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Abstract: In many practical situations, it is highly desirable to estimate an accurate math-
ematical model of a real system using as few parameters as possible. This can be motivated
either from appealing to a parsimony principle (Occam’s razor) or from the view point of the
utilization complexity in terms of control synthesis, prediction, etc. At the same time, the need
for an accurate description of the system behavior without knowing its complete dynamical
structure often leads to model parameterizations describing a rich set of possible hypotheses; an
unavoidable choice, which suggests sparsity of the desired parameter estimate. An elegant way
to impose this expectation of sparsity is to estimate the parameters by penalizing the criterion
with the ℓ0 norm of the parameters, which is often implemented as solving an optimization
program based on a convex relaxation (e.g. ℓ1/LASSO, nuclear norm, . . . ). However, in order
to apply these methods, the (unpenalized) cost function must be convex. This imposes a severe
constraint on the types of model structures or estimation methods on which these relaxations
can be applied. In this paper, we extend the use of convex relaxation techniques for sparsity to
general rational plant model structures estimated by using prediction error minimization. This
is done by combining the LASSO and the Steiglitz-McBride approaches. To demonstrate the
advantages of the proposed solution an extensive simulation study is provided.

1. INTRODUCTION

System identification is a discipline that deals with the
problems of estimating models of dynamic systems from
input-output data. Even though its birth is dated back
in the era of classical automatic control during the 60’s
and 70’s, by now it has become a mature field with many
successful applications in areas such as economics, mecha-
tronics, ecology, biology, communications and transporta-
tion [Eykhoff, 1974, Ljung, 1999, Söderström and Stoica,
1989, Pintelon and Schoukens, 2001]. It also has a close
connection with allied fields such as statistics, economet-
rics, machine learning and chemometrics [Ljung, 2010].

For a system identification procedure to be successful, two
main ingredients are needed: data containing measured
information about the dynamics of the system, and prior
knowledge. Data is provided by an identification exper-
iment, while the prior knowledge has to be supplied (di-
rectly or implicitly) by the user, in the form of assumptions
or prejudices. One of the most important prejudices is the
selected model structure and the corresponding model set
within which the identification method should find an es-
timate of the plant. Such a selection is rather complicated
as it is outmost desired to estimate an accurate model
of the real system using as few parameters as possible.
As accuracy is clearly related to the performance of the
application on which the model will be used, the desire
for a minimal parametrization is based on the parsimony
principle (Occam’s razor) and utilization complexity in
terms of control synthesis, prediction, etc. Since an optimal
choice in this question is rarely known a priori, an identi-
fication user typically proposes a model structure capable
to explaining a rich set of possible dynamics, and lets the
⋆ This work was supported by the European Research Council under
the advanced grant LEARN, contract 267381.

data decide which sub-structure is appropriate to use. This
is commonly achieved by employing model structure selec-
tion tools (such as AIC, BIC/MDL, cross-validation, etc.).
These tools can be seen as imposing a sparsity pattern
on the parameters, because they determine a model sub-
structure (where the estimated model should be found),
by forcing some of the parameters of the overall model
structure to be exactly equal to zero. Therefore, model
structure selection can be interpreted as the process of
imposing a sparsity prejudice.

Many techniques for sparse estimation have been success-
fully used for model structure selection in linear regression
settings. For example, in Forward Selection regressors are
added one by one according to how statistically significant
they are [Weisberg, 1980]. Forward Stage-wise Selection
and Least Angle Regression (LARS) [Efron et al., 2004] are
refinements of this idea. Backward Elimination is another
approach with a long history. Here regressors are removed
one by one based on the same concept of statistical sig-
nificance. Another class of methods employ all regressors
but use thresholding to force insignificant parameters to
become zero [Donoho and Johnstone, 1994]. Yet another
class of methods that can handle all regressors at once use
regularization, i.e., a penalty on the size of the parameter
vector is added to the cost function. The Least Absolute
Shrinkage and Selection Operator (LASSO) [Tibshirani,
1996] and the Non-Negative Garrote (NNG) [Breiman,
1995], are early approaches based on the idea of using reg-
ularization to enforce sparsity. The LASSO, for example, is
based on the minimization of a least-squares cost function
plus the ℓ1 norm of the parameter vector (which is known
to enforce sparsity).

