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Abstract: A fuzzy clustering approach is studied for optimal pole selection of Or-
thonormal Basis Functions (OBFs) used for the identification of Linear Parameter
Varying (LPV) systems. The identification approach is based on interpolation of
locally identified Linear Time Invariant (LTI) models, using globally fixed OBFs.
The selection of the optimal OBF structure, that guarantees the least worst-
case local modelling error, is accomplished through the joint application of the
Kolmogorov n-width theory and Fuzzy c-Means (FCM) clustering of observed
sample system poles. For the problem at hand, FCM solutions are given, based on
three different metrics, and the qualities of the results are compared in terms of
the derived OBFs.
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1. INTRODUCTION

Many industrial applications and control systems
involve phenomena that are not only functions of
time, but also of other independent variables, like
space coordinates. Furthermore, these effects are
sometimes nonlinear and/or non-stationary. The
accurate modelling of such systems is in general
a complex and tedious task, involving the use
of nonlinear partial differential equations, leading
to models with a huge number of parameters
and high computational complexity. On the other
hand, accurate and efficient control of the relevant
process variables is of paramount importance to
satisfy the increasing performance demands.

For processes with mild non-linearities, the theory
of LPV systems, generally described in a state-
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representation (SSR) where the state-space
ces are affine functions of a time-varying,
rable, parameter vector ζ : Z → Γ, gives
ple way to model and deal with nonlinear
ics. Here Γ denotes the parameter space.

ermore, control design in the LPV frame-
can be carried out by using LTI control
es via gain scheduling. Therefore, the LPV
ach can offer an applicable way to meet re-
ndustrial demands. However, existing meth-
r identification of such systems often pro-

models with high complexity. Because most
l design techniques require low-order mod-
is a challenge to develop efficient methods

PV system identification that achieve low
l complexity. Furthermore, serious problems
rise if the McMillan degree of the system
es due to variations of ζ, especially when the
ach is based on interpolation of local models.
ay of overcoming these problems is to use a

order model structure on the whole Γ space.



Then, identification of the LPV system is per-
formed by estimating multiple ‘local’ LTI systems
around well-placed parameter set-points {ζi} of
Γ (Murray-Smith and Johansen, 1997; Bamieh
and Giarré, 1999; Verdult and Verhaegen, 2002).
These local models are subsequently interpolated
to synthesize the desired low-order LPV model.
However, if the LTI model structure, used for local
identification, is not linear in the parameters, the
interpolation of the estimated models represents
a NP-hard nonlinear optimization problem with
pitfalls of local minima or existence of solution.
Therefore, the choice of an easily interpolatable
model structure is a turning point for the success
of this identification approach.

The OBFs-based model representation offers such
a structure with a well worked-out theory in the
context of LTI system approximation and identi-
fication (Heuberger et al., 2005). The basis func-
tions are generated by a cascaded network of sta-
ble all-pass filters, whose pole locations represent
the prior knowledge about the system at hand.
This approach gives the possibility to character-
ize the transfer function of a strictly proper LTI
system as

F (z) =
∞∑

k=1

fkgk (z) , (1)

where {fk}∞k=1 is the set of coefficients and
{gk}∞k=1 represents the sequence of OBFs. In prac-
tice only a finite number of terms, n ∈ N, is used in
(1), like in Finite Impulse Response (FIR) models.
In contrast with FIR structures, the OBF parame-
trization can achieve almost zero modelling error
with a relatively small number of parameters, due
to the infinite impulse response characteristics
of the basis. Furthermore, interpolation of these
models can easily take place through the interpo-
lation of the {fk}n

k=1 coefficients if the set of OBFs
{gk (z)}n

k=1 is the same for each local representa-
tion. Here, an essential challenge is to derive an
OBF set, ‘sufficiently rich’ to describe the varying
LPV dynamics at each local parameter point ζi,
with a user-defined number of n parameters.

In practice, if the physical system is stable, it
is a reasonable assumption that some sampled
pole locations of the ζ-dependent pole movements
of the LPV system, possibly with uncertainty
bounds, are available as prior information due to
local measurements. If regions Ω in the unit disc
D are also given, where the pole variations are
guaranteed to take place, then the problem of ef-
ficient OBF set selection with a pre-defined num-
ber n of basis functions, can be tackled through
the usage of the Kolmogorov n-width theory for
OBFs, derived by Oliveira e Silva (1996). This
approach provides the selection of a set of OBFs,
that ensures the least possible worst-case local
modelling error for the LPV system at any point
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However, determining the Ω regions from
mpled pole locations in a robust sense is
trivial task. In this paper we aim to give

l-applicable solution, based on a FCM data
ring approach, which is capable to deter-
such Ω regions for which the (Oliveira e
1996) theoretical result can be applied. This
on is constructed to be the first step of a
sed approach for identifying LPV systems.
pproach consists of the following steps:

etermination of pole regions by FCM clus-
ering of sampled pole locations
etermination of OBFs, based on Kolmogorov
-width optimization
stimation of local models, with the optimal
BFs

nterpolation of the local model coefficients

sequel, we present our pole clustering ap-
h only in the context of Step 1 and 2. The
is organized as follows: Section 2 introduces
sic mathematical description and properties
Fs; Section 3 describes the n-width result
Fs that we will use later on; in Section 4
cuss the mechanism of FCM pole clustering
different approaches; in Section 5 we show
gh an example the applicability of the intro-
methods; and in Section 6 we discuss the

results of the paper.

