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Abstract: Parametric identification approaches in the Linear Parameter-Varying (LPV)
setting require optimal prior selection of a set of functional dependencies, used in the
parametrization of the model coefficients, to provide accurate model estimates of the underlying
system. Consequently, data-driven estimation of these functional dependencies has a paramount
importance, especially when very limited a priori knowledge is available. Existing over-
parametrization and nonparametric methods dedicated to nonlinear estimation offer interesting
starting points for this problem, but need reformulation to be applied in the LPV setting.
Moreover, most of these approaches are developed under quite restrictive auto-regressive noise
assumptions. In this paper, a nonparametric Least-Squares Support Vector Machine (LS-SVM)
approach is extended for the identification of LPV polynomial models. The efficiency of the
approach in the considered noise setting is shown, but the drawback of the auto-regressive noise
assumption is also demonstrated by a challenging LPV identification example. To preserve
the attractive properties of the approach, but to overcome the drawbacks in the estimation of
polynomial LPV models in a general noise setting, a recently developed Instrumental Variable
(IV)-based extension of the LS-SVM method is applied. The performance of the introduced IV
and the original LS-SVM approaches are compared in an identification study of an LPV system
with unknown noise dynamics.

1. INTRODUCTION

Estimation of linear parameter-varying (LPV) polynomial
models in an input-output (IO) setting has received a
significant attention recently in the identification literature
(see, e.g., Bamieh and Giarré [2002], Laurain et al. [2010],
Hsu et al. [2008], Cerone and Regruto [2008], Tóth [2010]).
The signal relations in these LPV models are considered
to be linear just as in the linear-time invariant (LTI)
case, but the parameters are assumed to be functions of a
measurable time-varying signal, the so-called scheduling
variable p : Z → P. Here the compact set P ⊂ R

nP

denotes the scheduling space. This particular structure
of LPV models allows an efficient extension of the LPV
prediction error framework for data-driven modeling of
both nonlinear and time-varying behaviors (Tóth [2010]).

Most available LPV parametric identification methods,
even subspace or set-membership approaches, are analyzed
under the assumption that the nonlinear dependencies of
the model coefficients on p are appropriately parameter-
ized (Bamieh and Giarré [2002], Laurain et al. [2010], Tóth
[2010]). Such an assumption is crucial not only from the
view point of stochastic consistency, but also due to issues
of numerical and structural bias. The adequate selection
of the p-dependent functions in a LPV model parametriza-

tion is a challenging problem in general, for which the
most often applied solution in the parametric case leads
to a (heavy) over-parametrization of the model coefficients
with a rich set of dependencies (Tóth et al. [2009]). Hence
the variance of the estimates can be seriously large, even
if the order of the actual model is low.

This problem is similar to the classical model structure
or regressor selection problem encountered in statistics
and LTI identification (Ljung [1999]). It also plays an
important role in many nonlinear system identification
problems where only a limited a priori knowledge on the
model structure and hence on the involved nonlinearites
is available. To cope with this problem, especially when
the length of the available data-record is relatively low,
an elegant solution leads through the regularization of the
optimization criterion. This allows to reduce the number of
estimated non-zero parameters and hence the variance on
the possible expanse of bias. Following this idea, many ap-
proaches have been introduced for linear regression prob-
lems from sparse estimators to shrinkage methods. Among
these methods, least-squares support vector machine’s (LS-
SVM’s), originating form statistical learning theory (Vap-
nik [1998]), have had a significant impact on nonlinear
block model identification (see Suykens et al. [2002], Falck
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et al. [2010], Giri and Bai [2010]), due to the so-called
kernel-trick, which allows a significant reduction of the
variance without restricting the representation capability
of the parametrization. An LS-SVM idea based identifi-
cation approach has been also recently introduced in the
LPV case (Tóth et al. [2011]). The attractive properties of
this approach have been demonstrated in terms of compu-
tational load and achieved bias and variance compared to
other regularized LPV methods (Hsu et al. [2008], Tóth
et al. [2009]).