Most of the aforementioned sparse estimation methods can
only be applied to model structures of a linear regression
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type (i.e., where the cost function to be minimized by the
estimator is quadratic). Some extensions, however, have
been conceived for estimators based on the minimization of
a convex loss function [Bühlmann and van de Geer, 2011,
Chapter 8]. This class of estimators can be easily imple-
mented by using convex optimization tools. For estimators
arising from a non-convex loss function, it is much more
difficult to impose sparsity, because their implementation
can suffer from multiple local minima [Bühlmann and van
de Geer, 2011, Chapter 9].

Confinement to estimators with a convex loss function
(identification criterion) is very restrictive. This is be-
cause, in prediction error minimization, many Linear
Time-Invariant (LTI) model structures (such as ARMAX,
Output-Error, and Box-Jenkins [Ljung, 1999]) give rise
to a non-convex loss function of the prediction. Even
model structures for which this prediction error function
is known to have a single global minimum (e.g., ARMA
structures [Ljung, 1999]) may end up having multiple local
optima if an ℓ1 regulation term is added to it to impose
sparsity.

In this paper, we extend the use of convex relaxation
techniques for sparsity to general LTI rational Output-
Error-type model structures estimated using Prediction
Error Methods (PEM), where we allow the noise to be
colored. To this end, we first combine a variant of the
LASSO called SPARSEVA [Rojas and Hjalmarsson, 2011],
and the Steiglitz-McBride method, which is a technique
for the estimation of Output-Error (OE) models. Since
the Steiglitz-McBride approach reduces the problem of
estimation of OE models to solving a sequence of least-
squares estimation problems, which are convex optimiza-
tion programs, we can apply a LASSO penalty to this
sequence, thus imposing sparsity in the resulting plant
model, when the output noise is white.

We also extend this approach to general colored noise
situations by using a prefiltering approach with a high-
order ARX, which is a recently proposed extension of the
Steiglitz-McBride method [Zhu, 2011].

The paper is organized as follows. Section 2 introduces
the problem formulation. A description of the technique
proposed is given in Section 3 after a brief description
of SPARSEVA and the Steiglitz-McBride methods. Sec-
tion 5 presents several simulation examples that show the
properties of our proposed methods. Finally, the paper is
concluded in Section 6.

2. PROBLEM STATEMENT

Consider the stable discrete-time LTI data-generating sys-
tem

yt =
Bo(q)

Ao(q)
ut +

Co(q)

Do(q)
et, (1)

where {et} is a Gaussian white noise sequence of zero
mean and variance σ2

e > 0, {ut} is a quasi-stationary
signal [Ljung, 1999], and

Ao(q) = 1 + ao1q
−1 + · · ·+ aona

q−na ,

Bo(q) = bo1q
−1 + · · ·+ bonb

q−nb ,

Co(q) = 1 + co1q
−1 + · · ·+ conc

q−nc ,

Do(q) = 1 + do1q
−1 + · · ·+ dond

q−nd ,

with θo = [ ao1 . . . aona
bo1 . . . bonb

] and ηo = [ co1 . . . conc

do1 . . . dond
]. Due to physical insights or simply to the gen-

erality of the representation, we assume as prior knowledge

that only few of the parameters θo are actually non-zero.
Note that for notational convenience, no feedthrough term
is assumed. Our goal is to estimate a model of this system
based on measurements {ut, yt}Nt=1, of the form

yt =
B(q)

A(q)
ut +

C(q)

D(q)
ǫt, (2)

where

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na ,

B(q) = b1q
−1 + · · ·+ bnb

q−nb ,

C(q) = 1 + c1q
−1 + · · ·+ cnc

q−nc ,

D(q) = 1 + d1q
−1 + · · ·+ dnd

q−nd .

In this paper we assume that the model structure (2) con-
tains the true system (1), i.e., there is no undermodelling.

3. PROPOSED METHOD

In this section, we propose a method for the estimation
of model structure (2) taking into account the sparsity
in the parameter vector. To this end, first we present
some preliminaries on SPARSEVA (a sparse LASSO-type
estimator) and the Steiglitz-McBride method. Later, we
show how to combine these two procedures in order to
estimate general sparse rational plant model structures.

3.1 SPARSEVA

To introduce this method, developed in [Rojas and Hjal-
marsson, 2011], let us restrict the model (2) to an equation
error structure with C(q) = 1 and D(q) = A(q), i.e.,

A(q)yt = B(q)ut + ǫt. (3)

This model can be written in a linear regression fashion as

YN = ΦNθ + EN ,

where YN := [ yna+1 . . . yN ]⊤, EN := [ ǫna+1 . . . ǫN ]⊤,
θ := [ a1 . . . ana

b1 . . . bnb
]⊤ and

ΦN =





−yna
· · · −y1 una

· · · una−nb+1
...

