
Input-output LPV model identification with
guaranteed quadratic stability

V. Cerone ∗, D. Piga ∗∗, D. Regruto ∗, R. Tóth ∗∗

∗ Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso
Duca degli Abruzzi 24, 10129 Torino, Italy,

e-mail: vito.cerone@polito.it, diego.regruto@polito.it

∗∗ Delft Center for Systems and Control, Delft University of Technology,
Mekelweg 2, Delft, 2628 CD, The Netherlands,
e-mail: D.Piga@tudelft.nl, R.Toth@tudelft.nl

Abstract: The problem of identifying linear parameter-varying (LPV) systems, a priori known to be
quadratically stable, is considered in the paper using an input-output model structure. To solve this
problem, a novel constrained optimization-based algorithm is proposed which guarantees quadratic
stability of the identified model. It is shown that this estimation objective corresponds to a nonconvex
optimization problem, defined by a set of polynomial matrix inequalities (PMI), whose optimal solution
can be approximated by means of suitable convex semidefinite relaxations. Applicability of such
relaxation-based estimation approach in the presence of either stochastic or deterministic bounded
noise is discussed. A simulation example is also given to demonstrate the effectiveness of the resulting
identification method.
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1. INTRODUCTION

Linear parameter-varying (LPV) models are linear systems
whose parameters depend on a time-varying, possibly vector-
valued, exogenous variable, whose real-time measurements are
assumed to be available. Due to recent developments in LPV
modeling and control, the LPV modeling paradigm can be con-
sidered as one of the effective tools to derive a mathematical
description of nonlinear/time-varying phenomena and synthe-
size efficient controllers for such systems. Particularly, a rapidly
increasing number of contributions addressing the problem of
black-box LPV model identification from input-output mea-
surements has recently appeared in the literature, including re-
cursive (Bamieh and Giarré (2002)) and separable (Previdi and
Lovera (2004)) least squares algorithms, subspace identifica-
tion (Verdult and Verhaegen (2002, 2005); Felici et al. (2007);
Lopes dos Santos et al. (2008)) and orthonormal basis functions
(Tóth et al. (2010)) approaches, instrumental-variables-based
algorithms (Laurain et al. (2010)), set-membership methods
(Cerone and Regruto (2008); Cerone et al. (2011a)) and many
more. A detailed overview of the available LPV modeling and
identification approaches can be found in the recent book by
Tóth (2010).

Most of the identification algorithms available in the litera-
ture rely on input-output data collected from open-loop experi-
ments, which can be performed in practice only if the system to
be identified is a-priori known to be stable. A number of strate-
gies to enforce stability constraints in the identification of linear
time-invariant (LTI) systems can be found in the literature,
however such developments have not been achieved in the LPV
framework yet. In the LTI case, a sufficient condition to ensure
stability of dynamic models obtained by least squares (LS)

identification is provided in Regalia and Stoica (1995), where
the input signal is constrained to be an autoregressive process
with a specific degree. Tugnait and Tontiruttananon (1998)
provide a frequency-domain solution to LS identification of a
stable system in the presence of undermodeling. The proposed
approach is applicable when the input signal is a zero-mean
stationary process with sufficiently high order of persistency of
excitation. In (Janakiraman and Bhattacharyya (1999)), a stable
output-error identification scheme is presented for the specific
case of all-pole systems and periodic excitation signals, while
Nicolao and Pillonetto (2008) give a procedure to include prior
information on BIBO stability in the context of kernel-based
nonparametric identification. Cerone et al. (2011b) describe a
method to enforce stability constraints in evaluating bounds on
the parameters of LTI transfer functions identified from input
and output data affected by bounded measurement noise. Dif-
ferent approaches are also available in the literature to enforce
stability in LTI subspace identification. The interested reader
can refer to (Lacy and Bernstein (2003)) and the references
therein for a thorough review on the subject. The most recent
and effective method among such approaches is the one pro-
posed by Lacy and Bernstein (2003) where prior information
on asymptotic stability is directly taken into account in the
computation of the LS estimate through the solution of a proper
convex optimization problem.