However, a major drawback of regularization based ap-
proaches has been the severe restrictions on the noise, most
commonly in terms of an auto-regressive noise process with
the same dynamics as the deterministic system. To cope
with colored noise, some modified variants of the LS-SVM
algorithm has been developed in the nonlinear identifica-
tion setting (Espinoza et al. [2006], Falck et al. [2010]),
but the validity of the used assumptions on the noise and
the effect of violating them have never been discussed.
In practice, noise often does not satisfy completely all
prior assumptions, hence bias effects can be unpredictable
especially in a nonparametric context. In the parametric
framework, one of the most efficient methods to handle
noise modeling error is the instrumental variable (IV) tech-
nique (Söderström and Stoica [1983]). It has been applied
to many types of linear models, like LPV models (Laurain
et al. [2010]), and more recently has been introduced in
the LS-SVM framework (Laurain et al. [2011]).

The contribution of the current paper is to extend the
LPV LS-SVM identification of polynomial IO models (see
Tóth et al. [2011]) to the realistic assumption of general
priori unknown noise conditions. This is achieved based
on the recently introduced IV modification of the LS-
SVM approach. The significance of this contribution is
highlighted by an analysis of the original LS-SVM scheme
under realistic (general) noise conditions, demonstrating
the clear need for improvement.

The paper is organized as follows. In Section 2, the iden-
tification problem as well as the assumed model structure
are introduced. The LPV LS-SVM approach is briefly
summarized in Section 3. This is followed in Section 4
by an analysis of the approach via a representative ex-
ample where the noise conditions violate the underlying
assumption. The recently proposed IV scheme for LS-SVM
methods is introduced in Section 5 and its application to
LPV models is proposed in Section 6. In Section 7, both
methods are compared based on their statistical properties
and prediction capabilities. Finally, the conclusions are
presented in Section 8.

2. PROBLEM DESCRIPTION

To set the preliminaries for the upcoming discussion, the
concept of the data-generating system and the considered
model structure are briefly introduced in this section.

2.1 The considered system

The LPV data-generating system, considered in this pa-
per, is defined as

na
∑

i=0

aoi (p(k))y(k − i)=

nb
∑

j=0

boj(p(k))u(k −j) + vo(k), (1)

where k ∈ Z is the discrete time, u : Z → R and y : Z →
R denote the input and the output signals respectively,
p : Z → P is the so called scheduling variable with range
P ⊆ R

np , vo is a bounded stochastic noise process and,
without loss of generality, ao0 = 1. Furthermore (to keep the
notation simple), the nonlinear functions aoi , b

o
j : P → R,

describing the coefficients of the dynamic relation (1),
are assumed to have static dependence on p. The latter
means, that these functions depend only on p(k), i.e., the
instantaneous value of p. In practice however – as it is
shown in Section 7 – the results of this paper can be
straightforwardly extended to the case of causal dynamic
dependence (dependence on both the instantaneous and
past values of p).

In the sequel, the focus of the discussion is going to be on
the identification of the nonlinear functions {aoi }

na

i=1 and
{boj}

nb

j=0, i.e., the estimation/learning of these dependen-
cies on p. Thus, the orders na and nb of the polynomial
operators in (1) as well as the scheduling variable p are
assumed to be a priori known. Moreover, both u and p
are considered to be deterministic (noise-free) which is the
most commonly used assumption in the LPV identification
setting (Tóth [2010]). Furthermore, we also leave the noise
vo unspecified for the time being.

2.2 The considered model

The idea upon which the intended nonparametric method
is based, is to assume that the nonlinear p-dependent
coefficient functions fi(pk) (corresponding to ai and bj)
lay in a high (possibly infinite) dimensional plane:

fi(p(k)) =

ng
∑

i=1

ρ⊤i φi(p(k)), (2)

where each φi : R· → R
nH denotes an undefined, poten-

tially infinite (nH = ∞) dimensional function, so-called
feature map, and ρi ∈ R

nH is the associated parameter
vector.