...
...

...
−yN−1 · · · −yN−na

uN−1 · · · uN−nb



. (4)

(For simplicity of presentation, we assume that na ≥ nb.)
The SPARSEVA estimator (which stands for SPARSe Es-
timator based on a VAlidation criterion) is a variant of the
LASSO estimator [Tibshirani, 1996] (an ℓ1 penalized least-
squares estimator), and it corresponds to the minimizer of
the convex program:

min
θ

‖θ‖1
s.t. VN (θ) ≤ VN (θ̂LSN )(1 + εN ).

(5)

Here θ̂LS
N

:= (Φ⊤
N
ΦN )−1Φ⊤

N
YN is the least-squares estima-

tor of θ, VN (θ) := 1
N
‖YN −ΦNθ‖22 is the least-squares cost

function, and εN > 0 is a quantity which can be typically
chosen as:

• εN = 2(na + nb)/N .
• εN = (na + nb) ln(N)/N .

The first choice is motivated by the AIC criterion, while
the second one is related to the BIC/MDL criterion
[Ljung, 1999]. In Section 4, it is going to be shown how
these choices of εN relate to consistency/sparsity of the
SPARSEVA scheme.

Even though SPARSEVA can be considered as a variant
of the LASSO, it has the advantage of not requiring the
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tuning of regularization parameters via techniques such
as cross-validation, which involve solving multiple times
a convex program over a grid of values of the regulariza-
tion parameters. This tuning is automatically taken into
account by choosing the value of εN , as explained in detail
in [Rojas and Hjalmarsson, 2011].

An “adaptive” version of (5), called A-SPARSEVA, has
better sparsity properties than SPARSEVA [Rojas and
Hjalmarsson, 2011], and is defined as the minimizer of the
following convex program:

min
θ

‖Wθ‖1
s.t. VN (θ) ≤ VN (θ̂LSN )(1 + εN ),

(6)

where W := Diag([θ̂LS
N

]−1
1 , . . . , [θ̂LS

N
]−1
na+nb

).

The estimation properties of A-SPARSEVA can be further
improved by removing the columns of Φ corresponding to

the zero entries of the A-SPARSEVA estimate θ̂A, and re-
estimating θ by least-squares on the reduced Φ.

The properties of SPARSEVA and its variants are dis-
cussed in Section 4.

3.2 Steiglitz-McBride Method

Consider now an Output-Error (OE) model structure,

yt =
B(q)

A(q)
ut + ǫt, (7)

which corresponds to (2) with C(q) = D(q) = 1. It is
well known [Ljung, 1999] that the least-squares estimator

θ̂LS
N

:= (Φ⊤
N
ΦN )−1Φ⊤

N
YN (where ΦN is given as in (4))

is biased, and the cost function of the Prediction Error
Method (PEM) [Ljung, 1999] for this model structure is
non convex, hence its minimization is difficult and may
suffer from local minima.

One technique for estimating models of type (7) from
least-squares fits is the so-called Steiglitz-McBride method
[Steiglitz and McBride, 1965]. The idea of this method is to

iteratively prefilter ut and yt by 1/Â(k)(q), where Â(k)(q)
is an estimate of the A(q) polynomial (at step k), and
then to apply least-squares to the data, assuming a model
structure such as (3), which gives estimates Â(k+1)(q) and

B̂(k+1)(q). This procedure is usually initialized by taking

Â(0)(q) = 1, and stopped when the estimates Â(k)(q) and

B̂(k)(q) do not change much from one iteration to the next.

The Steiglitz-McBride algorithm has been extensively
studied in the literature [Stoica and Söderström, 1981,
Regalia, 1995]. In particular, it is known to give unbi-
ased estimates only if the true system belongs to an OE
structure (7), and its global convergence properties are
still largely an open problem. In addition, the Steiglitz-
McBride is not asymptotically efficient for (7).

In [Zhu, 2011], an interesting extension of the Steiglitz-
McBride algorithm has been developed, which gives con-
sistent estimates even for Box-Jenkins model structures
(2). This extension consists in performing a preliminary
step, where a high order ARX model

AHO(q)yt = BHO(q)ut + ǫt, (8)

with

AHO(q) = 1 + aHO
1 q−1 + · · ·+ aHO

m q−m,

BHO(q) = bHO
1 q−1 + · · ·+ bHO

m q−m,

is fitted to the data, and used then to prefilter the data,
i.e., to generate the signals

yFt := ÂHO(q)yt, uF
t := ÂHO(q)ut.