To the best of the authors’ knowledge, no contribution can
be found in the literature that formally include mathematical
constraints related to stability in the context of LPV model
identification. Consequently, the identification procedure may
give rise to inaccurate and possibly unstable models, especially
in the presence of relatively short data records, structural mod-
eling error and significant measurement noise.
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In this work, an original approach is proposed to enforce
quadratic stability constraints in the identification of input-
output LPV models with affine dependence on the schedul-
ing variables. The paper is organized as follows. Section 2 is
devoted to the formulation of the assumed identification prob-
lem. Previous results on quadratic stability of input-output LPV
models are briefly reviewed in Section 3. An algorithm for the
solution of the considered problem is then proposed in Section 4
under the assumption that the scheduling variables range inside
a polytope. In this case, the problem is shown to be equivalent
to a nonconvex polynomial matrix inequality (PMI) problem
whose global optimum can be arbitrarily well approximated by
exploiting suitable convex relaxation techniques. Effectiveness
of the proposed approach is shown by means of a simulation
example in Section 5. Concluding remarks are presented at the
end of the paper.

2. PROBLEM FORMULATION

Consider a SISO, discrete-time LPV ARX model described in
terms of the following linear difference equations

A(q−1, λ(t))w(t) = B(q−1, λ(t))u(t), (1a)

A(q−1, λ(t))η(t) = e(t), (1b)
y(t) = w(t) + η(t), (1c)

where q−1 is the backward time-shift operator, i.e., q−1w(t) =
w(t − 1), u(t) : Z → R is the input signal, w(t) : Z → R

is the noise-free output signal, y(t) : Z → R is the measured
output signal, e(t) : Z → R is a white noise process, η(t) :
Z → R is the effect of the noise e(t) on the measured output
signal, λ(t) : Z → R

μ is the scheduling variable which,
according to the LPV modeling and control literature (see, e.g.,
Rugh and Shamma (2000)) is assumed to be measurable. The
scheduling variable λ(t) is assumed to belong to a compact
set Λ ⊂ R

μ. In order to simplify notation, in the rest of the
paper the following shorthand notation will be adopted for a
generic signal πt � π(t). A(·) and B(·) are polynomials in the
backward shift operator q−1 described as

A(q−1, λt)=1 + a1(λt)q−1 + . . . + ana(λt)q−na (2a)

B(q−1, λt)=b0(λt) + b1(λt)q−1+ . . . + bnb(λt)q−nb (2b)

where na, nb ≥ 0 and the coefficients ai and bj are assumed to
be affine functions of λt = [λt,1 λt,2 . . . λt,μ] parameterized
as follows

ai(λt) = a(i,0) +
μ∑

γ=1

a(i,γ)λt,γ ,

bj(λt) = b(j,0) +
μ∑

ν=1

b(j,ν)λt,ν .

(3a)

The unknown parameter vector θ ∈ R
nθ , nθ = (μ + 1)(na +

nb + 1) to be estimated is defined as

θ = [ a1,0 a1,1 . . . a1,μ . . . ana,0 ana,1 ana,μ

b0,0 b0,1 . . . b0,μ . . . bnb,0 bnb,1 . . . bnb,μ ]. (4)

The parameter vector associated with the true-data-generating
system is denoted by θ0.

In this paper, we address the problem of identifying LPV
systems that are a-priori known to be quadratically stable in
the set Λ. The notion of quadratic stability of a LPV system in
an input-output form is introduced by the following definition
(see also Gilbert et al. (2010) and Tóth (2010)).

