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Abstract—Linear Parameter-Varying (LPV) systems are usu-
ally described in either state-space or input-output form.When
analyzing system equivalence between different representations
it appears that the time-shifted versions of the schedulingsignal
(dynamic dependence) need to be taken into account. Therefore,
representations used previously to define and specify LPV systems
are not equal in terms of dynamics. In order to construct a
parametrization-free description of LPV systems that overcomes
these difficulties a behavioral approach is introduced which
serves as a basis for specifying system theoretic properties. LPV
systems are defined as the collection of trajectories of system
variables (like inputs and outputs) and scheduling variables. LPV
kernel, input-output, and state-space system representations are
introduced with appropriate equivalence transformations.

Index Terms—LPV, behavioral approach, dynamic depen-
dence, equivalence.

I. I NTRODUCTION

Many physical/chemical processes encountered in practice
have non-stationary or nonlinear behavior and often their
dynamics depend on external variables like space-coordinates,
temperature, etc. For such processes, the theory ofLinear
Parameter-Varying(LPV) systems offers an attractive mod-
eling framework [1]. This class of systems is particularly
suited to deal with processes that operate in varying operating
regimes. LPV systems can be seen as an extension of the class
of Linear Time-Invariant(LTI) systems. In LPV systems, the
signal relations are considered to be linear, but the parameters
in the description of these relations are assumed to be functions
of a time-varying signal, the so-calledscheduling variable
p. As a result of the parameter variation concept, the LPV
system class can describe both time-varying and nonlinear
phenomena. Practical use of this framework is stimulated by
the fact that LPV control design is well developed, extending
results of optimal and robust LTI control theory to nonlinear,
time-varying plants [1]–[9].

In a discrete-time setting, LPV systems are commonly
described in astate-space(SS) form (see [1]–[9]):

x(k) = A(p(k))x(k) +B(p(k))u(k), (1a)

y(k) = C(p(k))x(k) +D(p(k))u(k), (1b)

whereu : Z → RnU is the input,y : Z → RnY is the output,
x : Z → RnX is the state vector and the system matrices
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{A,B,C,D} are functions of the scheduling signalp : Z →
P, e.g.A : P→ R·×·, where the setP ⊆ RnP is the so called
“scheduling space”. It is assumed thatp is anexternalsignal
of the system, i.e.p is not dependent onu or y. An exact
definition of when this externality property holds forp will be
given later.

In the identification literature, LPV systems are also de-
scribed in the form of (filter-type)input-output(IO) represen-
tations [10]–[13]:

y(k) =

na∑

i=1

ai(p(k))y(k − i) +

nb∑

j=0

bj(p(k))u(k − j), (2)

where {ai, bj} are matrix functions ofp. In Equations (1a-
b) and (2), the coefficients depend on the instantaneous time
value of p, which is called static-dependence. In analogy
with the LTI system theory, it is commonly assumed that
representations (1a-b) and (2) define the same class of LPV
systems and that conversion between these representations
follows similar rules as in the LTI case (see [14]–[16]).
However, it has been observed recently that this assumption
is invalid if attention is restricted to static-dependence[17].

Example 1:To illustrate the problem consider the following
second-order SS representation:
[
x1(k + 1)
x2(k + 1)

]

=

[
0 a2(p(k))
1 a1(p(k))

][
x1(k)
x2(k)

]

+

[
b2(p(k))
b1(p(k))

]

u(k),

y(k) = x2(k).

With simple manipulations this system can be written in an
equivalent IO form:

y(k) = a1(p(k − 1))y(k − 1) + a2(p(k − 2))y(k − 2)

+ b1(p(k − 1))u(k − 1) + b2(p(k − 2))u(k − 2),

which can clearly not be formulated as (2). �

In order to obtain equivalence between the SS and IO
representations, it is necessary to allow for a dynamic mapping
betweenp and the coefficients, i.e.{A,B,C,D} and{ai, bj}
should be allowed to depend on (finitely many) time-shifted
instances ofp(k), i.e. {. . . , p(k − 1), p(k), p(k + 1), . . .}
[17]. We call such a dependencedynamic in the sequel.
Dynamic dependence has also been encountered and analyzed
in terms of LPV control synthesis (see [18], [19]) and its need
is supported as well by LPV modeling of non-linear/time-
varying systems (see Example 2 and [20]). Currently, it is not
well understood how to handle such dependencies in general,
and how to formulate algorithms that provide transformations
between the representation forms (an intermediate solution for
the SISO case is given in [17]).



The necessity of dynamic dependence clearly indicates that
representations (1a-b) and (2) used previously to define and
specify LPV systems are not equal in terms of dynamics.
Furthermore, the lack of realization/transformation theory as-
sociated with these representations hinders the use of many
identification methods based on IO models, like the extension
of successful prediction error methods of the LTI case, e.g.
[10], [11], to provide state-space models for control synthesis.
The lack of understanding of similarity transformation for(1a-
b) is also a source of many pitfalls both for identification and
control synthesis in general [17]. Furthermore, the collection
of transfer functions of (1a-b) and (2) for each value of
p(k), the so-calledfrozen transfer functions, does not specify
the behavior of the system for non-constant trajectories of
p, which is often overlooked in the literature, see [21]–
[23]. As no global transfer-function theory exists in the LPV
case, definitions of input-output behavior of (1a-b) and (2)
are relevant to be considered in terms of solutions of these
difference equations in the time-domain. These arguments
indicate that the classical definitions of LPV systems and the
“assumed” similarity transformation connected to them are
inadequate, showing that the current LPV system theory is
incomplete.

A parametrization-free definition of LPV systems and an
algebraic framework where the previously considered repre-
sentations and concepts of LPV systems are reestablished
can be found by considering a behavioral approach to the
problem. In this paper the behavioral framework, originally
developed for LTI systems [24], is extended to discrete-time
LPV systems. In this framework systems are described in
terms of behaviors that corresponds to the collection of all
valid signal trajectories. Our aim is to use the behavioral
concept to establish well-defined LPV system representations
as well as their interrelationships. Our further intentionis
to develop a unified LPV system theory that establishes
connections between the available results.

The paper is organized as follows: In Section II LPV
systems are defined from the behavioral point of view. In
Section III, an algebraic structure of polynomials is introduced
to define parameter-varying difference equations as represen-
tations of the system behavior. This is followed, in Section
IV, by developing kernel, IO, and SS representations of LPV
systems, together with the basic notions of IO partitions and
state-variables. In Section V it is explored when two kernel,
IO, or SS representations are equivalent. In Section VI equiv-
alence transformations between SS and IO representations are
worked out. Finally, in Section VII, the main conclusions are
summarized. We only consider discrete-time systems, however
analog results for the continuous-time case follow in a similar
way (see [20]).

II. LPV SYSTEMS AND BEHAVIORS

The reason why the LPV framework has become popular
in practical applications is that it represents an attractive
intermediate case between LTI and nonlinear/time-varying
descriptions. Driven by the need to address the control of com-
plicated plant dynamics in a linear framework, LPV systems
were invented to “embed” nonlinear behaviors into a linear

structure enabling the use of convex control synthesis and
simple stability analysis as extensions of well-worked outLTI
results. However, what makes all this possible is a particular
concept behind the scheduling variablep. In order to give a
formal definition of LPV systems we first need to clarify the
role of p and its so calledexternality property.

Assume that we are given a discrete-time systemG, depicted
in Fig. 1.a, which describes the (possibly nonlinear) dynamical
relation between the signalsw : Z → W, whereW is a
given set. LetB ⊆ WZ (WZ stands for all maps fromZ
to W) containing all trajectories ofw that are compatible
with G. Then we callB the behavior of the systemG. A
common practice in LPV modeling is to introduce an auxiliary
variablep, with rangeP, and reformulateG as shown in Fig.
1.b, where it holds true that if the loop is disconnected and
p is assumed to be a known signal, then the “remaining”
relations ofw are linear. Applying this reformulation with
a disconnectedp and assuming that all trajectories ofp are
allowed, i.e.p is a free variable withp ∈ PZ, the possible
trajectories of this reformulated system will form a behavior
B
′ which will contain B as visualized in Fig. 1.c. This

concept of formulating a linear butp-dependent description
of G enables the use of simple stability analysis and convex
controller synthesis, which will always be conservative w.r.t.
G, but computationally more attractive and robust than other
approaches directly addressingB. The scheduling variable
p can appear in many different relations w.r.t. the original
variablesw. If p is a free variable w.r.t.G, then we can
speak about atrue parameter-varying systemwithout con-
servativeness. However it often happens thatp depends on
other signals. In the latter case the resulting system is often
referred as aquasi parameter-varying system. To decrease
conservativeness of LPV controller synthesis or modeling w.r.t.
such situations, very often the possible trajectories ofp are
restricted, for instance by supposing (boundary) restrictions
on first and higher order derivatives/differences ofp or by
excluding specific trajectories due to physical constraints. In
this wayp appears to be a free variable of the system, but with
certain “external” restrictions, hence to express this property
we will call p an external variablein the sequel. Based on
these concepts, the class ofParameter-Varying(PV) systems
can be defined as follows:

Definition 1 (Parameter-varying dynamical system):A pa-
rameter-varying systemS is defined as a quadrupleS =
(T,P,W,B), where T is called the time axis,P denotes
the scheduling set (i.e.p(k) ∈ P), W is the signal space
and B ⊆ (W × P)T is the behavior. Furthermore, the set
of allowed scheduling trajectoriesπpB = {p ∈ PT | ∃w ∈
WT s.t. (w, p) ∈ B} satisfies the externality property in the
sense that there exists a behaviorB

′ ⊆ (W×P)T with p being
a free variable, i.e.πpB

′ = PT, andB ⊆ B
′ such that for

eachp ∈ πpB it holds that(w, p) ∈ B
′ ⇒ (w, p) ∈ B. In

other words(w, p) ∈ B
′ \B implies thatp /∈ πpB. �

The setT defines the time-axis of the system, describing
continuous-time(CT), T = R, anddiscrete-time(DT), T = Z,
systems alike, whileW gives the range of the system signals
w. The behaviorB ⊆ (W × P)T is the set of all signal and
scheduling trajectories that are compatible with the system.
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Fig. 1. The concept of LPV modeling.

