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Abstract: A common approach for dealing with non-linear systems is to describe the system
by a model with parameters that vary as a function of the operating point. Consequently,
the non-linear system is seen as a combination of local Linear Time-Invariant (LTI) systems,
one for each value of the operating point. Such representations are called Linear Parameter-
Varying (LPV) models. Due to the importance of this representation for the control of nonlinear
systems, numerous algorithms have recently been developed to identify LPV models. However,
the optimal design of such identification experiments remains completely unexplored. In this
paper, we consider the so-called local approach for the LPV identification. In the local approach,
the local linear models, corresponding to a series of fixed operating points, are identified by
performing one identification experiment at each of these operating points. The LPV nature
of the system is then retrieved by interpolating the value of the parameters at other operating
points for example with a polynomial function which is fitted through the parameters identified
at the operating points considered. We present an approach to choose optimally the value of the
operating-points at which the local identification experiments will be performed. By optimal,
we mean that the value of the operating points are optimized in such a way that the LPV model
obtained after interpolation has a maximum accuracy.
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1. INTRODUCTION

A common approach for dealing with non-linear systems
is to describe the system by a model with parameters that
vary as a function of the operating point, or as a function
of other exogenous variables (i.e. the scheduling variables).
Consequently, the non-linear system is seen as a collection
of local linear systems, one for each value of the operating
point (or one for each value of the exogenous variables).
Such representations are called Linear Parameter-Varying
(LPV) models. A practical use of LPV representations
is stimulated by the fact that LPV control design is
well worked out, extending the results of optimal and
robust LTI control to nonlinear plant. These control design
techniques deliver an “LPV controller”, i.e., a controller
whose parameters are also a function of the value of the
operating point, or a function of the value of the exogenous
variable (see e.g. Becker and Packard [1994], Scherer
[2001], Scorletti and Ghaoui [1998], Dinh et. al. [2005]).

Due to the importance of the LPV representation, numer-
ous algorithms have recently been developed to identify
LPV models. However, the subject to be investigated in
this paper - the optimal design of such identification exper-
iments - remains completely unexplored. Before presenting
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our methodology to tackle this optimal design, we first
present the two mainstream approaches to identify an LPV
model:

• Local approach (Steinbuch et. al. [2003], Wassink
et.al. [2004], Tóth et. al. [2007]). In the local ap-
proach, the local linear models corresponding to a
series of fixed operating points (or corresponding to
a series of fixed values of the exogenous variable) are
identified by performing one identification experiment
at each of these operating points. The LPV nature of
the system is then retrieved by interpolating the value
of the parameters at other operating points with,
for, example a polynomial function which is fitted
through the parameters identified at the operating
points considered.

• Global approach (Lee and Poolla [1999], Bamieh and
L. Giarré [2002], Felici et.al. [2006], Tóth et. al.
[2007], Wingerden et.al. [2009]). The global approach
consists of exciting all the non-linearities of the sys-
tem via one single experiment passing through a large
number of operating points (or a large number of
values of the exogenous variables) and of directly
identifying the functional dependence of the param-
eters on the value of the operating points (or on
the value of the exogenous variables) based on the
collected input-output data.

Both approaches have significant advantages and disad-
vantages with the common need for the investigation of
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optimal experiment design should be investigated for both
approaches. In this paper, as a first step, we consider
optimal experiment design for the local approach and our
objective is to determine the experimental conditions of
this method to maximize the accuracy of the identified
LPV model.

Optimal experiment design has been extensively inves-
tigated for LTI systems (Ljung [1999], Jansson [2004],
X. Bombois et. al [2006]). For LTI systems, generally,
the objective is to determine the excitation signal u(t)
maximizing the accuracy of the identified model under
the constraint that the power of u(t) remains below some
threshold. The current paper is an extension of this frame-
work to the case of LPV systems. In the LPV case, the
design variable is not only the excitation signal u(t) used
for each local LTI identification experiment, but also the
value of the operating points at which the identification
experiments are performed. Hence optimal identification
experiment design for LPV systems is a complex problem.