Definition 1. (Quadratic stability of LPV systems given an IO
representation)
Let us define

x(t) = [ y(t) y(t − 1) . . . y(t − na + 1) ]� (5)

which can be considered as a state variable for the system in
(1a). The LPV system (1a) is quadratically stable, if and only
if there exists a symmetric matrix P = P� � 0, such that the
quadratic function

V (t) = x(t)�Px(t), (6)

is a Lyapunov function which implies Lyapunov stability of
(1a) for all possible trajectories of λt inside the compact set
Λ ⊂ R

μ, i.e. ∀ λ ∈ ΛZ.
�

In order to explicitly take into account prior information on
quadratic stability, the following identification problem is con-
sidered:

θ̃ = arg min
θ∈Dqs

θ

J(θ, u, y) (7)

where Dqs
θ ⊂ R

nθ is the set of all θ for which the LPV system
is quadratically stable in the sense of Definition 1, u, y, λ are
the collected input, output and scheduling variables sequences
respectively, and J(θ, u, y) is assumed to be a generic multi-
variate polynomial function of parameters θ. This choice for
J(θ, u, y) is quite general and allows us to consider most com-
mon identification criteria, including, for example, the least-
squares functional

J = ‖y − Φθ‖2
2 (8)

and the L1-regularized least squares functional

J = ‖y − Φθ‖2
2 + α‖θ‖1, (9)

where

y = [ y(1) y(2) . . . y(N) ]�, Φ = [ φ(1) φ(2) . . . φ(N)]�

(10)
and

φ(t) =[−y(t − 1) − λ(t)y(t − 1) . . .

− y(t − na) − λ(t)y(t − na)
u(t) λ(t)u(t) . . .

u(t − nb) λ(t)u(t − nb)]�.

(11)

Our objective is to present an approach to enforce quadratic
stability constraints in the identification of input-output LPV
systems. Because such constraints are independent from the
noise model, the presented approach can be applied to problems
with different structures of noise. For the sake of simplicity, in
the sequel we restrict ourself to the ARX case.

3. QUADRATIC STABILITY OF LPV SYSTEMS IN
INPUT-OUTPUT FORM

The aim of this section is to briefly summarize some results
on quadratic stability via input-output formulation of LPV
systems, originally reported in Gilbert et al. (2010), that will
be used in the rest of the paper to solve problem (7).

Let us define the following quantities

a = [ ana(λ) . . . a2(λ) a1(λ) 1 ] , (12)

Π1 =

⎡
⎢⎣

0 1 0
...

. . .
0 0 1

⎤
⎥⎦ , Π2 =

⎡
⎢⎣

1 0 0
. . .

...
0 1 0

⎤
⎥⎦ , (13)
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with Π1,Π2 ∈ R
na×na +1 . The following theorem provides

a sufficient condition for quadratic stability of LPV systems
described by (1a).

Theorem 1. (Gilbert et al. (2010))
Given a polynomial C(q−1) of order na

C(q−1) = 1 + c1q
−1 + . . . + cnaq

−na , (14)

with roots inside the unite circle, the LPV system in (1a) is
quadratically stable in Λ, if there exists a symmetric matrix
P ∈ R

na×na such that

c�a(λ) + a�(λ)c − F (P ) 	 0, ∀λ ∈ Λ (15)

where c = [ cna . . . c2 c1 1 ] and

F (P ) = Π�
1 PΠ1 − Π�

2 PΠ2. (16)

�

The polynomial C(q−1) given in Theorem 1 is referred to as the
stable central polynomial.

Remark 1. It is worth noting that, for given constant polyno-
mial coefficients c, condition (15) is a linear matrix inequality
(LMI) constraint in θ and in the entries of the matrix P , poly-
nomially parameterized in the scheduling variable λ. Therefore,
(15) leads to a semi-infinite LMI constraint. �
Remark 2. In Gilbert et al. (2010), condition (15) is used to
design a robust controller under the quite general assumption
that Λ is a semialgebraic set. After selecting a stable polynomial
C(q−1), the problem of computing a vector a(λ) satisfying the
constraint c�a(λ) + a(λ)�c − F (P ) 	 0 for all λ belonging
to Λ is solved in terms of sum-of-squares matrix polynomial
optimization (see Gilbert et al. (2010); Scherer (2006) and
references therein). Unfortunately, as discussed in Henrion
et al. (2003), deriving a general formula for the selection of the
central polynomial is a hard task (see also Gilbert et al. (2010)
for a discussion on this point). �

