; define an equivalent latent variable

representations: representation of5, where the new latent variable is given
Definition 19 (Equivalence relation, LPV-10O):et asa’ = (M](q) o p)x. To guarantee that the resulting latent

(Ry,R.) and (R}, R.) be LPV-IO representations with variable representation qualifies as a SS representalipn,

the same input and output dimensians;, ny). For a given Needs to be monic andkbg(R;,) = 1 with deg(R;,) = 0 must
scheduling dimensioms, we call (Ry,R,) and (R}, R.,) be satisfied. This implies that the unimodular matrices must
np ’

equivalent, i.e.(Ry,R,) <~ (R, Ry), if there exists a have zero order, i.eM; € R™*"™ and M, € R™""*, and
unimodular matrix) € R[g]nyxny' such that M, must have a special struct.ure in order to guarant_ee‘t@at
andR;, correspond to an equivalent SS representation. In that
R(&) = M(§Ry(&) and R, (§) = M(§)Ru(€). (29) cases’ = (Ml(q) o p)z is called astate-transformatiorand
0 T = M) is called thestate transformation matriresulting in
This implies the following minimality concept of LPV-IO
representations: e’ = (Top)a. (32)
Definition 20 (Minimal LPV-10 representation)An 10
representation defined througR, € R[{]™*™ and
R, € R&™*™ is called minimal for a given scheduling
dimensionng, if there are no polynomial&; € RI[¢]™*"
and R, € R[¢]™ "™ with deg(Ry) < deg(Ry) such that

A major difference w.r.t. LTI state-transformations is ttha
in the LPV case,I" is inherently dependent op and this
dependence is dynamic, i/€.€ R"**"x_Additionally it can
be shown that an invertibld® € R"**"x used as a state-
transformation is always equivalent with a right and lédtes
(Ry, Ru) ™ (R, R.). (30) Multiplication by unimodular matrix functions yielding ahd
' ' ]SS representation of the LPV system. Based on this, two SS

Using the 10 equivalence relation and minimality, the def(_epresen_tanon_s are _equwalent if and only_lf their staees e
nition of 10 equivalence classes follows naturally. related via an invertible state-transfor_matmn (32).

Example 13 (LPV-IO equivalence and minimalitetthe ~_ Consider an LPV-SS representation (26a-b). Lt

IO representatiofR;o (S) of an DT-LPV systens with P C R R™*"* be an invertible matrix function and consideyr given
be given by - by (32), as a new state variable. Substitution of (32) in®aj2

gives

_[ p¢ P [ »
R©or=| 1 e | BOor=| iy | e = (dop @t onw B 69



—
Using thatqT—! = (T 1)q = 7*1(1, (33) yields that the VI. EQUIVALENCE TRANSFORMATIONS

equivalent LPV-SS representation is Next, we introduce equivalence transformations between th
7AT*1 ‘ 73 SS and 10 representation domains. These provide algorithms
[ T T [ D } (34) to obtain an 10 (SS) realization of a given LPV-SS (IO)

o ) ) ) representation, solving the core problem of the existiny LP
Definition 21 (Equivalence relation, LPV-SSJonsider system theory, motivated in Example 1.
two LPV-SS representations with state-space matrices

(Al,Bl,Cl,Dl) and (AQ,BQ,CQ,DQ) in R where
A € R™m*™ and As € R™*™ andn; > ns. For a given A. State-space to |0 .
scheduling dimensiomp, these representations are called AS @ consequence of Th. 3, the following corollary holds:

equivalent, Corollary 1 (Latent variable elimination)For any latent
variable representation (31) with manifest behaviérand
{ A1 | By } e [ A | By } , (35) polynomial matricesi?,, € R[§]™ ™" and Ry, € R[¢]™ ",
Ci [ Dy Cy | D there exists a unimodular matri' € R[£]™ *™ such that
if there exists an invertiblg” € R™ *"1 such that R.(€) RL(€)
S0 [A 0] 2y _[Bi] i mer©O=| miE | woneo-| O] co
AT x % |7 B * Tni—n
P with R} of full row rank. The behavior defined by’ (¢) o
CiT'=[C 0], Dy = Ds,. U p)w =0 is equal (almost everywhere) with. O

From the concept of LPV-SS equivalence the concept Oth_ue t_o thle latent nat_LlJ)rIe of t(tj'\edvarlablgt, iUCh a :Lansfor-_f ;
minimality directly follows: mation is always possible and does not change the manifes