This filtered data is then used in place of the original
input and output signals of (7) on which the Steiglitz-
McBride procedure is executed, resulting in estimates of
the polynomials A(q) and B(q). The intuition behind this

method is that 1/ÂHO(q) should be a reasonable estimate
of the noise model Co(q)/Do(q), hence the prefiltering
stage should “whiten” the noise (as seen from the output).
This means that the standard Steiglitz-McBride method
could then deliver a consistent estimate of the polynomials
A(q) and B(q).

Some results on the accuracy of the extended Steiglitz-
McBride method are detailed in Section 4.

3.3 Estimation of Sparse Output-Error Models

As mentioned in Section 3.1, SPARSEVA and ℓ1-penalized
estimators cannot be directly applied to model structures
such as (2), because the PEM cost function is non convex.
However, techniques such as Steiglitz-McBride, which rely
on least-squares optimization, can be directly extended
to use ℓ1-penalized estimators in order to deliver sparse
models.

Algorithm 1 OE-SPARSEVA with Steiglitz-McBride

Require: a data record DN = {ut, yt}Nt=1 of (1) and the
model structure (7) characterized by the parameters
θ = [ a1 . . . bnb

]⊤ ∈ Θ ⊆ R
na+nb . Assume that DN

is informative w.r.t. (7) and (7) is globally identifiable
on Θ [Ljung, 1999].

1: Let m≫ na and fit using least-squares the high order
ARX model described by (8) to the measurementsDN ,

resulting in ÂHO(q) and B̂HO(q).

2: Filter the data DN as

yFt := ÂHO(q)yt, uF
t := ÂHO(q)ut.

3: Set k = 0, and let Â(0)(q) = 1, B̂(0)(q) = 0 and

consequently θ̂
(0)
N

= 0.

4: repeat

5: k ← k + 1 and filter the data D
F
N

= {uF
t , y

F
t }Nt=1 as

y
F(k)
t :=

1

Â(k−1)(q)
yFt , u

F(k)
t :=

1

Â(k−1)(q)
uF
t .

6: Fit using least-squares a model of the form

A(k)(q)y
F(k)
t = B(k)(q)u

F(k)
t + ǫt,

resulting in the estimates Â(k), B̂(k) and the associ-

ated parameter vector θ̂
(k)
N

.

7: until θ̂
(k)
N

has converged or the maximum number of
iterations is reached.

8: Apply A-SPARSEVA (with least-squares re-
estimation) to the model

A(q)y
F(k+1)
t = B(q)u

F(k+1)
t + ǫt.

9: return estimated model (7).

Based on the previous discussion, Algorithm 1 provides
estimation of sparse rational OE models (7).

Remark 1. Note that in Step 8, A-SPARSEVA can be used
to impose several different sparsity patterns on the A(q)
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and B(q) polynomials. For example, if we only want to
impose sparsity on A(q), then the ℓ1-norm in the cost
function of (6) can be modified so that only the coefficients
of A(q) are included.

Remark 2. Based on validation data, optimization of εN
can also be applied to recover the exact sparsity struc-
ture of θ. However, re-optimizing such quantity (using
e.g. cross-validation) is equivalent to optimizing for the
regularization parameter in a standard LASSO estimator

(inclusion of VN (θ̂LS
N

) in (5) is not necessary). This might
refine the results for relatively small data-lengths N under
considerable noise, but at the expanse of a much higher
computational load. Hence a clearly important feature of
the proposed SPARSEVA scheme is an automatic choice
of εN guaranteeing a reliable performance.

4. THEORETICAL RESULTS

In this section, some theoretical support for the method
proposed in Section 3 is provided.

To start, A-SPARSEVA enjoys the properties presented in
the following theorem.

Theorem 3. Under the assumptions of Sections 2 and 3.1:

(1) The A-SPARSEVA estimator θ̂N is consistent in
probability if and only if εN → 0 as N →∞.

(2) Under the condition for consistency in probability

(i.e., εN → 0 as N → ∞, c.f. statement (1)), θ̂N
has the sparseness property (i.e., P{(θ̂N )i = 0} → 1
as N → ∞ for every index i such that [θo]i = 0) if
and only if NεN →∞.