In the presented LPV context, this formulation manifests
in the model structure

Mρ : y(k) =

ng
∑

i=1

ρ⊤i φi(pk)xi(k) + e(k), (3)

where
xi(k) = y(k − i), i = 1, . . . , na, (4a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (4b)

Additionally, introduce ρ = [ ρ⊤1 . . . ρ⊤ng
]⊤ ∈ R

ngnH and

ϕ(k) =
[

φ⊤
1 (pk)x1(k) . . . φ⊤

ng
(pk)xng

(k)
]⊤

, (5)

such that (3) can be rewritten in the regression form

y(k) = ρ⊤ϕ(k) + e(k). (6)

The major difficulty here is to correctly model the non-
linearities and to minimize the risk of structural bias
while keeping the computational time and the variance
of the estimate relatively low. However, minimizing the
structural bias by increasing the dimensions of the different
φi feature maps directly increases both the variance of the
estimates and the required computational time. To cope
with these issues, regularization based solutions have been
reported in Tóth et al. [2011] and Tóth et al. [2009]. In the
sequel, we are going to concentrate on the nonparametric
LS-SVM approach presented in Tóth et al. [2011].
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3. THE LS-SVM METHOD FOR LPV MODELS

This section briefly summarizes the LPV LS-SVM which
we intended to further extended to the general noise case.
The identification criterion – the cost function by which
the aim of the estimation is defined – is a regularized least-
squares (prediction) error criterion and in this approach is
defined in the form of

J (ρ, e)=
1

2
‖ρ‖2ℓ2 +

γ

2
‖e(tk)‖

2
ℓ2
, (7)

where the bias-variance trade-off is controlled by the regu-
larization hyper-parameter γ ∈ R

+
0 . Regularization in (7)

makes possible to handle large-scale over-parametrizaiton
problems like in sparse estimators (Tóth et al. [2009]).

Introduce the output data vector Y = [ y(1) . . . y(N) ]⊤

and the regressor matrix Φ = [ ϕ(1) . . . ϕ(N) ]⊤. Without
going into details about the assumed noise dynamics, it
can be shown that estimates ai(�) and bj(�) of the nonlinear
functions aoi (�) and boj(�) can be obtained by applying the

following three steps (Tóth et al. [2011]):

Step 1: Construct the matrix Ω = ΦΦ⊤ ∈ R
N×N by using

the following property

[Ω]j,k =

ng
∑

i=1

[Ω(i)]j,k (8)

with

[Ω(i)]j,k = xi(j)φ
⊤
i (j)φi(k)xi(k),

= xi(j)Ki

(

p(j), p(k)
)

xi(k).

Here, {Ki}
ng

i=1 are positive definite so-called kernel func-
tions. These kernels define the inner products of φ⊤

i (j)φi(k)
and hence characterize the feature maps {φi}

ng

i=1. Specifi-
cation of the kernel functions instead of φi is called the
kernel trick (Vapnik [1998], Schölkopf and Smola [2002]),
which allows the identification of the coefficient functions
ai and bj without explicitly defining the feature maps
involved. In other words, this allows the implicit defini-
tion of high dimensional feature maps without actually
handling the high dimensional objects, resulting in low
computational time of the estimation compared to the
representation capabilities. A typical type of kernel is, for
example, the Radial Basis Function (RBF) kernel:

Ki(p(j), p(k)) = exp
(

−
||p(j)−p(k)||22

σ2
i

)

. (9)

Step 2: Use the matrix Ω to compute the dual optimal
solution of (7) as

α̂ =
(

Ω + γ−1IN
)−1

Y. (10)

Step 3: Compute the estimated nonlinearities as

âi(�) = ρ̂⊤i φi(�) =

N
∑

k=1

α̂kxi(k)K
i(p(k), �), (11a)

b̂j(�) = ρ̂⊤
j̃
φj̃(�) =

N
∑

k=1

α̂kxj̃(k)K
j̃(p(k), �). (11b)

where j̃ = na + 1 + j and α̂k is the kth component of
α̂. Note that the parameter vector ρ is never accessible
in the SVM framework as only the combined estimates

âi(�) = ρ̂i
⊤φi(�) or b̂j(�) = ρ̂⊤

j̃
φj̃(�) can be computed using

the kernel functions defined.