4. LPV MODEL IDENTIFICATION WITH GUARANTEED
QUADRATIC STABILITY

Let us denote with D̃qs
θ the set of all θ that satisfy equation

(15) for a given stable polynomial C(q−1). It is worth noting
that D̃qs

θ is an inner approximation of Dqs
θ . The degree of this

approximation strongly depends on the selected central polyno-
mial. Therefore, for a given stable polynomial C∗(q−1) = 1 +
c∗1q−1 + . . . + c∗naq

−na with order na, a suboptimal solution
θ̆ to problem (7) can be computed as follows:

θ̆ = arg min
θ,P

J(θ, u, y)

s.t. c�∗ a(λ) + a(λ)�c∗ − F (P ) 	 0, ∀λ ∈ Λ,
(17)

where c∗ = [c∗na , . . . , c∗1, 1].
Since the level of suboptimality of θ̆ strongly depends on
the choice of the central polynomial, we propose to modify
problem (17) as follows

θ̂ = arg min
θ,P,c

J(θ, u, y)

s.t. c�a(λ) + a(λ)�c − F (P ) 	 0, ∀λ

c ∈ Sc

(18)

where Sc is the set of all stable polynomial of order na, and
the functional J is now also minimized with respect to the
coefficients of the central polynomial C(q−1) ∈ Sc. As pointed
out in Cerone et al. (2011b), the region Sc can be described

Table 1. Jury’s array.

cna cna−1 cna−2 . . . c2 c1 1
1 c1 c2 . . . cna−2 cna−1 cna

rna−1 rna−2 rna−3 . . . r1 r0

r0 r1 r2 . . . rna−2 rna−1

sna−2 sna−3 sna−4 . . . s0

...
...

...
...

q2 q1 q0

by means of a set of scalar polynomial inequalities in the
coefficients of C∗(q−1). In particular, the following result holds.

Result 1. (Cerone et al. (2011b))
Sc is a semialgebraic set defined by the following polynomial
inequalities in the coefficients c1, . . . , cna

C(1) > 0, (−1)naC(−1) > 0, |cna | < 1, (19)

r2
na−1 < r2

0, s2
na−2 < s2

0, . . . , q2
2 < q2

0 , (20)

where r0, s0, . . ., q0, . . ., rna−1, sna−2, . . ., q2, q1 are ele-
ments of the Jury’s array reported in Table 1, i.e. rna−jc =

det
(

cna cna−jc

1 cjc

)
, sna−jd = det

(
rna−1 rna−jd

r0 rjd

)
, with c0 =

1 and det (·) denoting the determinant of a matrix. �

Since the constraint c�a(λ)+a(λ)�c−F (P ) 	 0 is a noncon-
vex bilinear matrix inequality (BMI) in c and θ, polynomially
parameterized in λ, problem (18) is a semi-infinite nonconvex
polynomial matrix inequalities (PMI) problem which is difficult
to solve in general. Here we propose an algorithm for the solu-
tion of problem (18) under the following additional assumption.

Assumption 1. Λ is a polytope with vertices λv
1, λ

v
2, . . . , λ

v
ρ.

Assumption 1 leads to the following reformulation of Theo-
rem 1.