In this paper, as a first step, we will focus on the optimal
determination of the operating points at which the linear
identifications are performed. These values also determine
the interpolation points used to determine the values of the
parameter vector at other operating points via interpola-
tion. This will be done by assuming that the excitation
signal u(t) is sufficiently powerful or sufficiently long to
neglect any variance effect in the linear identifications and
thus by assuming that the linear identification experiments
allow one to get fully accurate models at the operating
points where these linear identifications are performed.

Optimal experimental design always requires the knowl-
edge of the true system or at least some a-priori knowledge
of this true system and this paper is not different: the
determination of the optimal location of the operating
points will require the knowledge of the true LPV system.
Even though this requirement seems unrealistic, the true
LPV system can be replaced in practice by an initial
estimate deduced from an (un-optimized) identification or
from a first principle model.

The paper is organised as follows: In Section 2, the local
approach for LPV identification is presented. In Section 3,
we propose our method to determine the operating points
optimally to maximize the accuracy of the identified LPV
model. In Section 4, a numerical example is presented to
demonstrate the efficacy of the proposed method. Finally,
conclusions and future directions are presented in Section
5.

2. LOCAL APPROACH FOR LPV SYSTEM
IDENTIFICATION

Based on the LPV modeling concept, the dynamics of
the real-system vary as a function of the operating point
p at which the system is operated. In this paper, we
consider that the operating points are represented by a
scalar variable, i.e. p ∈ R, that can vary in the interval P =
[p̄min, p̄max]. In particular, we consider a “true” single-
input single-output LPV system that can be represented
at each fixed value of the operating point p ∈ R by the
following p-dependent difference equation:

S : y(t) = φT (t) θ0(p) + v(t) (1)

where φ(t) = [−y(t − 1),−y(t − 2), .., u(t − 1), u(t − 2), .]
T

∈ R
k is a regression vector and v(t) is a stochastic noise.

Both φ(t) and v(t) are independent of the scheduling vari-
able p. The system S is only dependent on p via the value
of the “true” parameter vector θ0(p) ∈ R

k. In other words,
we assume that the local linear systems corresponding to
each frozen value of the operating point p(t) ≡ p̄, where
p̄ ∈ P, have the same order. In the sequel, we will suppose
that this order is known and thus that, in order to identify
a model of (1), it is sufficient 1 to find an estimate of the
p-dependent true parameter vector θ0(p). Note that we do
not make any assumption on the dependence of θ0(p) on
p: this can be any smooth function, e.g. a nonrational.

In this paper, we will present a method in order to design
optimally the identification of (1) in the case of the so-
called local approach.

In the local approach, the local linear models correspond-
ing to a series of fixed operating points are identified by
performing one identification experiment at each of these
operating points. The LPV nature of the system is then
retrieved by interpolating the value of the parameters at
other operating points with a function which is fitted
through the parameters identified at the operating points
considered.

In this paper, we will suppose that the number n of local
linear identifications is fixed. The variables that have to
be designed in the local approach are therefore:

• The value of the operating points at which we will
identify the local linear models

• The experimental conditions for the linear identifica-
tion at each of these operating points.

In order to be able to design optimally the identification
experiment, it is very important to understand how the
choice of the design variables influences the quality of
the identified LPV model. For this purpose, we in the
first instance suppose that we have determined the set
P = {p̄1, p̄2, . . . , p̄n} of n operating points at which a
linear identification will be performed and that we have
chosen the input signal ui(t) (i = 1, . . . , n) and the length
Ni (i = 1, . . . , n) of each of these linear identifications.
Based on this choice, we will show how the LPV model is
identified and then analyze the accuracy of the identified
LPV model and the influence of the experimental variables
on this accuracy.

The LPV model can be identified as follows. We first fix p
to the operating point p̄1, i.e. p = p̄1 and we collect data
by applying the input signal u1(t) for a duration N1 to the
system (1):

y(t) = φT (t) θ0(p̄1) + v(t)

Note that the data-generating system is now linear time-
invariant. Based on the collected data and a full order
model structure, we can identify a consistent estimate

θ̂(p̄1) of θ0(p̄1) using e.g. prediction error identification
or instrumental variable methods (Ljung [1999]). This
procedure is then repeated for the other operating points
i.e. p̄2, p̄3, . . . , p̄n. After these n linear identification ex-
periments, we have thus estimated the function θ0(p) at n

1 In this paper we are not interested in the modeling of the noise
disturbance v(t).
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different operating points p̄i; these n estimates are denoted

by θ̂(p̄i).