Note that there is no prior distinction between inputs and
outputs in this setting.

The scheduling setP is usually a closed subset of a vector
space. The set of admissible scheduling trajectories ofp,
defined as theprojected scheduling behavior

BP = πpB ⊆ P
Z, (3)

describes all possible scheduling trajectories ofS. BP in
terms of Def. 1 implies that the scheduling variablep ∈ BP

is a “structurally free” variable ofS, but not literally as
the trajectories ofp can be restricted inB, i.e. πpB is
not necessary equal toPZ. A variable with such a property
is called external or semi-free. Note that this definition of
the behavior allows to include additional restrictions on the
possible trajectories ofp, but keeps the independence ofp
from the signal variablesw which is in line with the current
concepts of the LPV literature (see Example 2)

For a given scheduling trajectory,p ∈ BP, we define the
projected signal behavioras

Bp = {w ∈W
T | (w, p) ∈ B}. (4)

Bp describes all possible signal trajectories compatible with
p. In case of a constant scheduling trajectory,p ∈ BP with
p(t) = p̄ for all t ∈ T where p̄ ∈ P, the projected behavior
Bp is called afrozen behaviorand denoted as

Bp̄ =
{
w∈WT | (w, p)∈B with p(t) = p̄, ∀t ∈ T

}
. (5)

Definition 2 (Frozen system):Let S = (T,P,W,B) be a
PV system and considerBp̄ for a p(t) ≡ p̄ in BP. The
dynamical systemFp̄ = (T,W,Bp̄) is called a frozen system
of S. �

Define q as the unit forward time-shift operator, e.g.
qw(t) = w(t + 1). With the previously introduced concepts,
we can define discrete-time LPV systems as follows:

Definition 3 (DT-LPV system):Let T = Z. The parameter-
varying systemS is called LPV, if

• W is a vector space andBp is a linear subspace ofWT

for all p ∈ BP (linearity).
• For any (w, p) ∈ B and any τ ∈ T, it holds that

(w(� + τ), p(� + τ)) ∈ B, in other wordsqτB = B

(time-invariance). �

In terms of Def. 3, for a constant scheduling trajectory
p(k) ≡ p̄, time-invariance ofS implies time-invariance ofFp̄.
Based on this and the linearity condition ofBp, it holds for
an LPV system that for each̄p ∈ P with p(k) ≡ p̄ in BP

the associated frozen systemFp̄ is an LTI system, which is in

accordance with previous definitions of LPV systems [1]. In
this way, the projected behaviors of a givenS w.r.t. constant
scheduling trajectories define a set of LTI systems:

Definition 4 (Frozen system set):Let S = (T,P,W,B) be
an LPV system. The set of LTI systems

FS =
{
F = (T,W,B′) | ∃p ∈ Bp̄ with

p(k) ≡ p̄ ∈ P s.t.B′ = Bp̄

}
(6)

is called the frozen system set ofS. �

Naturally, the LPV system concept is advantageous com-
pared to general nonlinear systems, as the relation of the
signals is linear. Definition 3 also reveals the advantage ofthis
system class over LTV systems: the variation of the system
dynamics is not associated directly with time, but with the
variation of an external (semi-free) signal. Thus, the LPV
modeling concept, compared to LTV systems, is more suitable
for non-stationary/coordinate-dependent physical systems as it
describes the underlying phenomena directly.

Example 2:To emphasize the advantage of LPV systems,
we investigate the modeling of the motion of a varying mass
connected to a spring (see Fig. 2). This problem is one of
the typical phenomena occurring in systems with time-varying
masses like in motion control (robotics, rotating crankshafts,
rockets, etc.). Denote bywx the position of the varying mass
m. Letks > 0 be the spring constant, introducewF as the force
acting on the mass, and assume that there is no damping. By
Newton’s second law of motion, the following equation holds:

d

dt

(

m
d

dt
wx

)

= wF − kswx. (7)

Using an Euler type of discretization with step sizeTd > 0, a
DT approximation of (7) is
(
T
2
dks +m(k)

)
wx(k)−

(
m(k + 1) +m(k)

)
wx(k + 1)

+m(k + 1)wx(k + 2) = T2dwF(k), (8)

It is immediate that by takingm as a scheduling variable, the
behavior of this process can be described as an LPV system,
preserving the physical insight of Newton’s second law. Note
that m is a free variable in (7), hence the resulting LPV
system withp = m describes the behavior of (7) without
conservativeness. On the other hand, viewingm as a time-
varying parameter, whose trajectory is fixed and known in
time, results in an LTV system. Such a system would explain
the behavior of the process for only a fixed trajectory of the
mass. Furthermore, in an application it might be advantageous
to restrict the possible trajectories ofm to a subset ofRZ, as
for example during operation of the system it is known that
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Fig. 2. Varying-mass connected to a spring.

|m(k + 1) − m(k)| < δm. This restriction of the behavior
can be exploited to decrease the conservativeness of the LPV
description and focus the control synthesis on the interesting
operating regime later on. However with such a restriction
p = m would not be a free variable anymore, but it would
still be external. �

In the sequel, we restrict our attention to DT systems with
W = RnW and withP a subset ofRnP . In fact, we consider
LPV systems described by finite order linear difference equa-
tions with parameter-varying effects in the coefficients.

III. A LGEBRAIC PRELIMINARIES

In order to re-establish the concept of LPV-IO and SS
representations, we introduce difference equations with vary-
ing coefficients as the representation of the behaviorB.
These difference equations are described by polynomials of
an algebraic ring where equivalence of representations and
other system theoretic concepts can be characterized by simple
algebraic manipulations.

A. Coefficient functions

First, we define the set of functional dependencies consid-
ered in the sequel:

Definition 5 (Real-meromorphic function [25]):A real-
meromorphic functionf : Rn → R, is a functionf = g

h
,

where g, h : Rn → R are holomorphic (analytic) functions
andh 6= 0. �

Meromorphic functions consist of all rational, polynomial,
trigonometric expressions, rational exponential functions etc.
Thus, this class contains the common functional dependencies
that result during LPV modeling of physical systems. Next
we establish an algebraic fieldR of a wide class of multivari-
able real-meromorphic functions from which thep-dependent
coefficients of the representations will follow. Variablesof
these functions will be associated with the elements of the
scheduling variable and their time-shifts in order to represent
dynamic dependencies. However to uniquely define these
dependencies (to establish a field) it must be ensured that
in terms of an ordering, the “last” variable have a role in
the considered functions. For instancef(x1, x2) = x1 should
be excluded from the considered set as onlyf̂(x1) = x1 is
need to express this functional dependence. To ensure this
property, we introduce operators℧j and℧∗ to exclude non-
unique functional dependencies in the construction ofR.

LetRn denote the field of real-meromorphic functions with
n variables. Denote the variables of ar ∈ Rn as ζ1, . . . ζn.

Also define an operator℧j onRn with 1 ≤ j ≤ n such that

℧j(r(ζ1, . . . , ζn)) := r(ζ1, . . . , ζj , 0, . . . , 0). (9)

Note that℧j projects a meromorphic function to a lower
dimensional domain. Introduce

R̄n = {r ∈ Rn | ℧n−1(r) 6= r} . (10)

It is clear thatR̄n consist of all functionsRn in which the
variable ζn has a nonzero contribution, i.e. it plays a role
in the function. Also define the operator℧∗ : (∪i≥0Ri) →
(∪i≥0R̄i), which associates a givenr ∈ Rn with a r′ ∈ R̄n′ ,
n ≥ n′, i.e. ℧∗(r) = r′, such that r′(ζ1, . . . , ζn′) =
r(ζ1, . . . , ζn′ , 0, . . . , 0) for all ζ1, . . . , ζn′ ∈ R, ℧n′(r) = r
andn′ is minimal. In this way,℧∗ reduces the variables of a
function till ζn′ can not be left out from the expression because
it has a nonzero contribution to the value of the function. Now
define the collection of all real-meromorphic functions with
finite many variables as follows:

R =
⋃

i≥0

R̄i, with R̄0 = R. (11)

The function classR will be used as the collection of coef-
ficient functions (like{A, . . . , D} and{ai, bj} in (1a-b) and
(2)) for the representations, giving the basic building block of
PV difference equations. These functions are not only used to
express dependence over multidimensionalp but also to enable
a distinction between dynamic scheduling dependence of the
coefficients and the dynamic relation between the signals of
the system. The following lemma is important:

Lemma 1 (Field property ofR): The setR is a field. �

To prove Lemma 1, the addition and multiplication operators
onR are defined as

Definition 6 (Addition/Multiplication operator onR): Let
r1, r2 ∈ R such thatr1 ∈ R̄i and r2 ∈ R̄j with i, j ≥ 0.
If i ≥ j, there exists a unique functionr′2 ∈ Ri such that
℧∗(r

′
2) = r2. Let r′1 = r1. In casei < j, r′1 and r′2 are

defined respectively onRj . Then

r1 ⊞ r2 := ℧∗(r
′
1 + r′2), r1 ⊡ r2 := ℧∗(r

′
1 · r

′
2), (12)

where+ and · are the Euclidean addition and multiplication
operators ofRi (or Rj). �

Based upon⊞ and⊡ the proof of Lemma 1 is straightfor-
ward and can be found in [20]. In the following, if it is not
necessary to emphasize the difference between the Euclidian
addition and⊞, we use+ to denote both operators in order to
improve readability. The same abuse of notation is introduced
for ⊡.

B. Representing scheduling dependence

The next step is to associate the variables of the coefficient
functions with elements ofp and its time-shifts, which will
provide the characterization of dynamic dependencies in the
representations. Naturally, this association is dependent on the
dimension of the scheduling space considered.

In case of a scalarp, i.e. nP = 1, we can associate
each variable{x1, x2, x2, . . .} of a given r ∈ R with
{p, qp, q−1p, q2p, . . .} in order to express a given dynamic
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Fig. 3. Variable assignment by the functionsm1 andm2 in Def. 7.

coefficient dependency. For example, the dependence2p ·
sin(q−1p) can be expressed in this way by a uniquer ∈ R
given asr(x1x2, x3) = 2x1 sin(x3).