(3) If εN → 0, but NεN →∞ as N →∞, then θ̂N (with
least-squares re-estimation) has the oracle property.
This means that√

N(θ̂N − θo) ∈ As N (0,M†),

where M is the information matrix when the support
of θo is known (and it is such that Mik = 0 whenever
(θo)i = 0 or (θo)k = 0).

This theorem essentially corresponds to Theorems 3.1, 3.2
and 3.3 of [Rojas and Hjalmarsson, 2011]. The proofs in
[Rojas and Hjalmarsson, 2011] apply to the case when
the regressor matrix ΦN is deterministic. However, these
proofs can be easily extended to the case considered in
Section 3.1, by noting that they apply if the following two
properties hold:

(1) VN (θ̂LS
N

)→ σ2
e in probability as N →∞, and

(2)
√
N(θ̂LS

N
− θo) ∈ As N (0, σ2

eM), where M is a non-
singular matrix.

These properties hold under the assumptions of Sections 2
and 3.1 (see, e.g., [Ljung, 1999]), hence implying the
validity of Theorem 3. For the non-asymptotic properties
of the method, especially in case of relatively small data
records, see [Tóth et al., 2011].

Notice that, from Theorem 3, A-SPARSEVA enjoys con-
sistency, sparseness and the oracle property if we choose
εN = (na + nb) ln(N)/N , resembling the BIC criterion.

The modified Steiglitz-McBride method presented in this
paper is due to Y. Zhu [Zhu, 2011]. This method, as well as
the original Steiglitz-McBride algorithm, can be expected
to be globally convergent if the signal to noise ratio is
sufficiently high (c.f., [Stoica and Söderström, 1981]), but
its global convergence properties in the general case are not

well understood yet. However, preliminary results seem to
indicate that the equilibrium point of the modified method
is a consistent and efficient estimator of Ao(q) and Bo(q)
for general Box-Jenkins model structures 1 (2).

The combination of A-SPARSEVA and the modified
Steiglitz-McBride method, as presented in Section 3.3,
can be expected to have attractive asymptotic properties.
In particular, by combining the theoretical results of its
components, we believe that this technique is consistent in
probability and has the sparseness property if the sequence
εN is chosen to decay to zero at a rate even slower than
with ln(N)/N . This is because A-SPARSEVA is based on
data which has been prefiltered by consistent estimates of
A, and do not satisfy exactly the model structure (3).

Remark 4. Notice that the scaling of the parameters in
θo does not seem to play a major role in the estimation
performance of Algorithm 1, at least asymptotically in N ,
since A-SPARSEVA weights the ℓ1 norm by the inverse of

the estimates in θ̂LS
N

, which compensates for the relative
size of the components of θo.

5. NUMERICAL EXAMPLES

Consider the data-generating system (1) described by the
following polynomials:

Ao(q) = −1.42q−2 + 0.5q−4, Bo(q) = 1.3 + 1.2q−4,

Co(q) = 1, Do(q) = 1.

This system obviously has an OE type of noise structure.
To identify this system from data based on the previously
proposed estimation scheme, consider the model structure
(7) with na = 5 and nb = 5. Even if this corresponds
to a rather accurate guess of the original order of the
polynomials involved, the true parameter vector

θo = [ 0 −1.42 0 0.5 0 1.3 0 0 0 1.2 ]

corresponding to the data-generating system is rather
sparse.

For estimation purposes, 100 estimation and 100 validation
data records have been generated by the system for each
data length N ∈ {200 + 50k}37

k=1, resulting in 37 ×
100 estimation and validation data records with length
in the interval [200, 2000]. During each computation, u
and e have been considered as independent realizations
of two white noise sequences with normal distributions
ut ∈ N (0, 1) and et ∈ N (0, σ2

e ) respectively. To study the
effect of a change in the power of the noise, this generation
of the data sequences have been repeated for various noise
variances σ2

e ∈ {0.01, 0.5, 2, 4} corresponding to average
Signal to Noise Ratios 2 (SNR’s): 118dB, 48dB, 25dB,
15dB respectively. This resulted in a total of 4 × 37 ×
100 = 14800 estimation and validation data sets defining
a serious Monte-Carlo study under various conditions.

Using these data sets, the OE-SPARSEVA described by
Algorithm 1 with m = 50 and with LS re-optimization
and the oe algorithm of the Identification Toolbox of
Matlab have been applied to estimate the system in the
considered model set. In order to fairly assess the quality
1 Even though it is possible to propose variants of Algorithm 1,
where either e.g. ridge regression or a sparse estimator are used
instead of least-squares in steps 1 or 6, preliminary results show that
Zhu’s method is already asymptotically efficient when the iterations
from steps 4-7 are convergent. This suggests that not much may be
gained by considering other variants of Algorithm 1.