The accuracy of θ̂(p̄i) with respect to θ0(p̄i) is, of course,
related to the duration Ni of the respective experiment
and to the power of the chosen input signals ui(t). In this
paper, we assume that we can neglect the variance error
induced by these n linear identification experiments and
consequently :

θ̂(p̄i) = θ0(p̄i), ∀ p̄i ∈ P, (2)

This is of course an important simplification that will
need to be relaxed in subsequent contributions. Note
that this simplification reduces the optimal identification
experiment design to the optimal determination of the
n operating points P = {p̄1, p̄2, . . . , p̄n} at which the
identification will be performed. Thus we now analyze how
the choice of operating points influences the accuracy of
the LPV model.

After the n local identification experiments, the next step
in determining the LPV model is to interpolate the value
of the parameter vector θ(p) at other operating points
p̄ ∈ P than the ones in P. We introduce the notation
θ(p) in order to distinguish the interpolated model θ(p)

from the n identified parameter vectors θ̂(p̄i) (i = 1, ..., n).
The interpolation is generally done by fitting a function
through the parameters identified at the operating points
considered.

Recall that θ0(p) can be any smooth function. However,
the choice of the interpolating function must be restricted
if we want to use the model for LPV control design. Indeed,
most of the methods to design an LPV controller, i.e.
a controller whose parameters are also a function of the
value of the set-point p, requires the function θ(p) to be
a polynomial 2 function of p (see e.g. Becker and Packard
[1994], Scherer [2001], Scorletti and Ghaoui [1998], Dinh
et. al. [2005]). Consequently, we parameterize θ(p) as
follows 3 :

θ(p) = λ0 + λ1 p + ... + λm pm (3)

for a given m and for some vectors λj ∈ R
k (j =

0, 1, ...,m). The vectors λj will be determined to ensure
that for all p̄i ∈ P:

θ̂(p̄i) = λ0 + λ1 p̄i + ... + λm p̄m
i (4)

with θ̂(p̄i) (i = 1, ..., n) the identified parameter vector
at each of the operating points in P. In order to satisfy
the constraint described by (4), the degree m of the
polynomial function should be chosen greater or equal to
n− 1. In order to avoid over parametrization and because
the degree of the polynomial is directly related to the
complexity of the LPV controller, we choose

m
∆
= n − 1. (5)

2 Note that the polynomial dependence is not the only possibility:
we can also consider a rational function of p or a linear combination
of known basis functions in p. Such parametrizations can also be
used here without any difficulty.
3 The LPV control design methods generally require a model ex-
pressed in the state-space form. A state-space representation can be
directly determined from an input-output model (see Tóth [2008])
with the parameter vector parameterized as in (3).

The vectors λj (j = 0, ..., n− 1) satisfying (4) can then be
determined as the solution of a series of linear systems of
n equations with n unknowns (one for each entry of the

vector θ ∈ R
k). Let us denote by λ̃0, ... , λ̃n−1 the vectors

obtained in that manner.

The identified LPV model is then:

M : y(t) = φ(t)T θ̃P(p), (6a)

θ̃P(p) = λ̃0 + λ̃1 p + ... + λ̃n−1 pn−1, (6b)

where the subscript P is introduced to stress that the
vector θ̃P(p) obtained by ensuring (4) is different for
different sets P = {p̄1, p̄2, ..., p̄n}.

Remark. The transients generated by changing the oper-
ating point are generally important to capture the nonlin-
ear behaviors of the system into the LPV model. However,
here, we have neglected these transients effects for simplic-
ity. Still, the considered LPV model can represent a wide
range of systems. For example, in many chemical plants,
the operating point does not vary as a smooth function
of time. Indeed, based on the production requirements,
the operating point is changed off-line. In this kind of
situations, ignoring the transient effects generated by the
change of operating points will hardly affect the quality of
the LPV model.