4. THE PITFALLS RELATED TO NOISE

So far, we have neither specified the noise vo in the
data-generating system (1) nor revealed its effect on the
outcome of the function estimates. Nevertheless, for an
experienced reader it might have been already clear that
considering the model (3) and the optimization criterion
(7), e(k) (and vo(k) respectively) must be a white stochas-
tic noise process to achieve unbiased estimates by the
presented LS-SVM scheme. Such an assumption is often
found quite restrictive in practice. Thus, to extend this
estimation approach to a broader class of colored noise
processes – white noise filtered by an LTI filter –, some
modified variants of the LS-SVM algorithm have been
developed in the nonlinear identification setting (Espinoza
et al. [2006], Falck et al. [2010]). Nevertheless, all theses
techniques have been developed by implicitly assuming
that the true noise process lies in the model set defined.
In order to show the weaknesses of this assumption in the
LPV case, we consider an example in which the noise is
also correlated with p, i.e., it has an LPV structure, a case
which can often be found in LPV systems with process
or actuator noise (Tóth [2010]). This means that an LTI
assumption on the noise model is invalid.

Considered the following LPV data-generating system So:

y(k) =

2
∑

i=1

ai(p(k), p(k − 1))y(k − i)

+

2
∑

j=1

bj(p(k), p(k − 1))u(k − i) + vo(k), (12a)

vo(k) =
[

0.85sign
(

p(k − 1)− 0.2
)]

vo(k − 1)

+
[

1 + (0.2 + p(k))q−1
]

eo(k), (12b)

with P = [−0.3, 0.7], eo being a white noise process with
zero-mean Gaussian distribution and

a1(x, y) = −0.7 + 0.5x− 0.3y,

a2(x, y) = −0.3 + 0.4x+ 0.3y − 1.8xy − 0.8x2 + 0.5y2,

b1(x, y) = 0.5 (sin(10x) + cos(4y)) ,

b2(x, y) = sinc(5
√

x2 + y2)− 0.7.

The available measurement data consists of 50 estimation
data sets and 50 validation data sets, each with data
records {u(k), y(k), p(k)}Nk=1 of length N = 600, where
u(k), p(k) are white stochastic processes with u(k) having
a uniform distribution U(−1, 1) and p(k) ∈ U(−0.3, 0.7).
The robustness of the proposed algorithms is analyzed
under a signal-to-noise ratio (SNR) of 8dB, computed as

SNR = 20 log
Pẙ

Pvo
where Pẙ and Pvo are the average power

of the noise-free output signal ẙ and the true noise process
vo respectively.

Even knowing the correct model order, this estimation
problem is challenging due to the dynamic dependency
on p, the different nature of the nonlinearities involved,
and the relatively low number of data with respect to
the considerable power of the noise present. No a priori
knowledge is supposed to be available concerning the
nonlinearities. In order to avoid the selection problem
of the kernels and all possible optimality considerations
involved, the kernels used in the following estimation are
all considered to be 2-dimensional RBF kernels with the
same hyper parameter σ > 0:
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Ki(pj ,pk) = exp
(

−
||pj−pk||

2
2

σ2

)

, i = 1, 2, 3, 4 (13)

where pi = [ p(i) p(i− 1) ]⊤. The aim of choosing the same
kernel for all nonlinearities is to limit the number of hyper-
parameters to two: the regularization parameter γ and the
width of the RBF’s σ in (13) and hence the complexity
of their adequate choice (or optimization). Note that
such hyper-parameters represent a structural freedom in
the LS-SVM estimation scheme, which can be commonly
found in all regularization based approaches. One might
argue that selection of these parameters corresponds to a
model structure selection problem, which is indeed true,
but with a seriously reduced degree of freedom and much
better understood consequences of the choice (see Vapnik
[1998]). For example, increasing γ reduces the bias, but
increases the variance while σ is related to the inter-sample
distance and therefore the search for its adequate value can
be restrained to a certain range.