2 The SNR is defined as SNR := 10 · log10

(

‖yt−vt‖
2

2

‖vt‖
2

2

)

where

vt =
Co(q)
Do(q)

et.
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of the estimates, a base-line estimator or so called oracle

estimator in terms of the Steiglitz-McBride method has
been also applied with the priori knowledge of which
elements of θo is zero. Note that the latter approach cannot
be applied in practice as the optimal model structure is
unknown (part of the identification problem itself). The
results are compared in terms of

• The Mean Squared Error (MSE) of the prediction on
the validation data:

MSE =
1

N
E{‖y(k)− ŷ

θ̂N
(k)‖22}.

computed as an average over each 100 runs for a given
N and σ2

e .• The average of the fit score or the Best Fit Rate
(BFR) [Ljung, 2006]:

BFR = 100% ·max

(

1−
‖y(k)− ŷ

θ̂N
(k)‖2

‖y(k)− ȳ‖2
, 0

)

,

where ȳ is the mean of y and ŷ
θ̂
is the simulated model

output based on the validation data.

• The ℓ1 parameter estimation error: ‖θ̂ − θo‖1.
• The percentage of correctly estimated zero elements.

The average results of the 100 Monte-Carlo runs in each
cases is given in Figure 1 and the mean and standard
deviation of the parameters are given in the SNR= 25dB,
N = 2000 case in Table 1. From these results it follows
that in the low noise cases (SNR=118dB, 48dB) the pro-
posed OE-SPARSEVA scheme correctly estimates the true
support of θo, i.e., it correctly identifies the underlying
model structure of the system and hence it achieves the
same results as the oracle approach. The performance
difference of the oe approach and the oracle suggests that
the reduction of the estimation error can be relatively large
by using OE-SPARSEVA in these cases not mentioning
the value of really finding which parameters have no role
at all in the considered model structure. When the noise
increases to a moderate level (SNR=25dB), for small data
lengths we can observe that OE-SPARSEVA loses the
benefits of the regularized optimization scheme by over-
estimating the possibly non-zero parameters and achieving
worse results than the oe approach. Increasing the number
of data points results in a quick recovery of the algorithm
and around N = 800 it starts achieving better results
than the oe method. We can see that the performance of
OE-SPARSEVA asymptotically converges to the oracle

approach while the oe has a much slower convergence rate.
The same behavior can be observed in the SNR=15dB case
where the “point of recovery” is around N = 1600.

6. CONCLUSIONS

It has been shown that by combining the SPARSEVA ap-
proach with a high-order ARX pre-filtering based Steiglitz-
McBride method, an efficient approach can be derived
for the estimation of general rational LTI plant model
structures in which the underlying data-generating system
is represented by a sparse parameter vector. A main benefit
of the method that the regularization parameter (or tuning
quantity) is automatically chosen, not requiring cross-
validation. The derived approach can be used to recover
the dynamical structure of the system, i.e., for model struc-
ture selection, even in case of heavy over-parametrization
or colored noise settings provided that a sufficiently large
data set is available. The latter has been demonstrated by
an extensive simulations based Monte-Carlo study.
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Table 1. Bias and variance results of the parameter estimates by the oracle, oe and the OE-
SPARSEVA methods in the SNR= 25dB, N = 2000 case.

Method a1 a2 a3 a4 a5 b0 b1 b2 b3 b4

θ0 0 -1.4200 0 0.5000 0 1.3000 0 0 0 1.2000

oracle mean 0 -1.4199 0 0.4999 0 1.2982 0 0 0 1.2006
std 0 0.0115 0 0.0102 0 0.0283 0 0 0 0.0512

oe mean 0.0216 -1.4207 -0.0334 0.5006 0.0132 1.2992 0.0198 -0.0050 0.0217 1.1977
std 0.0533 0.0115 0.0832 0.0102 0.0336 0.0517 0.0731 0.0816 0.0756 0.0676

OE-SPARSEVA mean 0.0002 -1.4198 -0.0002 0.4999 0 1.2984 -0.0004 0.0016 0.0004 1.2010
std 0.0039 0.0114 0.0033 0.0102 0 0.0487 0.0097 0.0073 0.0181 0.0654
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Fig. 1. Monte Carlo simulation results with various SNR’s and data lengths N .
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