3. EXPERIMENT DESIGN FOR LPV SYSTEM
IDENTIFICATION

By construction, the modeling error θ0(p) − θ̃P(p) is
equal to zero at the n operating points where the linear
identification has been performed (see (2) and (4)). For
other values of the operating points, the modeling error
will be non-zero if θ0(p) is of an higher complexity than
the parametrization (3).

It is important to note that the accuracy obtained at
each p depends on the choice of the n operating points
P = {p̄1, p̄2, ..., p̄n} at which the linear identifications are
performed. For different values of the operating points
p̄i (i = 1, ..., n), we obtain a different model (6a-b).
In the numerical example of Section 4, we show that
the optimization of the operating points can lead to a
significant improvement of the accuracy.

To measure the accuracy of the identified LPV model (6a-
b) with respect to the true LPV system (1), we introduce
the following accuracy measure:

JP =

∫ p̄max

p̄min

‖θ̃P(p) − θ0(p)‖2 dp (7)

where ‖.‖ denotes the Euclidean norm of a vector and
P = [p̄min, p̄max] represents the range of variation of p.

For this accuracy measure, the optimal location Popt for
the operating points P = {p̄1, p̄2, ..., p̄n} is the solution of
the following optimization problem:

arg min
P

∫ p̄max

p̄min

‖θ̃P(p) − θ0(p)‖2 dp (8)

subject to the constraint

p̄min ≤ p̄i ≤ p̄max, ∀ p̄i ∈ P. (9)

In order to solve (8)-(9), we see that we require the true
function θ0(p). This is an usual assumption in any optimal
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experiment design problem (see e.g. Ljung [1999], Jansson
[2004], X. Bombois et. al [2006]). The true θ0(p) can
always be replaced in (8)-(9) by an initial estimate of θ0(p)
that can e.g. be deduced from a first-principle model.

The optimization problem (8)-(9) is a constrained nonlin-
ear optimization problem that can be solved e.g. using the
Matlab-command fmincon of the Optimization Toolbox.
Since it is a nonlinear optimization problem, the algorithm
to solve (8)-(9) will require an initial guess for Popt and,
depending on this initial guess, may converge to a local
minimum.

Remark. A higher accuracy can also be obtained by
increasing the number n of operating points at which
a linear identification is performed. Indeed, increasing
the number of identified operating points allows one to
increase the degree m of the interpolating polynomial
function θ(p) (see (5)). However, it is important to note
that the cost of the identification is directly related to the
number of local linear models being identified: higher the
number of models, the longer and more intrusive the total
identification experiment is. Moreover, the complexity of
the LPV controller is also increases for increasing values
of m.

4. NUMERICAL EXAMPLE

We now demonstrate the proposed methodology on an
example. Consider the following true LPV system with
two parameters:

y(t) = [−y(t − 1) u(t − 1)]︸ ︷︷ ︸
φT (t)

[
a0(p)
b0(p)

]

︸ ︷︷ ︸
θ0(p)

, (10)

where the dependence on p of the two parameters is
nonlinear:

a0(p) = −1 +
(
0.6e− sin(0.06p)

)

b0(p) = 1 +
8000 cos(0.06p)

p2

These two functions of p are represented by blue solid
lines in Figures 1 and 2, respectively. In this example,
we suppose that p̄min = 60 and that p̄max = 150. Note
that, since we take assumption (2), we can omit the noise
contribution in (10)

The goal is to identify a model of (10) using the local
approach with n = 4 local linear identifications. According
to (5), we therefore model the dependence on p of the
parameter vector using a polynomial function of degree
m = 3. Suppose that we have initially chosen the four
operating points as follows:

P = { 60, 100, 120, 140 } (11)

Using these operating points for the local approach, the
identified model (6a-b) is parameterized by a p-dependent

parameter vector θ̃P(p) =
[
ãP(p) b̃P(p)

]T
whose two

entries are represented by red dashed lines in Figures 1
and 2, respectively. We observe that, as expected by our
assumption (2), θ̃P(p̄i) = θ0(p̄i) for all four operating
points in P (see the red circles in Figures 1 and 2).
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Fig. 1. Top: a0(p) (blue solid), ãP(p) using the initial
operating points (11) (red dashed), ãPopt

(p) using the
optimal operating points (12) (black dotted). Bottom:
(a0(p) − ãP(p))2 (red dashed), (a0(p) − ãPopt

(p))2

(black dotted)
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Fig. 2. Top: b0(p) (blue solid), b̃P(p) using the initial

operating points (11) (red dashed), b̃Popt
(p) using the

optimal operating points (12) (black dotted). Bottom:

(b0(p)−b̃P(p))2 (red dashed), (b0(p)−b̃Popt
(p))2 (black

dotted)

However, the accuracy of θ̃P(p) with respect to θ0(p) is
relatively low especially for the interval [60 100].