Now we can consider the general case. For a givenP with
dimensionnP and r ∈ R̄n label the variables ofr according
to the following ordering:

r(ζ0,1, . . . , ζ0,nP
, ζ1,1, . . . , ζ1,nP

, ζ−1,1, . . . , ζ−1,nP
, ζ2,1, . . .).

For a given scheduling signalp, associate the variableζi,j with
qipj. For this association we introduce the operator

⋄ : (R×P
Z)→ R

Z, defined by r ⋄ p = r
(
p, qp, q−1p, . . .

)
.

The value of a (p-dependent) coefficient in an LPV system
representation is now given by an operation(r ⋄ p)(k).

Example 3 (Coefficient function):Let P = RnP with nP =
2. Consider the real-meromorphic coefficient functionr :
R3 → R, defined asr(x1, x2, x3) = 1+x3

1−x2
. Then for a

scheduling signalp : Z→ R2, (r⋄p)(k) = r(p1, p2, qp1)(k) =
1+p1(k+1)
1−p2(k)

. On the other hand, ifnP = 3, then (r ⋄ p)(k) =

r(p1, p2, p3)(k) = 1+p3(k)
1−p2(k)

, showing that the operator⋄
implicitly depends onnP. �

In the sequel the (time-varying) coefficient sequence(r ⋄p)
will be used to operate on a signalw (like ai(p) in (2)), giving
the varying coefficient sequence of the representations. Inthis
respect an important property is that multiplication of the⋄
operation with the shift operatorq is not commutative, in other
words q(r ⋄ p) 6= (r ⋄ p)q. To handle this multiplication, for
r ∈ R we define the shift operations−→r ,←−r .

Definition 7 (Shift operators):Let r ∈ R̄n. For a given
scheduling dimensionnP, denote the variables ofr as {ζi,j}
based on the previously introduced labeling. The forward-shift
and backward-shift operators onR are defined as

−→r := ℧∗(r ◦m1),
←−r := ℧∗(r ◦m2), (13)

where◦ denotes function composition,m1,m2 ∈ (Rn+2nP
)n,

andm1 assigns each variableζi,j to ζ(i+1),j , whilem2 assigns
eachζi,j to ζ(i−1),j as depicted in Fig. 3. �

In other words, ifr ⋄ p is dependent onp andqp, then−→r
is the “same” function (disregarding the number of variables)
except−→r ⋄ p is dependent onqp andq2p. With these notions
we can writeqr = −→r q andq−1r =←−r q−1, corresponding to

q(r ⋄ p)w = (−→r ⋄ p)qw and q−1(r ⋄ p)w = (←−r ⋄ p)q−1w

on the signal level.
Example 4:Consider the coefficient functionr given in

Example 3 withnP = 2. Then−→r is a functionR5 → R,
given by −→r (ζ0,1, ζ0,2, ζ1,1, ζ1,2, ζ−1,1, ζ−1,2, ζ2,1) =

1+ζ2,1
1−ζ1,2

.
For a scheduling trajectoryp : Z → R2, it holds that
(−→r ⋄ p)(k) = (r ⋄ (qp))(k) = 1+p1(k+2)

1−p2(k+1) . �

The considered operator⋄ can straightforwardly be extended
to matrix functionsr ∈ Rnr×nW where the operation⋄ is
applied to each scalar entry of the matrix.

C. Polynomials overR

Next we define the algebraic structure of the representations
we use to describe LPV systems. IntroduceR[ξ] as all
polynomials in the indeterminateξ and with coefficients in
R. R[ξ] is a ring as it is a general property of polynomial
spaces over a field, that they define a ring. Also introduce
R[ξ]·×·, the set of matrix polynomial functions with elements
in R[ξ]. UsingR[ξ] and the operator⋄, we are now able to
define a PV difference equation:

Definition 8 (PV difference equation):Consider R(ξ) =
∑nξ

i=0riξ
i ∈ R[ξ]nr×nW and (w, p) ∈ (RnW × RnP)Z.

(R(q) ⋄ p)w :=

nξ∑

i=0

(ri ⋄ p)q
iw = 0 (14)

is called a PV difference equation with ordernξ = deg(R).
�

In this notation the shift operatorq operates on the signal
w, while the operation⋄ takes care of the time/scheduling-
dependent coefficient sequence. Since the indeterminateξ is
associated withq , multiplication withξ is noncommutative on
R[ξ]nr×nW , i.e. ξr = −→r ξ andrξ = ξ←−r .

In the following we only consider scheduling trajectories for
which the coefficients ofR(ξ) ⋄ p are bounded, so the set of
solutions associated withR(ξ) is well defined. PV difference
equations in the form of (14) are used to define the class of
DT-LPV systems we consider in this paper. It will be shown
that this class contains all the popular definitions of LPV-SS
and IO models.

Example 5 (PV difference equation):Consider Example 2.
Let p = m with scheduling spaceP = [1, 2] and letw =
[wx wF]

⊤. Then the difference equation (8), which defines
the possible signal trajectories of the DT approximation ofthe
mass-spring system, can be written in the form of (14) with
nW = 2, nξ = 1, nP = 1:

(R(q)⋄p)w = (r0 ⋄p)w+(r1 ⋄p)qw+(r2 ⋄p)q
2w = 0, (15)

where r0 ⋄ p = [T2dks + p − T2d], r1 ⋄ p = [−qp − p 0],
r2 ⋄ p = [qp 0]. �

Due to its algebraic structure, it easily follows thatR[ξ]
is a domain, i.e. for allR1, R2 ∈ R[ξ] it holds that
R1(ξ)R2(ξ) = 0 ⇒ R1(ξ) = 0 or R2(ξ) = 0. Then with
the above defined noncommutative multiplicative rulesR[ξ]
defines an Ore algebra [26] and it is a left and right Euclidian
domain [27]. The latter implies that there exists division by
remainder. This means, that ifR1, R2 ∈ R[ξ] with deg(R1) ≥
deg(R2) and R2 6= 0, then there exist unique polynomials
R′, R′′ ∈ R[ξ] such thatR1(ξ) = R2(ξ)R

′(ξ) +R′′(ξ) where



deg(R2) > deg(R′′). Due to the fact thatR[ξ] is a domain,
the rank of a polynomialR ∈ R[ξ]nr×nW is well-defined [28].
Denote byspanrowR (R) andspancolR (R) the subspace spanned
by the rows (columns) ofR ∈ R[ξ]·×·, viewed as a linear
space of polynomial vector functions with coefficients inR·×·.
Then it can be shown that

rank(R) = dim(spanrowR (R)) = dim(spancolR (R)). (16)

The notion of unimodular matrices, essential to characterize
equivalent representations, is also introduced:

Definition 9 (Unimodular matrix):Let M ∈ R[ξ]n×n. M
is called unimodular if there exists aM † ∈ R[ξ]n×n such that
M †(ξ)M(ξ) = I andM(ξ)M †(ξ) = I. �

Any unimodular matrix operator inR[ξ]·×· is equivalent
to the product of finite many elementary row and column
operations [27]:

1) Interchange row (column)i and row (column)j.
2) Multiply a row (column)i on the left (right) by ar ∈ R,

r 6= 0.
3) For i 6= j, add to row (column)i row (column) j

multiplied by ξn, n > 0.
Example 6 (Unimodular matrix):The matrix polynomials

M,M † ∈ R[ξ]2×2, defined as

M(ξ)=

[
r2 r2ξ
r1ξ r1ξ

2 + r1

]

, M †(ξ)=

[
r1 + ξ2r1 −ξr2
−ξr1 r2

]

1
r1r2

,

are unimodular asM(ξ)M †(ξ) = M †(ξ)M(ξ) = I. Note that
ξr1 6= r1ξ due to the non-commutativity of the multiplication
by ξ onR[ξ]. �

Another important property ofR[ξ]·×· is the existence of a
Jacobson form (generalization of the Smith form):

Theorem 1 (Jacobson form [27]):Let R ∈ R[ξ]nr×nW

with R 6= 0 andn = rank(R). Then there exist unimodular
matricesM1 ∈ R[ξ]nr×nr andM2 ∈ R[ξ]nW×nW such that

M1(ξ)R(ξ)M2(ξ) =

[
Q(ξ) 0
0 0

]

, (17)

where Q = diag(r′1, . . . , r
′
n) ∈ R[ξ]

n×n with monic non-
zero r′i ∈ R[ξ]. Furthermore, there existg′i ∈ R[ξ] such that
r′i+1(ξ) = g′i(ξ)r

′
i(ξ) for i = 1, . . . , n− 1. �

Due to the algebraic structure ofR[ξ]·×·, the proof of
Th. 1 similarly follows as in [27].

Example 7 (Jacobson form):Consider

R(ξ) =

[
r + ξ −1 −1
−r 1 + ξ −−→r

]

∈ R[ξ]2×3,

where r is a meromorphic function andξ = q. Then the
Jacobson form ofR is

M1(ξ)R(ξ)M2(ξ)=

[
1 0 0
0 1 +−→r + ξ 0

]

,

M1(ξ)=

[
1 0
−−→r 1

]

, M2(ξ)=





0 0 1
0 1 r
−1 −1 ξ



 . �

Now it is possible to show that there exists a duality
between the solution spaces of PV difference equations and the
polynomial modules inR[ξ]·×· associated with them, which
is implied by a so-calledinjective cogeneratorproperty. This

property makes it possible to use the developed algebraic
structure to characterize behaviors and manipulations on them.
Originally the injective cogenerator property has been shown
for the solution spaces of the polynomial ring overR1 in [29].
In the Appendix this proof is extended toR[ξ].

IV. SYSTEM REPRESENTATIONS

A. Kernel representation

Using the developed concepts, we introducekernel repre-
sentation(KR) of an LPV system in the form of (14).