Theorem 2.
Given a stable polynomial C(q−1) ∈ Sc of order na, the LPV
system in (1a), satisfying Assumption 1, is quadratically stable
in Λ if there exists a symmetric matrix P ∈ R

na×na such that

c�a(λv
i ) + a(λv

i )�c − F (P ) 	 0, ∀i = 1, 2, . . . , ρ (21)

Proof We have to prove that, under Assumption 1, condition
(21) is a necessary and sufficient condition for (15). Necessity is
straightforward, since condition (21) is satisfied by construction
when (15) holds. In order to prove sufficiency, let us define the
following function

χ(w, λ) = w�[c�a(λ) + a�(λ)c − F (P )]w (22)

where w is any nonzero vector such that w ∈ R
na and P is a

symmetric matrix such that

c�a(λ) + a�(λ)c − F (P ) 	 0, ∀λ ∈ Λ. (23)

As is well known, condition (23) is equivalent to

χ(w, λ) ≥ 0, ∀λ ∈ Λ, ∀w ∈ R
na , w 
= 0. (24)

Due to the affine dependence of a(λ) on λ, the minimum of
function χ(w, λ) over the polytope Λ is attained on one of the
vertexes λv

1, λ
v
2, . . . , λ

v
ρ, being χ(w, λ) a linear functional of λ.

Proof of sufficiency follows from the fact that

χ(w, λv
i ) ≥ 0 ∀ i = 1, . . . , ρ, (25)

thanks to condition (21). �

Due to Theorem (2), problem (18) simplifies to the following
finite dimensional nonconvex PMI problem

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1769



θ̂ = arg min
θ,P,c

J(θ, u, y)

s.t. c�a(λv
i ) + a(λv

i )�c − F (P ) 	 0, ∀i = 1, 2, . . . , ρ

C ∈ Sc.

(26)

Remark 3. Since e(t) : Z → R is a white noise process,
consistency of estimator (26) follows from the properties of
the standard least squares estimator under the assumption that
θ0 ∈ Dqs

θ . �
Remark 4. Let us assume that the noise e(t) ranges within a
given bound Δe, i.e., ‖e(t)‖ ≤ Δe. The feasible parameter set
Dθ, i.e., the set of all values of θ that are consistent with the
assumed model structure, the collected input-output data and
the assumed error bound Δe, is known to be a semialgebraic
region described by a set of polynomial inequalities (see, e.g.,
Cerone et al. (2011a)). Thus, estimator (26) can be rewritten by
constraining the optimization to the feasible parameter set Dθ,
i.e.,

θ̂ = arg min
θ,P,c

J(θ, u, y)

s.t. c�a(λv
i ) + a(λv

i )�c − F (P ) 	 0, ∀i = 1, 2, . . . , ρ

θ ∈ Dθ

C ∈ Sc.

(27)

Since Dθ is described by polynomial inequalities, problem (27)
is a PMI problem of the same kind as (26). �

By exploiting the generalization of the Descartes’ rule (Basu
et al. (2006)), it is possible to apply to (26) and (27) the so-
called scalarization approach, proposed in Lasserre (2005),
which allows to exactly replace the PMI constraints c�a(λv

i )+
a(λv

i )�c − F (P ) 	 0, ∀i = 1, 2, . . . , ρ with a set of scalar
multivariate polynomial constraints. Define the following ma-
trix

Hi(x) = c�a(λv
i ) + a(λv

i )�c − F (P ), (28)
whose entries are scalar polynomials in the variable

x = [ c1 . . . cna p1,1 p1,2 . . . pna,na a1,0 a1,1 . . . ana,1 ] ,
(29)

where pi,j is the (i, j)-th entry of matrix P . The characteristic
polynomial pi(w, x) of Hi(x) can be written, without loss of
generality, as

pi(w, x) = det(wIna+1 −Hi(x))

= wna+1 +
na+1∑
k=1

(−1)khk(x)wna+1−k, w ∈ R
(30)

where hk(x) are scalar polynomials and Ina+1 denotes the
identity matrix of size na + 1. Application of the scalarization
approach to matrix Hi(x) leads to the following result.