Definition 22 (Minimal LPV-SS representatiorfjor behavior, hence it is called aguivalence transformatioie

given np, an SS representation, defined through the matfian use this result to establish an 10 realization of a given S

functions (A, B, C, D), is called minimal if there exist no representation (26a-b) by writing it in the latent form

A, B, C’", D') with n% < nx such that 0 B Ig— A
( 1 s < sueh et ra=| % g m@-| "
< : 0
{ C|D ] { | D } with w = col(u, y), wy, = x, Ry, € R[] tmv)x(nxtnu) gnd

Again, using the concept of the SS equivalence relatidf € RIE]"* )%™, According to Corollary 1, there exists
and minimality, the definition of LPV-SS equivalence classé® Unimodular matrix
follows naturally. In addition, the state-dimensiorx of a M(€) = Mi1(§) Mia(8) eR[g]("X+”“"’)X("X+"‘Y) (37)
minimal Rgs(S) is equal to the McMillan degree . Mo1(§) Maa(§)

Example 14 (LPV-SS equivalence and minimalitgian- S B T -
sider the LPV-SS representation derived in Example 10. e ich mIterrrlls Of]\]([/[(g)RLC(,QB [T;isoi]eldéntrg:;?) satisfies
T € R?*? be an invertible state-transformation defined by 21(§)([§ — A) — M (§)C = 0. y

—1 -1 i * * o *
Top= [ 0 -1 ] , with { —Ma1(§) M2 (&) B+ Maz(§)D ] B [ 0 ] ’
4 ﬁl ——
T lop— [ —01 a'p } C Top=— [ 01 _} ] | M(€) Ry (€) M(€)Ry(€)
-9 P P andR@(E) = [ —]\/[21(5) ]\/le(g)B—l—]\/fgg(f)D ] is in the
giving form of an output side polynomiak, ({) = M>;(§) and an
1 —T2k. | T2 input side polynomialR,(§) = Ma1(§) B 4+ Ma2(€)D.
{ ?AT‘1 ‘ ?B } op— | 1 1d ’ Od Corollary 2 (10 equivalence transformation}:et PRgs(S)
cT-1 | D P= 2 ' be a state-space representation with manifest beh&viand
0 1 | 0 system matrice§ 4, B,C, D) where A € R"™*™:,_ Then

The obtained SS representation is an equivalent minimal &fre exists a monic polynomiak, € RI[¢]™*™ with
representation ofS as it is in an equivalence relation withdeg(R,) = nx and aR, € R[¢]™*™* with deg(R,) < nx—1
MRss(S) and its state dimension is the same. Note that thésich that
realization has only static dependence. O Ry (§)C = Ry (&)(I€ — A). (38)
Based on the developed state-transformations and the con- .
cepts of state-observability and -reachability matricse €t fic € R[{]"*"* be the greatest common left-divisor of
classical canonical forms can also be defined (see [17]).[20f @Nd FuB such that there exisk,, R, € R[¢] satisfying
Furthermore, Def. 21 highlights that applyingdependent R(€)Ry(€) = Ry(€), (39a)
state transformation or system transposition accordintpéo 5 =
rules of the LTI theory deforms the dynamic relation. This Re(ORu() = Ral&)B + By (D (390)
“‘common practice” leads to inequivalent system represenhen the IO representation, given bi, (q) op)y = (Ru(gq)<
tations with arbitrary large difference in terms of manifeg)u, defines a behavior equal to the manifest behavior of (26a-
behavior (see [17], [20] for illustrative examples). b), thus it is an IO representation 6f O



The algorithm defined by (38) and (39a-b) is structurally)w + qw;,. Repeated use aof_ and stacking the resulting
similar to the LTI case (see [32], [33]), but it is more compolynomial matrices gives

plicated as it involves multiplication with the time opeyes ro 0 en—2 | [en_1 T
on the coefficients. Thus, this transformation can result ih o-(R) (SRR S PRETS +rng
an increased complexity (like dynamic dependence) of the o*(R) 7’[22] + ...+r£12115”*3 +r§]§"*2
coefficient functions in the equivalent IO representation. . (€) = .