Definition 10 (DT-KR-LPV representation):The parameter
varying difference equation (14) is called a discrete-timeker-
nel representation, denoted byRK(S), of the LPV dynamical
systemS = (Z,RnP ,RnW ,B) with scheduling vectorp and
signalsw, if

B = {(w, p) ∈ (RnW × R
nP)

Z | (R(q) ⋄ p)w = 0}. (18)
�

It is obvious that the behaviorB associated with (14) always
corresponds to a LPV system in terms of Def. 3. It is also
important, that the allowed trajectories ofp in terms of (18) are
not restricted by (14) (only thosep ∈ (RnP)Z are excluded for
which a coefficientri ⋄p is unbounded). This is in accordance
with the classical concept ofp being an external variable of
the system. One can also include further restrictions onBP =
πpB, like bounding the first or higher order differences of
p etc. However, to preserve the generality of the developed
framework, we do not consider such restrictions in terms of
representations.

Based on the concept of rank, the following theorem holds:
Theorem 2 (Full row rank KR representation):Let B be

given with a KR representation (14). Then,B can also be
represented by aR′ ∈ R[ξ]·×nW with full row rank. �

The proof of this theorem is given in the Appendix.

B. IO representation

Partitioning of the signalsw into input signalsu ∈ (RnU)Z

and output signalsy ∈ (RnY)Z, i.e. w = col(u, y), is often
considered convenient. Such a partitioning is called an IO
partition [24].

Definition 11 (IO partition of a LPV system):Let S =
(Z,RnP ,RnW ,B) be an LPV system. The partitioning of the
signal space asRnW = U × Y = RnU × RnY and partitioning
of w ∈ (RnW)Z correspondingly withu ∈ (RnU)Z and
y ∈ (RnY)Z is called an IO partition ofS, if

1) u is free, i.e. for allu ∈ (RnU)Z and p ∈ BP, there
exists ay ∈ (RnY)Z such that(col(u, y), p) ∈ B.

2) y does not contain any further free component, i.e. given
u, none of the components ofy can be chosen freely for
everyp ∈ BP (maximally free). �

An IO partition implies the existence of matrix-polynomial
functionsRy ∈ R[ξ]nY×nY andRu ∈ R[ξ]nY×nU with Ry full
row rank, such that (14) can be written as

(Ry(q) ⋄ p) y = (Ru(q) ⋄ p)u, (19)

with nW = nU + nY and the corresponding behaviorB is
{
(u, y, p) ∈ (U× Y× P)Z | (Ry(q) ⋄ p)y = (Ru(q) ⋄ p)u

}
,



with U = RnU andY = RnY . An IO partition defines a causal
mapping in case the solutions of (19) are restricted to have left
compact support. Otherwise, initial conditions also matter [30].
Similar to the LTI case, LPV systems with no free variables
are called autonomous1. Now it is possible to introduce IO
representations of DT-LPV systems:

Definition 12 (LPV-IO representation):The discrete-
time IO representation of an LPV systemS = (Z,P ⊆
RnP ,RnU+nY ,B) with IO partition (u, y) and scheduling
vector p is denoted byRIO(S) and defined as a parameter-
varying difference-equation system with orderna:

na∑

i=0

(ai ⋄ p) q
iy =

nb∑

j=0

(bj ⋄ p) q
ju. (20)

where aj ∈ RnY×nY and bj ∈ RnY×nU with ana
6= 0 and

bnb
6= 0 are the meromorphic parameter-varying coefficients

of the matrix polynomialsRu(ξ) =
∑nb

j=0 bjξ
j and full row

rankRy(ξ) =
∑na

i=0 aiξ
i with na ≥ nb ≥ 0. �

It is apparent that (20) is the “dynamic-dependent” counter-
part of (2).

Example 8 (IO partition and representation):In Example
5, the sampled force variablewx is a free variable as it
represents the inhomogeneous part of difference equation (8).
Thus the choice ofw = [y u]⊤ = [wx wF]

⊤ yields a valid
IO partition. Withm being the scheduling signal, the discrete-
time PV behavior can be represented in the form of (20) with
polynomials

Ry(ξ) = a0 + a1ξ + a2ξ
2, Ru(ξ) = b0,

which have coefficients:a0 ⋄ p = T2dks + p, a1 ⋄ p = −p −
qp, a2 ⋄ p = qp, b0 ⋄ p = T2d. Obviously,Ry(ξ) has full
row rank. This implies thatRy(ξ) and Ru(ξ) define an IO
representation of the model with coefficients as above.�

For LPV systems, the notion of transfer function or fre-
quency response in the classical sense has no meaningful2

interpretation. By using the approximative transfer-function
calculus of LTV systems based on a formal series approach
[31], some interpretation of these notions can be given for LPV
systems. However, the direct extension of this approximative
transfer function calculus to the class of systems considered
here is not available yet.

C. State-space representation

In the modeling of dynamical systems, auxiliary variables
(often calledlatent variables) are commonly used [30]. The
natural counterpart of (14) to cope with such variables is

(Rw(q) ⋄ p)w = (RL(q) ⋄ p)wL, (21)

where wL : Z → RnL are the latent variables andRL ∈
R[ξ]nr×nL . The set of equations (21) is called alatent
variable representationof the LPV latent variable system

1It is possible that the freedom of the components ofw can change for
specific scheduling trajectories. In this case, the autonomous part of the
behavior is related to the scheduling dependent nature of the system.

2Some authors [21]–[23] introduce LPV transfer functions with varying
parameters. As they commonly refer only to the collection oftransfer functions
associated withFS , this notion of the LPV transfer function is misleading.

(Z,RnP ,RnW × RnL ,BL), where the so-calledfull behavior
BL of this system is defined as

BL = {(w,wL, p) ∈ (RnW × R
nL × R

nP)Z | (21) holds}.

Additionally, B = π(w,p)BL is introduced as themanifest
behaviorassociated withBL.

Example 9 (Latent variable representation):By consider-
ing the DT system in Example 5 with schedulingp = m
andP = [1, 2], the following latent variable representation of
the model has the same manifest behavior:





T2dks + p −T2d
(−p− q−1p) 0
(−q−1p) 0





[
wx

wF

]

=





q 0
−1 q
0 1



wL. (22)

This can be proved by substituting the third row of (22) into
the second row, giving

wL,1 = (p+ q−1p)wx − pqwx. (23)

Substitution of (23) into the first row of (22) gives a PV
difference equation in the variableswx andwF, which is equal
to (8). �

Elimination of latent variables is always possible onR[ξ]·×·.
Theorem 3 (Elimination property):Given a LPV latent

variable system(Z,RnP ,RnW × RnL ,BL) with a signal vari-
able w, a latent variablewL, and scheduling variablep,
there exists aR′ ∈ R[ξ]·×nW which defines a LPV-KR
representation ofB = π(w,p)BL. �

For a proof see the Appendix. Now it is possible to define
the concept of state for LPV systems.

Definition 13 (Property of state):Let (Z,RnP ,RnW × RnL

BL) be a LPV latent variable system. Then the latent vari-
able wL is a state if for everyk0 ∈ Z and (w1, wL,1, p),
(w2, wL,2, p) ∈ BL with wL,1(k0) = wL,2(k0) it follows that
the concatenation of these signals atk0 satisfies

(w1, wL,1, p) ∧
k0

(w2, wL,2, p) ∈ BL. (24)

Then BL is called a state-space behavior, and the latent
variablewL is called the state. �

To decide whether a latent variable is a state, the following
theorem is important:

Theorem 4 (State-kernel form):The latent variablewL is
a state, iff there exist matricesrw ∈ Rnr×nW and r0, r1 ∈
Rnr×nL such that the full behaviorBL has the kernel repre-
sentation:

rww + r0wL + r1qwL = 0. (25)

The proof of this theorem is given in the Appendix. Now we
formulate the DT state-space representation, based on an IO
partition(u, y), as a first-order PV difference equation system.

Definition 14 (DT-LPV-SS representation):The discrete-
time state-space representation ofS = (Z,P ⊆ RnP ,
RnU+nY ,B), with scheduling vectorp is denoted byRSS(S)
and defined as a first-order parameter-varying difference
equation system in the latent variablex : Z→ X:

qx = (A ⋄ p)x+ (B ⋄ p)u, (26a)

y = (C ⋄ p)x+ (D ⋄ p)u, (26b)



where (u, y) is the IO partition ofS, x is the state-vector,
X = RnX is the state-space,

BSS =
{
(u, x, y, p) ∈ (U× X× Y× P)Z | (26a-b) hold

}
,

is the full behavior of (26a-b),B is equal to the manifest
behavior of (26a-b), i.e.B = πu,y,pBSS, and

[
A B
C D

]

∈

[
RnX×nX RnX×nU

RnY×nX RnY×nU

]

. �

Note that inBSS, the latent variablex trivially fulfills the
state property. It is apparent that (26a-b) are the “dynamic-
dependent” counterparts of (1a-b).

Example 10 (SS representation):Continuing Example 9,
the LPV-SS representation of the model follows by taking
[y u]⊤ = [wx wF]

⊤ as the IO partition andx = wL as
the state:

qx =

[
0 0
1 0

]

x+

[
T2dks + p −T2d
−p− q−1p 0

] [
y
u

]

,

y =
[
0 1

−q−1p

]
x.

By substitution of the second equation into the first one, the
state equation in the form of (26a) results, while the second
equation gives the output equation in the form of (26b). Thus,
the corresponding SS representation is

[
A ⋄ p B ⋄ p
C ⋄ p D ⋄ p

]

=






0 − p+T
2
dks

q−1p
−T2d

1 1 + p
q−1p

0

0 −1
q−1p

0




 . �

V. EQUIVALENCE RELATIONS

Using the behavioral framework, it is possible to consider
equivalence of kernel representations, IO representations and
state-space forms via equality of the represented behaviors.

A. Equivalent kernel forms

In the LTI case, two DT kernel representations are equiva-
lent, i.e. they define the same system, if their associated behav-
iors are equal. Similar to the LTI framework,R1, R2 ∈ R[ξ]
are expected to define an equal behavior if they are equivalent
up to multiplication by ar ∈ R, r 6= 0. However,r can be a
rational function for which(r ⋄ p)(k) = ∞ for somep ∈ PT

andk ∈ Z. The associated behavior of a kernel representation
in terms of (18) is defined to contain only those trajectories
of p for which a solution exists. The latter is guaranteed by
the boundedness ofr ⋄ p. In this way, the behavior ofR1 is
equal to the behavior ofR2(ξ) = rR1(ξ) except for those
trajectories for whichr ⋄ p is unbounded.