In order to maximize the accuracy of the identified LPV
model, we will optimize the operating points P at which
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Fig. 3. Top: For u(t) = sin(t) + sin(4t) + sin(8t) and
p̄ = 74, output y0(t) of the true system (blue solid),
output yP(t) of the model identified with the initial
operating points P (red dashed), output yPopt

(t) of
the model identified with Popt (black dotted) and
output yPn=5

opt
(t) of the model identified with Pn=5

opt

(green dashdot). Bottom: y0(t) − yP(t) (red dashed),
y0(t) − yPopt

(t) (black dotted) and y0(t) − yPn=5
opt

(t)

(green dashdot)

the local linear identifications are performed. For this pur-
pose, we solve the optimization problem (8)-(9). The initial
guess required by the nonlinear optimization algorithm is
chosen equal to (11). It yields

Pn=4
opt = { 65.1, 86.1, 139.8, 148.7 } (12)

Using these new operating points, the identified model (6a-
b) is parameterized by a p-dependent parameter vector

θ̃Popt
(p) whose two entries are represented by a black dot-

ted in Figures 1 and 2, respectively. We observe once again
that θ̃Popt

(p̄i) = θ0(p̄i) for all four operating points in
Popt (see the black squares in Figures 1 and 2). Moreover,
compared to the accuracy with the initial operating points
P, the obtained accuracy with Popt is much better.

We can repeat the same procedure if we fix the number n
of local linear identifications to 5 and thus if we fix m = 4.
The optimal set of operating points is then:

Pn=5
opt = { 65, 83, 110.4, 125.4, 145.2 } (13)

By replacing the four operating points (12) by the five
operating points (13), we have improved the accuracy
measure JP defined in (7) from 0.99385 to 0.45642.

The improvement of the accuracy of the identified LPV
model can also be evidenced by comparing the time
response of the true LPV system with the time response
of the identified LPV models. Here, we consider the time
response for the operating point p̄ = 74 when the input
signal is u(t) = sin(t)+sin(4t)+sin(8t). The time responses
are represented in Figure 3 where we observe once again

that the model identified with Pn=5
opt is the most accurate

followed by the model identified with the four operating
points in Popt, see (12).

5. CONCLUSION

We have presented a method in order to optimally design
the experimental conditions for LPV identification when
the local approach is used. In the local approach, the local
linear models corresponding to a series of fixed operating
points are identified by performing one linear identification
experiment at each of these operating points. The LPV
nature of the system is then retrieved by interpolating the
value of the parameters with respect to other operating
points using a polynomial function which is fitted through
the parameters identified at the operating points consid-
ered.

The proposed methodology optimizes the location of the
operating points at which the linear identifications are per-
formed in order to maximize the accuracy of the identified
LPV model. To achieve this, we have used a number of
simplifications. As an example, we use here the assumption
that each local linear identification experiment delivers a
fully accurate model and thus that the accuracy (or the
lack of accuracy) is entirely determined by the interpo-
lation. We have also assumed that θ0(p) is known. Even
though this requirement seems unrealistic, the true LPV
system can be replaced in practice by an initial estimate
deduced from an (un-optimized) identification or from a
first principle model. Most of the time, aim of obtaining
the LPV model is to use this model in LPV control synthe-
sis. However, to simplify the problem formulation of the
optimal experiment design for LPV identification, we have
not considered the control objectives in the identification
step. Another simplification is that we did not consider
the control objectives in the optimal experiment design
problem (while the aim of obtaining a LPV model is
generally to use it for control design). All these issues will
be analyzed in subsequent contributions.
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