Example 15 (I0 equivalence transformatiorgpnsider o ’ '
the LPV-SS representation derived in Example 14. t.dte 9;_1(R) Tl gl tle
the identity function sa- ¢ p = p. In terms of (38), we are o= (1) rL”]
looking for aR, € R[¢]'*? with deg(R,) = 1 and a monic £ (R) i i
polynomial R, € R[¢] with deg(R,) = 2. Parameterize these il _ . _
polynomials as wherer;” denotes the backward shift operatﬁnapphed on

B ) B r; for j-times. In caseR € R[¢]™>™* with n, = 1, the rows
Ry(§) =&+ a€+ao, Ru(€)=[bu€+biz bn&+bxn]. ofX_ are independent, thus it can be shown tNat: _(R)
Then in terms of (38): defines a minimal state-map in the form of

(52 +ai€ + ao) [ 0 1 ] _ r = (X(q) o p)w. (40)
£-1 T2k, In other cases (MIMO case), independent rowsaf( R) are
[ b11& +b12 b +bay | [ 1 gd_bl ] selected to define a minimaf, but this selection is generally
- - - not unique. Later it is shown that a given state-map implies
Ig—A a unique SS representation. Before that, we characterize al
Solving this equation system it follows that possible minimal state maps that lead to an equivalent SS
9 representation.
a1 = _% -1, ag = %ﬂ, b1 =0, Denote the left-side multiplication ofR({) by ¢ as
1 , o4+ and introducemoduler¢(R) as the left module in
b1z = =, ba1 =1, bag = —=s. RIE]™>™ spanned by the rows ofR € R[{]™ >,
" " i.e. modulegg(R) = spanig™([ RT o4 (R)" ... ]7).

The resulting polynomial&, and R, are left coprime, hence This module represents the set of equivalence classes on

_ P _ 2 spani"V (X_(R)). Let X € R[] ™ be a polynomial matrix
By(€) = By (&) =&+ af + a0’2 with independent rows (full row-rank) and such that

— P D _ Td
Full) = RO + B (0D = 55 spanfg™ (X) & modulereg) (R) =

After left-multiplying these polynomials with7, the 10 spanig” (X¥_(R)) + moduleg¢(R), (41)
representation in the form of (20) with, = 2 andn;, = 0 ) o
has the coefficients whered denotes direct sum. Then, similar to the LTI case (see

[32], [33]), it is possible to show thaY is a minimal state-map
azop = qp, a1op = —qp—p, apop = Tiks+p, bpop =T3. of the LPV systemS and it defines a state variable by (40)

B . 5 . [20]. This way, it is possible to obtain all minimal, equigat
In terms ofw = col(y, u), the resulting LPV-10 representat|0n§8 realizations ofS which have a kernel representation

is equal to (15) which shows its equivalence with the LPV-S

representation in Example 14 O associated withtz.
P P ' The next step is to characterize these SS representations

w.r.t. an 10 partition. For a given kernel representation as

B. 10 to state-space sociated with the polynomiak € R[¢]™ ™, a valid input-

Finding an equivalent SS representation of a given 10 reputput partition(u, ) of the representation is characterized by
resentation is accomplished by constructing a state mgppiahoosing a selector matri%, € R"*™" giving u = S,w and
This construction can be seen as the counterpart of thet latgrcomplementary matri$, € R™*"% giving y = Syw.
variable elimination. The aim is to introduce a latent vialea ~ Assume that a full row rank € R[¢]*™ is given which
into (19) such that it satisfies the state property, i.e. fings satisfies (41). TheX and .S, jointly lead to
a SS representation (Th. 4). Similar to the LTI case (seg, [32]
[33]), the central idea of such a state construction isdine spang" (04 (X)) €
and-shift-map_ : R[¢] ™ — R[£]* that acts on polynomial spanyk™ (X) @ spang™ (S,) © moduleg ¢ (R). (42)

matrices as: .
On the other hand$, gives

Q*(TO"‘Tlf—F...—FTngn) :ﬁ+---+ﬁ€n_l,
R(§)

This operator can be seen as an intuitive way to introduce
state variables for a kernel representation associatdd Mit These inclusions imply that there exist unique matrix func-
aswy, = o-(R(q) ¢ p)w implies that(R(q) o p)w = (ro o tions{A, B,C,D} in R and polynomial matrix functions

span™ (Sy) €
spanyk™ (X) @ spang™ (S,) @ moduleg g (R). (43)



Xu, Xy € R¢]™ with appropriate dimensions such that VII. CONCLUSION

£X(6) =
Sy =

In this paper, we have extended the behavioral approach
to LPV systems in order to lay the foundations of an LPV
system theory which provides a clear understanding of this
Then the resulting matrix functiofA, B, C, D} define a sys.tem class and the relations of iFs repr(_asentations. e ha
minimal state-representation of the LPV systé This al- defmed I._PV systgms as the collection of signal and schggiuhn
gorithm provides an SS realization of both LPV-IO and Lp\ir@jectories and it has been shown that representations of
KR representations. Specific choices &f leads to specific (N€S€ systems need dynamic dependence on the scheduling

canonical forms. Note that a similar algorithm can be deduc¥ariable. By the use of such system descriptions, it has been
for a realization in an image type of representation, i.eeria PrOVen that equivalence relations and transformationsedsst
variable representation (31) whefg, (¢) = 1. these descriptions can be developed, giving a common ground