To consider equality of LPV-KR representations with this
phenomenon of singularity in mind, we define the restriction
of B to B̄P ⊆ BP as

B |B̄P
=

{
(w, p) ∈ B | p ∈ B̄P

}
. (27)

The equivalence of LPV-KR representations can now be
introduced in analmost everywheresense:

Definition 15 (Equivalent KR representations):Two kernel
representations with polynomialsR,R′ ∈ R[ξ]·×nW , P = RnP

and behaviorsB,B′ ⊆ (RnW ×RnP)Z are called equivalent if
B |BP∩B′

P
= B

′ |BP∩B′

P
, i.e. their behaviors are equal for all

mutually valid trajectories ofp. �

Example 11 (Almost everywhere equivalence):By contin-
uing Example 5,
(
T
2
dks

p
+ 1

)

w1 −
(

qp
p
+ 1

)

qw1 +
(

qp
p

)

q2w1 −
T
2
d

p
w2 = 0

has the same solutions as (15) except for those trajectories
of p = m, where m(k) = 0 for some k ∈ Z. Thus,
this KR representation and (15) are equivalent in the almost
everywhere sense. �

To characterize equivalence algebraically, we introduce uni-
modular transformations just as in the LTI case [24]:

Theorem 5 (Unimodular transformation):Consider R ∈
R[ξ]nr×nW and M ′ ∈ R[ξ]nr×nr , M ′′ ∈ R[ξ]nW×nW

with M ′,M ′′ unimodular. For a givennP, defineR′(ξ) =
M ′(ξ)R(ξ) andR′′(ξ) = R(ξ)M ′′(ξ). Denote the behaviors
corresponding toR,R′ and R′′ by B,B′ and B

′′ with
scheduling spaceP ⊆ RnP and signal spaceW = RnW . Then
B |BP∩B′

P
= B

′ |BP∩B′

P
while B |BP∩B′′

P
andB

′′ |BP∩B′′

P
are

isomorphic. �

The proof of this theorem is given in the Appendix. Further-
more, if R ∈ R[ξ]nr×nW is not full row rank, i.e.rank(R) =
n < nr, then there exists a unimodularM ∈ R[ξ]nr×nr such
that M(ξ)R(ξ) = [ (R′(ξ))⊤ 0 ]⊤, whereR′ ∈ R[ξ]n×nW

is full row rank and the corresponding behaviors are equivalent
in terms of Th. 5.

Definition 16 (Equivalence relation):Introduce the symbol
nP∼ to denote the equivalence relation on

⋃
R[ξ]·×· (all poly-

nomial matrices with finite dimension) for annP-dimensional
scheduling space.R1 ∈ R[ξ]n1×nW and R2 ∈ R[ξ]n2×nW

with i = argmaxi∈{1,2}(ni) and j = {1, 2} \ i are called
equivalent, i.e.R1

nP∼ R2, if there exists a unimodular matrix
functionM ∈ R[ξ]ni×ni such that

M(ξ)Ri(ξ) =

[
Rj(ξ)
0

]
l nj

l ni − nj
. (28)

This implies that if R1
nP∼ R2, then the corresponding

behaviors withP ⊆ RnP and W = RnW are equal (almost
everywhere). Using

nP∼ we can define equivalence classes as
follows:

Definition 17 (Equivalence class):For a givennP, the set
E nP ⊆

⋃
R[ξ]·×· is called an equivalence class, if it is a

maximal subset of
⋃
R[ξ]·×· such that for allR1, R2 ∈ E nP

it holds thatR1
nP∼ R2. �

An equivalence class defines the set of all KR representa-
tions which have equal behavior. Furthermore it is an obvious
consequence, that allR in a givenE nP have the same Jacobson
form. An important subset of an equivalence class contains the
so-called minimal representations:

Definition 18 (Minimality): Let R ∈ R[ξ]nr×nW . ThenR is
called minimal if it has full row rank, i.e.rank(R) = nr. �

Consider a minimalRK(S) described by a full row rank
R ∈ R[ξ]nr×nW . Let R(ξ) = [R′(ξ) R′′(ξ)] whereR′ ∈
R[ξ]nr×nr has full column rank. Note that such form can
always be obtained by the permutation of the signal variables
and it is not unique. Considerndeg = deg(r′n) wherer′n results



from the Jacobson form (see Th. 1) ofR′. Assume thatR′ is
chosen w.r.t.R such thatndeg is maximal. It follows from
Th. 5, that all KR representations in the equivalence class of
RK(S) have the samendeg, hencendeg can be called the
degree of these representations. It can be also shown that
this degree is equal to the required minimal number of state
variables in a SS realization ofRK(S), hencendeg can be
considered as the order, i.e.McMillan degreeof S.

Example 12 (LPV equivalence relation and minimality):
Let the KR representationRK(S) of an DT-LPV systemS
with P ⊆ R be given by

R(ξ) ⋄ p =

[
qp −qp
p −p

]

+

[
0 p(qp)
p2 0

]

ξ

+

[
−p(qp2) 0

0 0

]

ξ2.

Then, there exists a unimodular matrixM ∈ R[ξ]2×2

M(ξ) ⋄ p =

[
0 1
1 pξ − qp

p

]

such that

(M(ξ)R(ξ)) ⋄ p =

[
p+ p2ξ −p

0 0

]

=

[
R′(ξ)
0

]

.

From Th. 5 it follows thatR
1
∼ R′. Furthermore,rank(R′) = 1

implies thatrank(R) = 1, henceR′ is minimal whileR is not.
By computingndeg of R′, the McMillan degree ofS is 1. �

B. Equivalent IO forms

The introduced equivalence concept generalizes to LPV-IO
representations:

Definition 19 (Equivalence relation, LPV-IO):Let
(Ry, Ru) and (R′y, R

′
u) be LPV-IO representations with

the same input and output dimensions(nY, nU). For a given
scheduling dimensionnP, we call (Ry, Ru) and (R′y, R

′
u)

equivalent, i.e. (Ry, Ru)
nP∼ (R′y, R

′
u), if there exists a

unimodular matrixM ∈ R[ξ]nY×nY such that

R′y(ξ) = M(ξ)Ry(ξ) and R′u(ξ) = M(ξ)Ru(ξ). (29)
�

This implies the following minimality concept of LPV-IO
representations:

Definition 20 (Minimal LPV-IO representation):An IO
representation defined throughRy ∈ R[ξ]nY×nY and
Ru ∈ R[ξ]nY×nU is called minimal for a given scheduling
dimensionnP, if there are no polynomialsR′y ∈ R[ξ]

nY×nY

andR′u ∈ R[ξ]
nY×nU with deg(Ry) < deg(R′y) such that

(Ry, Ru)
nP∼ (R′y, R

′
u). (30)

�

Using the IO equivalence relation and minimality, the defi-
nition of IO equivalence classes follows naturally.

Example 13 (LPV-IO equivalence and minimality):Let the
IO representationRIO(S) of an DT-LPV systemS with P ⊆ R

be given by

Ry(ξ) ⋄ p=

[
pξ p2

pξ2 p(qp)ξ

]

, Ru(ξ) ⋄ p=

[
p

p(ξ − 1)

]

.

Consider the unimodular matrixM ∈ R[ξ]2×2 given by

M(ξ) ⋄ p =

[ 1
p

0
p
qp
ξ −1

]

,

then

(M(ξ)Ry(ξ)) ⋄ p=

[
ξ p
0 ξ

]

, (M(ξ)Ru(ξ)) ⋄ p=

[
1
p

]

.

This implies that(R′y, R
′
u) = (MRy,MRu) and (Ry, Ru)

are equivalent fornP = 1 in terms of Th. 5. From Def. 20 it
follows thatRIO(S) is not minimal asdeg(Ry) = 2 is larger
thandeg(R′y) = 1. On the other hand, it is trivial that(R′y, R

′
u)

defines a minimal IO representation ofS. By computing the
Jacobson form ofR′y, the McMillan degree ofS is 1. �

C. Equivalent state-space forms

We can also generalize the equivalence concept to LPV-
SS representations. To do so, we first have to clarify state-
transformations in the LPV case.

By definition, the full behavior of LPV-SS representation is
represented by a matrixRw ∈ Rnr×(nY+nU) and a first-order
polynomialRL ∈ R[ξ]nr×nX in the form

(Rw ⋄ p)col(u, y) = (RL(q) ⋄ p)x. (31)

Similar to the LTI case, left and right side multiplication
of Rw and RL with unimodular M1 ∈ R[ξ]nr×nr and
M2 ∈ R[ξ]nX×nX leads toR′w(ξ) = M1(ξ)Rw, R′L(ξ) =
M1(ξ)RL(ξ)M2(ξ). In terms of Th. 5, the resulting poly-
nomials R′w and R′L define an equivalent latent variable
representation ofS, where the new latent variable is given
asx′ = (M †2 (q) ⋄ p)x. To guarantee that the resulting latent
variable representation qualifies as a SS representation,R′L
needs to be monic anddeg(R′L) = 1 with deg(R′w) = 0 must
be satisfied. This implies that the unimodular matrices must
have zero order, i.e.M1 ∈ Rnr×nr andM2 ∈ RnX×nX , and
M1 must have a special structure in order to guarantee thatR′w
andR′L correspond to an equivalent SS representation. In that
case,x′ = (M †2 (q) ⋄ p)x is called astate-transformationand
T = M †2 is called thestate transformation matrixresulting in

x′ = (T ⋄ p)x. (32)

A major difference w.r.t. LTI state-transformations is that,
in the LPV case,T is inherently dependent onp and this
dependence is dynamic, i.e.T ∈ RnX×nX . Additionally it can
be shown that an invertibleT ∈ RnX×nX used as a state-
transformation is always equivalent with a right and left-side
multiplication by unimodular matrix functions yielding a valid
SS representation of the LPV system. Based on this, two SS
representations are equivalent if and only if their states can be
related via an invertible state-transformation (32).