Result 2. (Lasserre (2005))

Hi(x) 	 0 if and only if hk(x) ≥ 0 ∀k = 1, . . . , na+1. (31)

�
Due to Result 2, problem (26) can be converted to a standard
polynomial optimization problem which can be solved by ex-
ploiting the relaxation-based approaches proposed in Lasserre
(2001); Parrillo (2003). In particular, by means of the moment-
based approach described in Lasserre (2001), a hierarchy of
relaxed semidefinite programming (SDP) problems are con-
structed whose optima are guaranteed to converge to the global
optimum of problem (26). An efficient MATLAB implementa-
tion of moment-based relaxation techniques can be found in the
software Gloptipoly by Henrion and Lasserre (2003).

An alternative approach to solve problem (26) is based on
LMI relaxation for PMI problems proposed in Henrion and
Lasserre (2006) in the spirit of the results of sum-of-squares
decompositions of positive polynomial matrices discussed in
Hol and Scherer (2004, 2005). In particular, in Henrion and
Lasserre (2006), PMI constraints of the kind Hi(x) 	 0
are directly handled in matrix form without conversion to a
set of scalar polynomials and a sequence of convex SDP-
relaxed problems is built up, whose solutions are guaranteed to
converge to the global optimum of the original nonconvex PMI
problem. Such an approach allows one to detect if the global
optimum of the original PMI problem (26) is reached, and if so,
to extract the global minimizers. From a computational point
of view, this methodology is more convenient than the scalar
approach when the degree and the size of polynomial matrix
Hi(x) is large (see Henrion and Lasserre (2006) for a detailed
discussion).

5. A SIMULATION EXAMPLE

In this section, we show the effectiveness of the presented ap-
proach through a numerical example. The LPV data-generating
system is described by eqs. (1a)-(1c) with A(q−1, λt) = 1 +
(−1.41 + 0.1λt)q−1 + (0.942 + 0.04λt)q−2 and B(q−1, λt) =
(1.5 − 1.1λt)q−2. Therefore, the true parameter vector is θ0 =
[a1,0, a1,1, a2,0, a2,1 b2,0, b2,1]

�=[−1.41, 0.1, 0.924, 0.04,

1.5, −1.1]�. The system is simulated using a white input
signal ut with uniform distribution on the interval [−5; 5];
a white error et uniformly distributed within [−4; 4] and
a white scheduling parameter λt with uniform distribution
within [−0.3; 0.3]. It is worth pointing out that the LPV data-
generating system is quadratically stable for all trajectories of
the scheduling parameter λt in the interval [−0.3; 0.3]. As a
matter of fact, conditions of Theorem 2 are satisfied for the
following stable central polynomial C(q−1):

C(q−1) = 1 − 1.4793q−1 + 0.9792q−2. (32)

The LPV model is identified from a set of data collected from
N = 100 measurements. Under these conditions, the signal to
noise ratio in the generated data, defined as

SNRw = 10 log10

‖wt‖2
2

‖ηt‖2
2

,

is 7 dB.

First, a set of parameters θ̂NS is computed by minimizing the
standard LS functional J = ‖y − Φθ‖2

2 given in (8) without
enforcing stability constraints. The obtained θ̂NS is reported in
Table 2. It is worth noting that the identified LPV model is
not stable for all the trajectories of the scheduling parameter λt

within [−0.3; 0.3]. In fact, when λt = −0.3 for all t = 1, 2, . . .,
the LPV system is reduced to an LTI model with a z-transfer
function

1.529
z2 − 1.534z + 1.01

, (33)

which shows poles outside the unit circle. In order to ensure
stability of the identified model, LPV parameters θ̂ are then
evaluated as solution of constrained problem (26). The same
LS functional J previously employed to compute parameters
θ̂NS is used as objective function in (26). In order to solve
the nonconvex PMI problem (26), the relaxation approach pro-
posed by Henrion and Lasserre (2006) has been implemented
in the Yalmip Matlab interface (Löfberg (2004)). The obtained
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Table 2. Comparison of the true parameters θ0,
the parameters θ̂NS estimated without imposing
stability constraints and the parameters θ̂ estimated

by enforcing stability constraints.