Example 16 (SS equivalence transformatio@pnsider where model structures of LPV system identification and
the LPV-IO representation derived in Example 15 concepts of LPV control can be compared, analyzed, and

further developed.
Ry(§) =& — (1+ %) &+ M50, Ry(§) = 3.

Denote R(¢) = [ Ry(€)
map

AX (&) + BSy + Xu(&R(S),
CX (&) + DSy + X, (§R(E).

(44a)
(44b)
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o 5—(1+f) 0 VIII. A PPENDIX
(1 0]=[e CQ].[ T O]
T T A. Proof of the injective cogenerator property
’ X(6) The concept of the proof is based on [29]. IR, = R U
+[0 di ]+ Xy(§R(E) {—00, 00} and denote by, all maps» from Z x R" to R,
o which are essentially bounded w.iR”, i.e. ||= (k,x)|| < oo
) with (k,x) € Z x R™ except forx € S(w) C R where
By solving these equations, it follows that the setS(») has measure 0. The s@,, is a real vector
B kg 12 - space for eacm € N. DenoteQ,, C Q, all w € Q,
a;p =0 Q12 =~ fr== P2 =0 for which there exist ak € Z and xq,...x, € R such
s =1 0422:14—? c1 =0 =1 that w (k,x1,...,%,) # w(k,x1,...,%,-1,0). DenoteQ =
di=0 Xu(¢)=1 Xuo(€) = X,(€) =0 Unen @n- Q is an (additive) Abelian group.

Then, the obtained LPV-SS representation is

Consider aR € R[¢]™*™ with P = R". For aw € Q,
R® » = 0 means that anyw, p) € (R x R")Z satisfying

_Tiktp | T3 w(k) = w(k,[ p(k) pk+1) pk—1) ...]), (45)

ap | ap
Res(S) =11 1422 |0 |, for all k € Z, also satisfies(R(q) o p)(k)w(k) = 0
0 1 | 0 for all k € Z\ J(w,p), where J(w,p) = {k € Z |

which through

—1
ren=[7 7]

[ p(k) p(k+1) pk—1) .] € S(w)}. As S(w) has
zero measure, this means that there exists also a (bounded
solution) (w,p) € (R™ x R")% satisfying (45) such that
(R(q) o p)(k)w(k) = 0 holds for allk € Z. The setB.. given

as®B, = {w € Q" | R® » = 0}, is called the complete

is in equivalence relation with the LPV-SS representatibn go|ution space of the linear system of PV difference equatio
Example 14. The latter proves thgt the 10 representatioBngiv(K R-representationjR(q)  p)w = 0. Note that the behavior
by Ry and i, has the same manifest behaviorfass(S).00 53 of R defined by (18), contains the set of trajectoriesp)



that satisfy € 9B, and are bounded, whil&, describes exists awy, € Q such thatR®wy = wy,. Let R(§) = Y 15, 7’
the relationship of the trajectories containing the descms  be given withr,, # 0. If ng = 0, there is nothing to prove.
of possible solutions that are excluded frabh due to the SinceR is a field, assume that,, = 1. Then R ® wy = wy

singularity of the coefficients irR. can be rewritten as a first-order system
Let M; € R[¢]™*™ and M3 € R[¢]™*™ be unimodular
matrices such that (17) is the Jacobson formRowith Q@ = (2,19 +7x,0) ® wx = 1w ® wy, (52)
diag(r1,. .., ) € RIE™™. It can bg shown (see [27]), thatwhere w, = | wy oo e Vo T ey = I,y =
(R(q) ¢ p)w = 0 has the same solutions as [0 ... 0 1]7 €eR" and
(Mi(q)R(g) o p)w = (Q(g9)M](q) op)w =0,  (46) _
. o e s (53)
so there is an isomorphism of solution spaces o T
B,=B, ={0eQ™|[Q 0]®w =0}, (47a) With r. = [r1 ... 7, ]. Let S(R) denote the set of
-t 47b singularities of the meromorphic coefficients in R. Note
w = w = My (g)w, (47b) that S(R) has measure 0. L&(wy) := S(wy) US(R) which
wherer; ® w; = 0 for i € {1,...,n}. IntroduceMp = has still zero measure. Hend®;,\ S(=y) is a countable union
moduler ¢ (R) as the left module irR[¢]" ™" generated by of open intervals/; € R* and on eaclt; it holds thatf, and
the rows of R € R[¢]™ ™", Then w, are bounded. Therefore there exists a bounded solution
. wy : (Z x I;) — R™ to (52) on eachl;. By concatenating
B, = homR[g] (MR, Q W), (48)