Consider an LPV-SS representation (26a-b). LetT ∈
RnX×nX be an invertible matrix function and considerx′, given
by (32), as a new state variable. Substitution of (32) into (26a)
gives

q(T−1 ⋄ p)x′ = (A ⋄ p)(T−1 ⋄ p)x′ + (B ⋄ p)u. (33)



Using thatqT−1 =
−−−→
(T−1)q =

−→
T −1q , (33) yields that the

equivalent LPV-SS representation is
[ −→

T AT−1
−→
T B

CT−1 D

]

. (34)

Definition 21 (Equivalence relation, LPV-SS):Consider
two LPV-SS representations with state-space matrices
(A1, B1, C1, D1) and (A2, B2, C2, D2) in R·×· where
A1 ∈ Rn1×n1 andA2 ∈ Rn2×n2 andn1 ≥ n2. For a given
scheduling dimensionnP, these representations are called
equivalent,

[
A1 B1

C1 D1

]
nP∼

[
A2 B2

C2 D2

]

, (35)

if there exists an invertibleT ∈ Rn1×n1 such that

−→
T A1T

−1 =

[
A2 0
∗ ∗

]

,
−→
T B1 =

[
B2

∗

]
l n2

l n1 − n2

C1T
−1 =

[
C2 0

]
, D1 = D2. �

From the concept of LPV-SS equivalence the concept of
minimality directly follows:

Definition 22 (Minimal LPV-SS representation):For a
given nP, an SS representation, defined through the matrix
functions (A,B,C,D), is called minimal if there exist no
(A′, B′, C′, D′) with n′

X
< nX such that

[
A B
C D

]
nP∼

[
A′ B′

C′ D′

]

. �

Again, using the concept of the SS equivalence relation
and minimality, the definition of LPV-SS equivalence classes
follows naturally. In addition, the state-dimensionnX of a
minimal RSS(S) is equal to the McMillan degree ofS.

Example 14 (LPV-SS equivalence and minimality):Con-
sider the LPV-SS representation derived in Example 10. Let
T ∈ R2×2 be an invertible state-transformation defined by

T ⋄ p =

[
−1 −1
0 − 1

q−1p

]

, with

T−1 ⋄ p =

[
−1 q−1p
0 −q−1p

]

,
−→
T ⋄ p =

[
−1 −1
0 − 1

p

]

,

giving
[ −→

T AT−1
−→
T B

CT−1 D

]

⋄ p =





1 −T2dks T2d
1
p

1 0

0 1 0



 .

The obtained SS representation is an equivalent minimal SS
representation ofS as it is in an equivalence relation with
RSS(S) and its state dimension is the same. Note that this
realization has only static dependence. �

Based on the developed state-transformations and the con-
cepts of state-observability and -reachability matrices,the
classical canonical forms can also be defined (see [17], [20]).
Furthermore, Def. 21 highlights that applyingp-dependent
state transformation or system transposition according tothe
rules of the LTI theory deforms the dynamic relation. This
“common practice” leads to inequivalent system represen-
tations with arbitrary large difference in terms of manifest
behavior (see [17], [20] for illustrative examples).

VI. EQUIVALENCE TRANSFORMATIONS

Next, we introduce equivalence transformations between the
SS and IO representation domains. These provide algorithms
to obtain an IO (SS) realization of a given LPV-SS (IO)
representation, solving the core problem of the existing LPV
system theory, motivated in Example 1.

A. State-space to IO

As a consequence of Th. 3, the following corollary holds:
Corollary 1 (Latent variable elimination):For any latent

variable representation (31) with manifest behaviorB and
polynomial matricesRw ∈ R[ξ]nr×nW andRL ∈ R[ξ]nr×nL ,
there exists a unimodular matrixM ∈ R[ξ]nr×nr such that

M(ξ)Rw(ξ)=

[
R′w(ξ)
R′′w(ξ)

]

, M(ξ)RL(ξ)=

[
R′L(ξ)

0

]

, (36)

with R′L of full row rank. The behavior defined by(R′′w(ξ) ⋄
p)w = 0 is equal (almost everywhere) withB. �

Due to the latent nature of the variablewL, such a transfor-
mation is always possible and does not change the manifest
behavior, hence it is called anequivalence transformation. We
can use this result to establish an IO realization of a given SS
representation (26a-b) by writing it in the latent form

Rw(q) =

[
0 B
−I D

]

, RL(q) =

[
Iq −A
−C

]

,

with w = col(u, y), wL = x, Rw ∈ R[ξ](nX+nY)×(nX+nU), and
RL ∈ R[ξ](nX+nY)×nX . According to Corollary 1, there exists
a unimodular matrix

M(ξ) =

[
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]

∈ R[ξ](nX+nY)×(nX+nY) (37)

which in terms ofM(ξ)RL(ξ) = [ ∗ 0 ]⊤ in (36) satisfies
M21(ξ)(Iξ −A)−M22(ξ)C = 0. This yields that

[
∗ ∗

−M21(ξ) M21(ξ)B +M22(ξ)D

]

︸ ︷︷ ︸

M(ξ)Rw(ξ)

=

[
∗
0

]

︸ ︷︷ ︸

M(ξ)RL(ξ)

,

andR′′w(ξ) = [ −M21(ξ) M21(ξ)B +M22(ξ)D ] is in the
form of an output side polynomialRy(ξ) = M21(ξ) and an
input side polynomialRu(ξ) = M21(ξ)B +M22(ξ)D.

Corollary 2 (IO equivalence transformation):Let RSS(S)
be a state-space representation with manifest behaviorB and
system matrices(A,B,C,D) where A ∈ RnX×nX . Then
there exists a monic polynomial̄Ry ∈ R[ξ]nY×nY with
deg(R̄y) = nX and aR̄u ∈ R[ξ]nY×nX with deg(R̄u) ≤ nX−1
such that

R̄y(ξ)C = R̄u(ξ)(Iξ −A). (38)

Let Rc ∈ R[ξ]nY×nY be the greatest common left-divisor of
R̄y and R̄uB such that there existRy, Ru ∈ R[ξ] satisfying

Rc(ξ)Ry(ξ) = R̄y(ξ), (39a)

Rc(ξ)Ru(ξ) = R̄u(ξ)B + R̄y(ξ)D. (39b)

Then the IO representation, given by(Ry(q)⋄p)y = (Ru(q)⋄
p)u, defines a behavior equal to the manifest behavior of (26a-
b), thus it is an IO representation ofS. �



The algorithm defined by (38) and (39a-b) is structurally
similar to the LTI case (see [32], [33]), but it is more com-
plicated as it involves multiplication with the time operators
on the coefficients. Thus, this transformation can result in
an increased complexity (like dynamic dependence) of the
coefficient functions in the equivalent IO representation.

Example 15 (IO equivalence transformation):Consider
the LPV-SS representation derived in Example 14. Letr be
the identity function sor ⋄ p = p. In terms of (38), we are
looking for a R̄u ∈ R[ξ]1×2 with deg(R̄u) = 1 and a monic
polynomialR̄y ∈ R[ξ] with deg(R̄y) = 2. Parameterize these
polynomials as

R̄y(ξ)=ξ2 + a1ξ + a0, R̄u(ξ)=
[
b11ξ + b12 b21ξ + b22

]
.

Then in terms of (38):

(ξ2 + a1ξ + a0)
[
0 1

]
=

[
b11ξ + b12 b21ξ + b22

]
[

ξ − 1 T2dks

− 1
r

ξ − 1

]

︸ ︷︷ ︸

Iξ−A

.

Solving this equation system it follows that

a1 = −
r
−→r
− 1, a0 =

T2dks + r
−→r

, b11 = 0,

b12 =
1
−→r

, b21 = 1, b22 = −
r
−→r

.

The resulting polynomials̄Ru andR̄y are left coprime, hence

Ry(ξ) = R̄y(ξ) = ξ2 + a1ξ + a0,

Ru(ξ) = R̄u(ξ)B + R̄y(ξ)D =
T2d
−→r

.

After left-multiplying these polynomials with−→r , the IO
representation in the form of (20) withna = 2 andnb = 0
has the coefficients

a2⋄p = qp, a1⋄p = −qp−p, a0⋄p = T2dks+p, b0⋄p = T2d.

In terms ofw = col(y, u), the resulting LPV-IO representation
is equal to (15) which shows its equivalence with the LPV-SS
representation in Example 14. �

B. IO to state-space

Finding an equivalent SS representation of a given IO rep-
resentation is accomplished by constructing a state mapping.
This construction can be seen as the counterpart of the latent
variable elimination. The aim is to introduce a latent variable
into (19) such that it satisfies the state property, i.e. it defines
a SS representation (Th. 4). Similar to the LTI case (see [32],
[33]), the central idea of such a state construction is thecut-
and-shift-map̺ − : R[ξ]·×· →R[ξ]·×· that acts on polynomial
matrices as:

̺−(r0 + r1ξ + . . .+ rnξ
n

︸ ︷︷ ︸

R(ξ)

) =←−r1 + . . .+←−rnξ
n−1.

This operator can be seen as an intuitive way to introduce
state variables for a kernel representation associated with R,
as wL = ̺−(R(q) ⋄ p)w implies that(R(q) ⋄ p)w = (r0 ⋄

p)w + qwL. Repeated use of̺− and stacking the resulting
polynomial matrices gives










̺−(R)
̺2−(R)

...
̺n−2− (R)
̺n−1− (R)










︸ ︷︷ ︸

Σ−(R)

(ξ) =












r
[1]
1 + . . .+ r

[1]
n−1ξ

n−2 + r
[1]
n ξn−1

r
[2]
2 + . . .+ r

[2]
n−1ξ

n−3 + r
[2]
n ξn−2

...

r
[n−1]
n−1 + r

[n−1]
n ξ

r
[n]
n












.

wherer[j]i denotes the backward shift operation←−� applied on
ri for j-times. In caseR ∈ R[ξ]nr×nW with nr = 1, the rows
of Σ− are independent, thus it can be shown thatX = Σ−(R)
defines a minimal state-map in the form of

x = (X(q) ⋄ p)w. (40)

In other cases (MIMO case), independent rows ofΣ−(R) are
selected to define a minimalX , but this selection is generally
not unique. Later it is shown that a given state-map implies
a unique SS representation. Before that, we characterize all
possible minimal state maps that lead to an equivalent SS
representation.