In this example, the hyper-parameters γ and σ are op-
timized by maximizing the best fit rate (BFR) of the
estimated model w.r.t. the validation data set where:

BFR = 100% ·max

(

1−
‖y(k)− ŷ(k)‖ℓ2
‖y(k)− ȳ‖ℓ2

, 0

)

, (14)

with (y, u, p) being the validation data, ȳ is the mean of y
and ŷ is the simulated output of the model (3) for (u, p),
estimated by the LS-SVM on the estimation data set. This
optimization has resulted in σ = 0.3 and γ = 4200 for this
particular example.

In order to clearly demonstrate the pitfalls linked to the
noise assumption in the LS-SVM, the “nonlinearity” in
ao1(�) is chosen as a simple plane. In Figure 1, the mean
of the function estimates â1(�) provided by the LS-SVM
over the 50 Monte-Carlo runs using the estimation data
sets is depicted together with the true ao1(�). The switching
dynamical nature of the underlying noise process centered
at p(k−1) = 0.2 (see (12b)) results in a clear deterioration
of the function estimates, which resemble to a saturation
type of nonlinearity. This bias is due to the fact that
vo(k) 6= eo(k) which is assumed in the least-squares
based estimation problem (7). Furthermore, the bias of the
function estimates is different for the space p(k− 1) < 0.2
and p(k − 1) > 0.2. This is important because a filtering
operation on the data such as proposed in Espinoza et al.
[2006] might suppress the bias in one of the regions, but
can not efficiently suppress it on the whole scheduling
domain P. This shows that in the realistic case of an
unknown noise structure, even if a large number of data is
available, it is not possible to separate the true underlying
nature of the nonlinearity from the undesirable noise effect.
This highlights a clear need for the improvement of the
LPV LS-SVM method to be able to apply it under general,
p-correlated noise conditions such as in the given example.
Otherwise, violation of the assumed noise conditions can
lead to seriously different models of the system preventing
the synthesis of high-performance LPV controllers.

5. AN IV APPROACH FOR LS-SVM’S

To cope with general unknown noise conditions, one way
is to increase the complexity of the noise model. However,
this solution increases the complexity of the estimation
problem, e.g., resulting in a non-convex optimization, and
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Fig. 1. Mean estimate of ao1 by the LS-SVM approach.

it does not ensure that the model is rich enough to describe
the dynamics of the underlying noise process. The latter
unavoidably leads to an approximation trade-off in many
practical scenarios.

Another possibility is to develop an estimation method
robust w.r.t. modeling error on the noise. This is the core
idea behind IV approaches in the classical prediction error
setting. The same concept can also be harnessed in the LS-
SVM case to provide, under certain conditions, unbiased
function estimates independently of the true nature of the
noise (Laurain et al. [2011]).

Consider a linear-regression model which can be expressed
as y(k) = ρ⊤ϕ(k)+e(k) and a true data-generating system
which can be expressed as y(k) = ρ⊤oϕ(k) + vo(k). The
idea behind the IV approach is to introduce a so-called
instrument ζ(k) ∈ R

nρ in the linear-regression problem
which guarantees the unbiasedness (w.r.t. the noise) of the
estimate by satisfying that E{ζ(k)vo(k)} = 0 for all k ∈ Z.
In other words, an IV-based method produces an unbiased
estimate under the following conditions:

X1 The chosen instrument ζ(k) is uncorrelated to the
true noise vo(k).

X2 The true noise process has a zero mean and therefore
E{vo(k)} = 0.

In the LS-SVM context, the instrument can be introduced
into (6), by modifying the identification criterion (7) as

ρ̂IV = sol

{

1

N

N
∑

k=1

ρ+ γζ(k)
[

y(k)− ϕ⊤ρ
]

= 0

}

. (15)

It can be shown (see Laurain et al. [2011]), that this
criterion leads to unbiased function estimates by following
three steps similar to the LS-SVM solution:

Step 1: Construct the matrix Ξ = ΦZ⊤ ∈ R
N×N where

Z = [ ζ(1) . . . ζ(N) ]⊤ (in the LS-SVM case Ω = ΦΦ⊤).