them, one gets a solution, € Q"¢ and thuswy, € O.
which corresponds to the so-called Malgrange isomorphism.For the cogenerator property, it has to be shown that if for
Explicitly, (48) assigns to eachy € B, the linear map someR € R[{], R ® wy = 0 has only the zero solution,
¢, : Mr — Q defined bye, ([r]) = r(q)w where [r] then this implies thatR € R and R # 0. Assume the
denotes the residue class ofc R[¢]'*™" in My, and the contrary and letdeg(R) = n¢ > 1. Then one can rewrite
well definedness o, follows from R® wy = 0 asquwy = —ryo ® wy like in the previous
part. Let S(wy) = S(R), then on each of the intervals
(] =[ra] — 1 —r2 €span™(R) — r1(g)w =r2(¢)w, T, the solution set of this homogenous equation isnan
for all w € B, which also implies thatQ™ = dimensional subspace ¢R"™¢)®*!: in particular there exist
homg ¢ (R[¢]*™7, Q™). Conversely, for a linear map : Non-zero solutions. By concatenating them, we get a noo-zer
Mp — Q one definesw; := ¢([e;]), wheree; is thei-th Solutionwy € Q" If wy = wy, was identically zero, then
natural basis vector oR[¢]'*™*. Then we have we = [wy ... q~"Vwy |7 would be identically zero

which leads to a contradiction. [ |
o([r]) = ¢ (Do ried]) = 2012 ri(@)o([es]) =
Yiri(@wi = r(q)w. B. Proof of Theorem 2

Due to (45), the above equation implies an isomorphism of ConsiderRk (S) with B € R[¢]™>™7, P = R", and

left modules: behavior® in terms of (18). Without loss of generality, let
R # 0 as the behavio®B = (R"" x R"*)% can be represented
moduleg ¢ (R) = modulerg([Q 0]), (49a) by the empty matrix which is full rank by convention. Let

[r] = [rM3]. (49b) M; e R[g™>*™ and My € R[{™>*™ be unimodular

matrices such that (17) is the Jacobson fornRRah terms of
Th. 1 with Q = diag(r1, ...,r,) € R[] ". Partition M} =
[ Wi Wa ]T according to the partition of the Jacobson form.
Sincel; is unimodular, the solution space @ (¢)op)w = 0

My 28 My 2% My (50) is equal to the solution space (i/:(q)R(q) o p)w = 0 (see
_ ) ) the previous proof). Thug'(§) := Q(£)W1(€) also represents
is exact ifim(¢12) = ker(¢23). The same notion can be usedy i an almost everywhere sense, i.e. for all trajectories of

if My, M3, M3 are Abelian groups anghs, ¢23 are group , ¢ %B; for which the coefficients of?’ are bounded, and
homomorphisms. Thee is called an injective cogenerator ify.a,k(R/) = n. -

the sequence

Let My, My, M3 be left modules inR[¢]™>*™* and let
P12 : M1 — My andgas : Mo — M3 be linear maps, i.e.
left module homomorphisms. Then

Mi = Mz = Ms, 1) C. Proof of Theorem 3
is exact iff the sequence Based on the proof of the injective cogenerator property
hompig (My, Q") < hompig (Ma, Q™) (Appendix A), consider
 homp ¢ (M3, Q™) B, ={w € Q" |Jw, € Q" : Ry ®w = R, ®wr,}, (54)
of Abelian groups is exact. whereRy, € R[{]™*™ and Ry, € R[¢]™*"" defines an LPV