Denote the left-side multiplication ofR(ξ) by ξ as
̺+ and introducemoduleR[ξ](R) as the left module in
R[ξ]nr×nW spanned by the rows ofR ∈ R[ξ]nr×nW ,
i.e. moduleR[ξ](R) = spanrowR ([ R⊤ ̺+(R)⊤ . . . ]⊤).
This module represents the set of equivalence classes on
spanrowR (Σ−(R)). Let X ∈ R[ξ]·×nW be a polynomial matrix
with independent rows (full row-rank) and such that

spanrowR (X)⊕moduleR[ξ](R) =

spanrowR (Σ−(R)) + moduleR[ξ](R), (41)

where⊕ denotes direct sum. Then, similar to the LTI case (see
[32], [33]), it is possible to show thatX is a minimal state-map
of the LPV systemS and it defines a state variable by (40)
[20]. This way, it is possible to obtain all minimal, equivalent
SS realizations ofS which have a kernel representation
associated withR.

The next step is to characterize these SS representations
w.r.t. an IO partition. For a given kernel representation as-
sociated with the polynomialR ∈ R[ξ]nr×nW , a valid input-
output partition(u, y) of the representation is characterized by
choosing a selector matrixSu ∈ R·×nW giving u = Suw and
a complementary matrixSy ∈ R·×nW giving y = Syw.

Assume that a full row rankX ∈ R[ξ]·×nW is given which
satisfies (41). ThenX andSu jointly lead to

spanrowR (̺+(X)) ⊆

spanrowR (X)⊕ spanrowR (Su)⊕moduleR[ξ](R). (42)

On the other hand,Sy gives

spanrowR (Sy) ⊆

spanrowR (X)⊕ spanrowR (Su)⊕moduleR[ξ](R). (43)

These inclusions imply that there exist unique matrix func-
tions {A,B,C,D} in R·×· and polynomial matrix functions



Xu, Xy ∈ R[ξ]·×· with appropriate dimensions such that

ξX(ξ) = AX(ξ) +BSu +Xu(ξ)R(ξ), (44a)

Sy = CX(ξ) +DSu +Xy(ξ)R(ξ). (44b)

Then the resulting matrix function{A,B,C,D} define a
minimal state-representation of the LPV systemS. This al-
gorithm provides an SS realization of both LPV-IO and LPV-
KR representations. Specific choices ofX leads to specific
canonical forms. Note that a similar algorithm can be deduced
for a realization in an image type of representation, i.e. latent
variable representation (31) whereRw(q) = I.

Example 16 (SS equivalence transformation):Consider
the LPV-IO representation derived in Example 15:

Ry(ξ) = ξ2 −
(
1 + r

−→r

)
ξ +

T
2
dks+r
−→r

, Ru(ξ) =
T
2
d
−→r
.

DenoteR(ξ) = [ Ry(ξ) −Ru(ξ) ], and generate the state-
map

X(ξ) = Σ−(R(ξ)) =

[

ξ − (1 +
←−r
r
) 0

1 0

]

.

Now with Sy = [ 1 0 ] andSu = [ 0 1 ], equations (44a-
b) read as
[
ξ2 −

(
1 + r

−→r

)
ξ 0

ξ 0

]

︸ ︷︷ ︸

ξX(ξ)

=

[
α11 α12

α21 α22

]

︸ ︷︷ ︸

A

·

[

ξ −
(
1 +

←−r
r

)
0

1 0

]

︸ ︷︷ ︸

X(ξ)

+

[
0 β1

0 β2

]

︸ ︷︷ ︸

BSu

+

[
Xu1(ξ)
Xu2(ξ)

]

R(ξ),

[
1 0

]

︸ ︷︷ ︸

Sy

=
[
c1 c2

]

︸ ︷︷ ︸

C

·

[

ξ − (1 +
←−r
r
) 0

1 0

]

︸ ︷︷ ︸

X(ξ)

+
[
0 d1

]

︸ ︷︷ ︸

DSu

+Xy(ξ)R(ξ).

By solving these equations, it follows that

α11 = 0 α12 = − T
2
dks+r
−→r

β1 =
T
2
d
−→r

β2 = 0

α21 = 1 α22 = 1 +
←−r
r

c1 = 0 c2 = 1

d1 = 0 Xu1(ξ) = 1 Xu2(ξ) = 0 Xy(ξ) = 0

Then, the obtained LPV-SS representation is

RSS(S) =






0 − T
2
dks+p

qp

T
2
d

qp

1 1 + q−1p
p

0

0 1 0




 ,

which through

T ⋄ p =

[
p q−1p
0 1

]

,

is in equivalence relation with the LPV-SS representation of
Example 14. The latter proves that the IO representation given
by Ry andRu has the same manifest behavior asRSS(S).�

VII. C ONCLUSION

In this paper, we have extended the behavioral approach
to LPV systems in order to lay the foundations of an LPV
system theory which provides a clear understanding of this
system class and the relations of its representations. We have
defined LPV systems as the collection of signal and scheduling
trajectories and it has been shown that representations of
these systems need dynamic dependence on the scheduling
variable. By the use of such system descriptions, it has been
proven that equivalence relations and transformations between
these descriptions can be developed, giving a common ground
where model structures of LPV system identification and
concepts of LPV control can be compared, analyzed, and
further developed.
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VIII. A PPENDIX

A. Proof of the injective cogenerator property

The concept of the proof is based on [29]. LetR∞ = R ∪
{−∞,∞} and denote byQn all mapsw from Z×Rn to R∞

which are essentially bounded w.r.t.Rn, i.e. ‖w (k, x)‖ < ∞
with (k, x) ∈ Z × Rn except forx ∈ S(w ) ⊂ Rn where
the setS(w ) has measure 0. The setQn is a real vector
space for eachn ∈ N. Denote Q̄n ⊂ Qn all w ∈ Qn

for which there exist ak ∈ Z and x1, . . . xn ∈ R such
that w (k, x1, . . . , xn) 6= w (k, x1, . . . , xn−1, 0). DenoteQ =
⋃

n∈N Q̄n. Q is an (additive) Abelian group.
Consider aR ∈ R[ξ]nr×nW with P = RnP . For aw ∈ Q,

R⊛ w = 0 means that any(w, p) ∈ (RnW

∞ ×RnP)Z satisfying

w(k) = w (k, [ p(k) p(k + 1) p(k − 1) . . . ]), (45)

for all k ∈ Z, also satisfies(R(q) ⋄ p)(k)w(k) = 0
for all k ∈ Z \ J(w , p), where J(w , p) = {k ∈ Z |
[ p(k) p(k + 1) p(k − 1) . . . ] ∈ S(w )}. As S(w ) has
zero measure, this means that there exists also a (bounded
solution) (w, p) ∈ (RnW × RnP)Z satisfying (45) such that
(R(q) ⋄ p)(k)w(k) = 0 holds for allk ∈ Z. The setB∗ given
asB∗ = {w ∈ QnW | R ⊛ w = 0}, is called the complete
solution space of the linear system of PV difference equations
(KR-representation)(R(q) ⋄ p)w = 0. Note that the behavior
B of R defined by (18), contains the set of trajectories(w, p)



that satisfyw ∈ B∗ and are bounded, whileB∗ describes
the relationship of the trajectories containing the descriptions
of possible solutions that are excluded fromB due to the
singularity of the coefficients inR.

Let M1 ∈ R[ξ]nr×nr andM2 ∈ R[ξ]nW×nW be unimodular
matrices such that (17) is the Jacobson form ofR with Q =
diag(r1, . . . , rn) ∈ R[ξ]n×n. It can be shown (see [27]), that
(R(q) ⋄ p)w = 0 has the same solutions as

(M1(q)R(q) ⋄ p)w = (Q(q)M †2 (q) ⋄ p)w = 0, (46)

so there is an isomorphism of solution spaces

B∗
∼= B̃∗ := {w̃ ∈ Q

nW | [ Q 0 ]⊛ w̃ = 0}, (47a)

w → w̃ := M †2 (q)w , (47b)

where ri ⊛ w̃ i = 0 for i ∈ {1, . . . , n}. IntroduceMR =
moduleR[ξ](R) as the left module inR[ξ]nr×nW generated by
the rows ofR ∈ R[ξ]nr×nW . Then

B∗
∼= homR[ξ](MR,Q

nW), (48)

which corresponds to the so-called Malgrange isomorphism.
Explicitly, (48) assigns to eachw ∈ B∗ the linear map
φ
w

: MR → Q defined byφ
w
([r]) := r(q)w where [r]

denotes the residue class ofr ∈ R[ξ]1×nW in MR, and the
well definedness ofφ

w
follows from

[r1] = [r2] → r1 − r2 ∈ spanrowR (R) → r1(q)w = r2(q)w ,

for all w ∈ B∗ which also implies thatQnW ∼=
homR[ξ](R[ξ]

1×nW ,QnW). Conversely, for a linear mapφ :
MR → Q one definesw i := φ([ei]), whereei is the i-th
natural basis vector ofR[ξ]1×nW . Then we have

φ([r]) = φ ([
∑nW

i=1 riei]) =
∑nW

i=1 ri(q)φ([ei]) =
∑nW

i=1 ri(q)w i = r(q)w .