Parameter θ0 θ̂NS θ̂

a1,0 -1.4100 -1.4592 -1.4444
a1,1 0.1000 0.2507 0.0915
a2,0 0.9240 0.9570 0.9420
a2,1 0.0400 -0.1761 0.0204
b2,0 1.5000 1.5291 1.5068
b2,1 -1.1000 -2.2024 -1.9893

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
x 10

4

Sample

O
ut

pu
t

Fig. 1. Output signal ŷNS
t obtained by the LPV model associated

with the parameter vector θ̂NS computed without enforc-
ing stability constraints.

values of θ̂ are reported in Table 2. By exploiting the global
optimality check presented in Henrion and Lasserre (2006), the
obtained values of θ̂ are proven to be the global minimizer of the
nonconvex problem (26). This means that the identified LPV
model is guaranteed to be quadratically stable for all trajectories
of the scheduling variable λt in the interval [−0.3; 0.3]. The
elapsed time to compute θ̂ is about 10 seconds on a 2.40-GHz
Intel Pentium IV with 3 GB of RAM. Performance of the esti-
mated LPV model is tested on a validation set, where data are
collected under a scheduling parameter trajectory λt = −0.3
for all t = 1, 2, . . ., which is a scheduling trajectory that desta-
bilizes the LPV model associated with θ̂NS. The output ŷNS

t of
the model associated with the parameter vector θ̂NS is reported
in Fig. 1, showing an unstable behaviour of the model identified
without enforcing stability constraints. In Fig. 2, only the first
100 samples of the estimated output ŷNS

t are reported, and then
compared to the output signal yt of the real system and to the
estimated output ŷt of the identified stable LPV model associ-
ated with the parameter vector θ̂. The error ξt = yt−ŷt between
the true output signal yt and the estimated output ŷt is plotted in
Fig. 3, together with the error ξNS

t = yt − ŷNS
t between yt and

the estimated output ŷNS
t . In order to evaluate the performance

of the identified models, the best fit rate (BFR) and the mean
square error (MSE), defined as follows, are computed on the
first 100 samples of the validation data set:

BFR = max

(
1 − ‖yt − ỹt‖2

‖yt − ȳt‖2
, 0

)
· 100%, (34)

0 20 40 60 80 100
−50

0

50

Sample

O
ut

pu
t

Fig. 2. Output signal yt generated by the true LPV system
(solid thick line), estimated output signal ŷt obtained by
the identified stable LPV model (dashed thin line) and
output signal ŷNS

t obtained by the LPV model identified
without enforcing stability constraints (solid thin line).
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−40
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E
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Fig. 3. Error ξt = yt − ŷt between the true output signal yt and
the output signal ŷt (solid thick line) and error ξNS

t = yt−
ŷNS

t between the true output signal yt and the output signal
ŷNS

t (solid thick line).

Table 3. Best fit rate (BFR) and mean square error
(MSE) computed for the LPV models associated

with parameters θ̂NS and θ̂.

Model BFR MSE
parameters

θ̂NS 0% 1.73

θ̂ 71% 0.32

MSE =
1

100
‖yt − ỹt‖2

2, (35)

where ȳt is the mean value of yt, while ỹt is either ŷt or ŷNS
t .

The computed values of BFR and MSE are reported in Table
3. Indeed, the obtained results show that the proposed method,
based on stability constraints enforcement, significantly outper-
forms the standard least squares approach.
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6. CONCLUSION

The problem of enforcing stability constraints in the identifica-
tion of LPV models is addressed in the paper. In particular, a
systematic approach is proposed to force quadratic stability for
the case of input-output LPV models with affine dependence on
a vector-valued scheduling variable assumed to range inside a
polytope. The problem is formulated in terms of PMI optimiza-
tion and solved exploiting suitable semidefinite relaxation tech-
niques. Applicability of the proposed approach in the presence
of either stochastic or deterministic bounded equation error is
briefly discussed. The effectiveness of the proposed approach is
shown by means of a simulation example where application of
standard least squares estimation leads to an unstable model.
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