Step 2: Use the matrix Ξ to compute

α̂ =
(

Ξ + γ−1IN
)−1

Y. (16)

Step 3: The nonlinear functions fi(�) = (ρ̂IVi )⊤ϕi(�) are
computed using the expression:

ρ̂IV =
N
∑

k=1

α̂kζ(k) (17)
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A remarkable property of this modified scheme is that it
requires nearly the same computational load as the original
LS-SVM approach.

6. THE IV-LS-SVM IN THE LPV CASE

6.1 The choice of an instrument

In LPV systems, most p-dependent polynomial noise struc-
tures (Box-Jenkins, Output Error, ARMAX, ARX, etc.)
fulfill condition X2. Therefore, any instrument uncorre-
lated to the noise will directly imply unbiased estimates
with respect to the noise. The instrument proposed below
is motivated by empirical experience originating from the
LTI context, but due to space restriction, its statistical
properties are not studied here. The instrument proposed
is defined as:

ζ(k) =
[

φ⊤
1(pk)ξ1(k) . . . φ⊤

ng
(pk)ξng

(k)
]⊤

, (18)

with
ξi(k) = ŷ(k − i), i = 1, . . . , na, (19a)

ξna+1+j(k) = u(k − j), j = 0, . . . , nb, (19b)

where ŷ is either the noise-free output of the system or it
denotes its estimate. As long as ŷ is uncorrelated to the
noise, condition X1 is fulfilled and therefore the obtained
estimate will be unbiased. The computation of ŷ will be
discussed later.

Considering the instrument (18), Ξ is reads as

[Ξ]j,k =

ng
∑

i=1

[Ξi]j,k (20)

with [Ξ(i)]j,k = xi(j)φ
⊤
i (j)φi(k)ξi(k). Just as in the LPV

LS-SVM case, a kernel function Ki is used to define the
inner product φ⊤

i (j), φi(k). The kernel trick is applied in
the same way and therefore

[Ξ(i)]j,k = xi(j)Ki

(

p(j), p(k)
)

ξi(k). (21)

Using expressions (18) and (17), the estimated nonlinear-
ities can be expressed as

âi(�) = (ρ̂IVi )⊤φi(�) =

N
∑

k=1

α̂kξi(k)K
i(p(k), �), (22a)

b̂j(�) = (ρ̂IV
j̃
)⊤φj̃(�) =

N
∑

k=1

α̂kξj̃(k)K
j̃(p(k), �). (22b)

where j̃ = na + 1 + j and α̂k is the kth component of α̂.

6.2 Computation of the instrument

In practice, the estimate ŷ of the noise-free output tra-
jectory ŷ needs to be computed such that it is really
uncorrelated to the noise vo(k). In case several realizations
yi of the output are available under the same excitation
conditions, it is possible to use yi as the output and yj as
ŷi in the instrument for example. In the next example, a
refined scheme such as in Young [1984] is chosen where ŷ
is computed using an auxiliary model which is iteratively
refined. This choice is empirically justified here and can
lead to an optimal parametric estimation of LPV models
as shown in Laurain et al. [2010]. The algorithm used for
the Refined IV-LS-SVM method can be expressed as in
Algorithm 1:

Algorithm 1 Refined IV-LS-SVM

1: Initialization: Set τ = 0 and ŷ = y.
2: repeat
3: Compute Ξ(τ) as in (21) and α̂(τ) using (16).

4: Compute the estimated nonlinear functions â
(τ)
i (�)

and b̂
(τ)
j (�) using (22a-b).

5: Simulate the output of the obtained model ŷ(τ) and
use it to generate the instrument. Increment τ by 1.

6: until ||α(τ) − α(τ−1)||2 is under a certain threshold.

7. COMPARISON OF THE LS AND THE IV BASED
APPROACHES

To show the benefit of the proposed refined IV-LS-SVM
approach in the LPV setting, the example of Section 4
is reconsidered. Using the same data sets and the same
value of the hyper-parameters γ = 4200 and σ = 0.3,
the estimates have been recomputed by the refined IV-
LS-SVM in the 50 Monte-Carlo runs. Note that using the
same γ and σ gives an advantage to the LS-SVM as these
parameters were optimized for the best performance of
that approach.