Due to (45), the above equation implies an isomorphism of
left modules:

moduleR[ξ](R) ∼= moduleR[ξ]([Q 0]), (49a)

[r]→ [rM2]. (49b)

Let M1,M2,M3 be left modules inR[ξ]nr×nW and let
φ12 :M1 → M2 andφ23 :M2 → M3 be linear maps, i.e.
left module homomorphisms. Then

M1
φ12→ M2

φ23→ M3 (50)

is exact if im(φ12) = ker(φ23). The same notion can be used
if M1,M2,M3 are Abelian groups andφ12, φ23 are group
homomorphisms. ThenQ is called an injective cogenerator if
the sequence

M1 →M2 →M3, (51)

is exact iff the sequence

homR[ξ](M1,Q
nW)← homR[ξ](M2,Q

nW)

← homR[ξ](M3,Q
nW)

of Abelian groups is exact.
For injectivity, one needs to prove according to Corollary

3.17 of [28]: For every0 6= R ∈ R[ξ] and everywu ∈ Q, there

exists awy ∈ Q such thatR⊛wy = wu. LetR(ξ) =
∑nξ

i=0 riξ
i

be given withrnξ
6= 0. If nξ = 0, there is nothing to prove.

SinceR is a field, assume thatrnξ
= 1. ThenR ⊛ wy = wu

can be rewritten as a first-order system

(rx,1q + rx,0)⊛ wx = ru ⊛ wu, (52)

where wx = [ wy . . . q−(nξ−1)
wy ]⊤, rx,1 = I, ru =

[ 0 . . . 0 1 ]⊤ ∈ Rnξ and

rx,0 =

[
0 −I
r0 r∗

]

∈ Rnξ×nξ , (53)

with r∗ = [ r1 . . . rn ]. Let S(R) denote the set of
singularities of the meromorphic coefficientsri in R. Note
that S(R) has measure 0. LetS(wy) := S(wu) ∪ S(R) which
has still zero measure. Hence,R· \S(wy) is a countable union
of open intervalsIi ∈ R· and on eachIi it holds thatR0 and
wu are bounded. Therefore there exists a bounded solution
wx : (Z × Ii) → Rnξ to (52) on eachIi. By concatenating
them, one gets a solutionwx ∈ Qnξ and thuswy ∈ Q.

For the cogenerator property, it has to be shown that if for
someR ∈ R[ξ], R ⊛ wy = 0 has only the zero solution,
then this implies thatR ∈ R and R 6= 0. Assume the
contrary and letdeg(R) = nξ ≥ 1. Then one can rewrite
R ⊛ wy = 0 as qwx = −rx,0 ⊛ wx like in the previous
part. Let S(wy) = S(R), then on each of the intervals
Ii, the solution set of this homogenous equation is annξ-
dimensional subspace of(Rnξ)R×Ii , in particular there exist
non-zero solutions. By concatenating them, we get a non-zero
solution wx ∈ Qn. If wy = wx,1 was identically zero, then
wx = [ wy . . . q−(nξ−1)

wy ]⊤ would be identically zero
which leads to a contradiction.

B. Proof of Theorem 2

ConsiderRK(S) with R ∈ R[ξ]nr×nW , P = RnP , and
behaviorB in terms of (18). Without loss of generality, let
R 6= 0 as the behaviorB = (RnW ×RnP)Z can be represented
by the empty matrix which is full rank by convention. Let
M1 ∈ R[ξ]nr×nr and M2 ∈ R[ξ]nW×nW be unimodular
matrices such that (17) is the Jacobson form ofR in terms of
Th. 1 with Q = diag(r1, . . . , rn) ∈ R[ξ]n×n. PartitionM †2 =
[ W1 W2 ]⊤ according to the partition of the Jacobson form.
SinceM1 is unimodular, the solution space of(R(q)⋄p)w = 0
is equal to the solution space of(M1(q)R(q) ⋄ p)w = 0 (see
the previous proof). ThusR′(ξ) := Q(ξ)W1(ξ) also represents
B in an almost everywhere sense, i.e. for all trajectories of
p ∈ Bp̄ for which the coefficients ofR′ are bounded, and
rank(R′) = n.

C. Proof of Theorem 3

Based on the proof of the injective cogenerator property
(Appendix A), consider

B∗ = {w ∈ Q
nW | ∃wL ∈ Q

nL : Rw⊛w = RL⊛wL}, (54)

whereRw ∈ R[ξ]nr×nW andRL ∈ R[ξ]nr×nL defines an LPV
latent variable representation in the form of (21) withP = RnP .
Then showing thatB∗ has a kernel representation is equivalent



with showing that the manifest behavior of (21) has a kernel
representation in an almost everywhere sense. Define the left
kernel ofRL as

kerR[ξ](RL) = {r ∈ R[ξ]
1×nr | r(ξ)RL(ξ) = 0}, (55)

which is a left submodule ofR[ξ]1×nr . Thus, it is finitely
generated, i.e. there exists aQ ∈ R[ξ]n×nr such that
imgR[ξ](Q) = {r(ξ)Q(ξ) | r ∈ R[ξ]1×nr} is equal to
kerR[ξ](RL). Then we have an exact sequence

R[ξ]1×n
·Q
→R[ξ]1×nr

·RL→ R[ξ]1×nL (56)

and therefore the sequenceQn Q(q)
← Qnr

RL(q)
← QnL is

also exact. This signifies thatRw(q)w ∈ imgQ(RL) :=
{RL(q)wL | wL ∈ QnL} iff Rw(q)w ∈ kerQ(Q), i.e.
B∗ = {w ∈ QnW | QRw ⊛ w = 0}.

D. Proof of Theorem 4

The concept of the proof is based on [32]. To simplify the
discussion, we prove only the so-calledMarkovian caseas
the state case follows trivially from this concept due to the
linearity and time-invariance of LPV systems. We call the
discrete-time LPV systemS = (Z,P,W,B) Markovian, if
for all p ∈ BP

(w1, w2 ∈ Bp) ∧ (w1(0) = w2(0))→ (w1 ∧
0
w2) ∈ Bp.

In the following, we prove thatS is Markovian, iff there
exist matricesr0, r1 ∈ Rnr×nW such thatB has the kernel
representation:r0w + r1ξw = 0. where ξ = q. The “if”
part is trivial. To show the “only if” case, assume that a KR
representation ofS is given withR ∈ R[ξ]nr×nW for which
the solutions of (14) satisfy the above given connectability
condition. Without loss of generality it can be assumed thatR
is full row rank. Also, there exists a unimodularM ∈ R[ξ]·×nr

such thatR′(ξ) = M(ξ)R(ξ) is in a row reduced form,
meaning that the matrix formed by the coefficient functions of
the highest powers inξ of the rowsR′(ξ) has full row rank.
Due to the fact thatM is a left-side unimodular transformation,
the behaviors ofR andR′ are equivalent.

We show now thatdeg(R′) = 1. Assume the contrary and
write R′ in the IO form:

(R1(q) ⋄ p)w1 = (R2(q) ⋄ p)w2, (57)

where col(w1, w2) = w corresponds to an IO partition and
deg(R1) ≥ deg(R2). The assumption thatdeg(R′) > 1
implies that deg(R1) > 1. Similarly, the assumption of
(R′(q) ⋄ p)w = 0 is Markovian implies that(R1(q) ⋄ p)w1 =
0 is Markovian.

Now let w′1, w
′′
1 be the solutions of(R1(q) ⋄ p)w1 = 0

for a p ∈ BP with w′1(0) = w′′1 (0). Since(w1, w2) is an IO
partition ofS, thuscol(w′1, 0) andcol(w′′1 , 0) are also solutions
of (R′(q) ⋄ p)w = 0 and in order to obtain contradiction it
suffices to prove contradiction for autonomous systems. Let
nξ = deg(R1) and by assumptionnξ > 1. Introduce auxiliary
variablesw̆ij defined as

w̆ij := qiwj , (i, j) ∈ I
nξ

0 × I
nW

1 , (58)

where w = [w1 . . . wnW
]⊤. Collect these variables in a

column vector

w̆ =
[
w̆01 w̆02 . . . w̆0nW

w̆11 . . . w̆nξnW

]⊤
. (59)

Now consider the system with latent variablew̆ as

qw̆ = (r ⋄ p)w̆, (60a)

wj = w̆0j , ∀j ∈ I
nW

1 . (60b)

where the coefficientr ∈ R(nξnW)×(nξnW) is determined from
the coefficients ofR1(ξ) and the definition (58). The manifest
behavior of (60a) is equivalent with the manifest behavior
of R1(ξ), which can be checked by elimination of the latent
variables of (60a-b). However, the manifest behavior can not
be Markovian as (60a-b) has exactly one solution(w, w̆) for
each initial conditionw̆(0) and scheduling trajectoryp ∈ BP.
This contradicts Markovianity, since two solutions(w, w̆) and
(w′, w̆′) with w̆0j(0) = w̆′0j(0), ∀j ∈ I

nW

1 cannot be connected

unless alsow̆ij(0) = w̆′ij(0), ∀(i, j) ∈ I
nξ−1
1 × I

nW

1 .

E. Proof of Theorem 5

First consider the left-side transformation. LetR ∈
R[ξ]nr×nW andR′ ∈ R[ξ]n×nr andP = RnP . Based on the
proof of the injective cogenerator property, considerB∗ and
B
′
∗ as the complete behaviors ofR andR′. Then the inclusion

B
′
∗ ⊆ B∗ can be expressed as an exact sequence

0→ B
′
∗ → B∗, (61)

which is equivalent to the exact sequence

0← moduleR[ξ](R
′)← moduleR[ξ](R). (62)

Equivalently, we havespanrowR (R′) ⊇ spanrowR (R) or R′(ξ) =
Q(ξ)R(ξ) for some Q ∈ R[ξ]n×nr . If B∗ = B

′
∗, then

R′(ξ) = Q1(ξ)R(ξ) andR(ξ) = Q2(ξ)R
′(ξ), which shows

that R andR′ has the same rank. If additionally,R andR′

are full rank, than this implies thatQ1 = Q†2, ergoQ1 andQ2

are unimodular. As the complete behaviors are equal therefore
this implies that the behaviors ofR andR′ for each commonly
valid trajectories ofp are equal.

Consider the right-side transformation. Based on the proof
of the injective cogenerator property, there is a homomorphism
between the the complete behaviors ofR(ξ) and R′(ξ) =
R(ξ)Q1(ξ) and also betweenR(ξ) = R′(ξ)Q2(ξ) andR′(ξ).
This implies that ifQ1 = Q†2, ergoQ1 andQ2 are unimodular,
then there exists a isomorphism between the behaviors.
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