For injectivity, one needs to prove according to Corollarlatent variable representation in the form of (21) with= R"*.
3.17 of [28]: For every) # R € R[¢] and everyw, € Q, there Then showing tha®. has a kernel representation is equivalent



with showing that the manifest behavior of (21) has a kernghere w = [w; ... wy,,]' . Collect these variables in a
representation in an almost everywhere sense. Define the taflumn vector

kernel of Ry, as . g . g . . T
w = [w01 wo2 ... Wony Wi1 --- wngnw } . (59)

kerge(RL) = {r € R[g]" ™

r(§)Ru(§) =0}, (55)

which is a left submodule oR[¢]'*™. Thus, it is finitely y 5
generated, i.e. there exists @ € R[¢{]"*™ such that g = (r o p)w, (60a)
imgr(@) = {r(©)Q() | r € RE™™) is equal to w; = o;, Vi L. (60b)
kergr ¢ (Rr). Then we have an exact sequence

Now consider the system with latent variahieas

where the coefficient € R("¢mw)x(nenw) s determined from
R[e|Pxm K R[E X By R[E| ¥ (56) the coefficients of?; (¢) and the definition (58). The manifest
behavior of (60a) is equivalent with the manifest behavior

and therefore the sequene@” %¢ om "9 gm js of Ri(€), which can be checked by elimination of the latent
also exact. This signifies thak, (q)w € imgo(Ry) := variables of (60a-b). However, the manifest behavior can no
{Ru(q)wr | w € Q} iff Ry(qQ)w € kero(Q), i.e. be Mgrl_@wan as _(60a-b) has exactly_one splulﬂmub) for
B, ={w e Q"™ | QRy ® w = 0}. m ©ach initial condition(0) and scheduling trajectony € Bp.

This contradicts Markovianity, since two solutiofs, w) and
(w', ") with g (0) = i, (0), Vj € I} cannot be connected
D. Proof of Theorem 4 N o . ne—1_

unless alsab;;(0) = w;;(0), V(i,7) € I;* "< I}"". [ |

The concept of the proof is based on [32]. To simplify the

discussion, we prove only the so-calldthrkovian caseas ¢ of Th
the state case follows trivially from this concept due to thlg- Proof of Theorem 5
linearity and time-invariance of LPV systems. We call the First consider the left-side transformation. L&t <
discrete-time LPV systen§ = (Z,P,W,%) Markovian, if R[{]™*"" and R’ € R[{]"*" andP = R"*. Based on the

for all p € Bp proof of the injective cogenerator property, consi@&r and
B/, as the complete behaviors Afand R’. Then the inclusion
(w1, w2 € By) A (w1(0) = w2(0)) = (wn Q“’?) € By B’ C B, can be expressed as an exact sequence
In the following, we prove thatS is Markovian, iff there 0 — B, — B,, (61)

exist matricesrg,m, € R™*"™ such that® has the kernel _

representationrow + réw = 0. where¢ = q. The “if’ which is equivalent to the exact sequence

part is trivial. To show the “only if” case, assume that a KR /

representation of is given with R € R[£]™*™ for which 0« modulegig () « moduler g (R). (62)
the solutions of (14) satisfy the above given connectabiliEquivalently, we havepan’s™ (R’) D span’g™(R) or R'(§) =
condition. Without loss of generality it can be assumed that Q(§)R(¢) for some @ € R[{]™ ™. If B, = B!, then

is full row rank. Also, there exists a unimoduldf € R[¢] %™  R'(£§) = Q1(§)R(E) and R(§) = Q2(£)R'(€), which shows
such thatR'(§) = M(&)R(€) is in a row reduced form, that R and R’ has the same rank. If additionallig and R’
meaning that the matrix formed by the coefficient functiohs are full rank, than this implies th@, = Qg, ergo®, andQ@,
the highest powers ig of the rowsR'(£) has full row rank. are unimodular. As the complete behaviors are equal therefo
Due to the fact thad/ is a left-side unimodular transformation this implies that the behaviors & and R’ for each commonly

the behaviors of? and R’ are equivalent. valid trajectories ofp are equal.
We show now thatleg(R’) = 1. Assume the contrary and Consider the right-side transformation. Based on the proof
write R’ in the 10O form: of the injective cogenerator property, there is a homomismh
between the the complete behaviors Bf{) and R'(¢) =
(Ri(q) o p)wr = (Ra(q) o p)wz, 57 R(€)01(€) and also betwee®(€) = R'(£)Qa(€) and R'(€).

where col(wy, w;) = w corresponds to an 10 partition andThis implies that ifQ), = Q}, ergoQ, andQ, are unimodular,
deg(R;) > deg(R,). The assumption thafleg(R’) > 1 then there exists a isomorphism between the behaviors

implies that deg(R;) > 1. Similarly, the assumption of
(R'(q) © p)w = 0is Markovian implies thatR; (q) ¢ p)w; = REFERENCES
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