Similarly to the previous case, the mean of the function
estimates â1(�) provided by the refined IV-LS-SVM over
the 50 Monte-Carlo runs using the estimation data sets is
depicted together with the true ao1(�) in Figure 2. It clearly
appears that according to the theoretical results, the bias
w.r.t. the noise has completely disappeared in comparison
to Figure 1.
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Fig. 2. Mean estimate of ao1 by the refined IV-LS-SVM
approach.

This result is not limited to the nonlinearity ao1. To
show this, the statistical properties of the estimators are
analyzed through the average bias B and the standard
deviation Std of the coefficient functions on P. Using
the notation āi(�.�) = MeanMC

(

âi(�.�)
)

for the mean and

ăi(�.�) = StdMC

(

âi(�.�)
)

for the standard deviation of the
estimated functions over the Monte-Carlo runs, B and Std

are defined as:

B = MeanP
(

abs(aoi (�.�) − āi(�.�))
)

, (23a)

Std = MeanP
(

ăi(�.�)
)

. (23b)

Table 1 shows these values for both methods. It can be
seen that the LS-SVM method has got the most bias for
the nonlinearities a1 and a2 linked to y which is corrupted
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Table 1. Mean and standard deviation of the
estimated functions for both methods.

Coefficient a1 a2 b1 b2

LS-SVM B 0.1471 0.0838 0.0300 0.0433

Std 0.0896 0.0935 0.0941 0.0979

IV-LS-SVM B 0.0291 0.0231 0.0302 0.0403

Std 0.1062 0.1026 0.1006 0.1043

Table 2. Average BFR on 600 data points.

Method BFR

LS-SVM 73.76% ± 2.78%

RIV-LS-SVM 76.48% ± 2.25%

by the noise. Regarding b1 and b2, both methods propose
equivalent estimates. It can be further seen that, like in
most other frameworks, the unbiasedness of the IV-based
method is counterbalanced by an increased variance of
the estimates. Nevertheless, the proposed refined scheme
achieves a standard deviation close to the one obtained by
the LS-SVM method.

Accuracy of the estimated models in terms of the average
BFR (BFR) on the validation data along the Monte-
Carlo simulation is presented in Table 2. The IV-LS-SVM
algorithm performs equivalently well compared to the
LS-SVM method. Naturally, a performance drop occurs
when the data set is further decreased as the impact of
the increased variance becomes more dominant in such
a scenario, reaching a critical data length, under which
estimation by the IV scheme provides worse results than
the LS-SVM scheme.

However in case the available data-record exceeds a critical
length, the LS-SVM method cannot be directly applied on
the whole data set. As the dimension N increases, the
inversion of Ω ∈ N ×N becomes numerically intractable.
Therefore, a commonly used approach is to split the whole
data set into several reasonable sized data sets and to use
the mean estimated model as the final result. Therefore
Figure 3 displays the evolution of the fitting score of the
averaged model as the number of data points increases.
It can be seen that as expected, when the data length
increases, the effect of the variance becomes negligible in
comparison to the benefits brought by removing the bias.

0 0.5 1 1.5 2 2.5 3
0.7

0.8

0.9

1

Dataset size(x10000)

 

 

LS−SVM

RIV−LS−SVM

B
F
R

Fig. 3. Average BFR vs data length.

8. CONCLUSION

In this a paper, two recently introduced LS-SVM based
methods have been compared when they are applied
to the identification of polynomial LPV models in a
structural learning context. It has been shown using a
representative example that, for general noise structures,

the bias caused by the use of an LS-based optimization
scheme can lead to serious estimation error which can
mislead controller synthesis. In order to cope with the
noise modeling error, a recently introduced IV-based LS-
SVM method has been applied to the LPV identification
problem. It has been shown that the IV-based scheme
guarantees unbiased estimates at the cost of an increased
variance. Nevertheless, it has been demonstrated that the
proposed solution results in a relatively small variance
increase even for short data records. Furthermore, the IV-
LS-SVM scheme preserves the computational efficiency of
the original LS-SVM scheme, which makes it an attractive
identification tool for the structural exploration of LPV
models.
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