ORTHONORMAL BASIS FUNCTIONS

se of space limitations we only consider
se of real rational SISO transfer functions.
etails see (Heuberger et al., 1995; Ninness
ustafsson, 1997; Heuberger et al., 2005).
0 = 1 and {Gi}∞i=1 be a sequence of in-
nctions (i.e. stable transfer functions with
Gi( 1

z ) = 1), and let {Ai, Bi, Ci, Di} be bal-
SSRs of Gi. Let {ξ1, ξ2, . . .} denote the

tion of all poles of the inner functions. Un-
e (completeness) condition that

∑∞
j=1(1 −

∞, the scalar elements of the sequence of
functions

Vk(z) = (zI − Ak)−1Bk

k−1∏
j=0

Gj(z), (2)

tute a basis for H2− (E), the Hardy space
ctions, which are 0 for z = ∞, analytic
the exterior of D, and square integrable

e unit circle T with norm ‖.‖H2
. These

functions (2) are often referred to as the
aka-Malmquist functions. A special case of
functions is when all Gi are equal, i.e.
= Gb(z) ∀i > 0, where Gb has McMil-

egree nb > 0. These cases are known as
o functions or generalized orthonormal basis
ons (GOBFs) for arbitrary nb, 2-parameter



Kautz functions for nb = 2, and as Laguerre func-
tions for nb = 1. Note that for these cases the com-
pleteness condition is always fulfilled. In the re-
mainder of this paper we will only consider the set
of Hambo functions. Let Gb be an inner function
with McMillan degree nb > 0 and balanced SSR
{Ab, Bb, Cb, Db}. Define V1(z) = (zI − Ab)−1Bb

and φj = (V1)j , j = 1, · · · , nb. The Hambo basis
then consists of the functions {φj(z)Gi

b}i=0,··· ,∞
j=1,··· ,nb

.
An important aspect of this basis is that the
inner function Gb is, modulo the sign, completely
determined by its poles {ξ1, · · · , ξnb

} = Ξnb
:

Gb(z) = ±
nb∏

j=1

1 − zξ∗j
z − ξj

, (3)

and it is immediate that the function V1 has the
same poles. Any F ∈ H2− (E) can be written as

F (z) =
∞∑

i=0

nb∑
j=1

fijφj(z)Gi
b(z), (4)

and it can be shown that the rate of convergence
of this series is bounded by maxk |Gb(λ−1

k )|, where
{λk} are the poles of F . In the best case, where
the poles of F are the same as the poles of Gb,
only the terms with i = 0 in (4) are non-zero.

3. KOLMOGOROV N-WIDTH FOR OBFS

Finding appropriate model sets to perform system
identification is a much-studied problem with the
main conclusion that in general each particular
identification problem requires a model set that
is tailored to the characteristics of the system to
be identified. An arbitrary model set is adequate
only to approximate a certain subset of H2− (E),
in the sense, that the model set is sufficiently
rich to describe, with a relatively small num-
ber of statistically meaningful parameters, only
the systems belonging to that subset. One ap-
proach to find appropriate model sets is based
on the n-width concept (Pinkus, 1985), which
was shown to result in appropriate model sets
for robust modelling of linear systems (Mäkilä
and Partington, 1993). Oliveira e Silva (1996)
showed that GOBF model structures are optimal
for specific subsets of systems. See also Chap. 11
in (Heuberger et al., 2005). In the following, we
explain the basic ingredients of this approach for
discrete-time, stable, SISO systems.

Let S ⊂ H2− (E) denote the set of systems
whose optimal approximation is needed. Let Φ =
{φi}n

i=1be a sequence of n linearly independent
elements of H2− (E), and let Ψn = Span(Φ). The
distance between F ∈ H2− (E) and Ψn is defined
as

dH2− (F, Ψn) = inf
H∈Ψn

‖F − H‖H2
. (5)
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is the collection of all n-dimensional sub-
s of H2− (E), then the Kolmogorov n-width
n H2− (E) is the smallest possible approxi-
n error for the worst-case F ∈ S,

S,H2− (E)) = inf
Ψn∈Mn

sup
F∈S

dH2− (F, Ψn) . (6)

ubspace Ψ̆n ∈ Mn for which wn is minimal is
the optimal subspace in the n-width sense.

ll-known result in this context is that the
of the pulse functions {z−i}n

i=1 is optimal
e class of stable systems of which it is
nown that they are analytical in the region
R), R ∈ R

+
0 . The worst-case approximation

is proportional to Rn.

b be an inner function with McMillan degree
0, and let {φj}nb

j=1 be the first nb Hambo
ons as defined in the previous section. De-
y S ⊂ H2− (E) the set of functions that are

tic in the region {z,
∣∣Gb

(
z−1

)∣∣ ≤ ρ}, and are
e integrable on the boundary of that region,
ρ > 0 is often referred to as the decay rate.

sition 1. (Oliveira e Silva, 1996). For any
, Span

{
φj (z) Gi

b (z)
}i=0,...,ne−1

j=1,...,nb
is optimal

Kolmogorov n = ne × nb-width sense for
t S. The worst-case approximation error is
rtional to ρne .

emarkable result shows that for the specified
one can not improve on the worst-case error

ding new poles to the nb basis poles.

actical situations we encounter the oppo-
roblem, referred as the inverse Kolmogorov
m, where a region of analycity Ω ⊂ D is
and we want to find the inner function Gb

scribe/approximate this region in the form
nb

) = {z,
∣∣Gb

(
z−1

)∣∣ ≤ ρ} with ρ as small
ssible. For a given number of poles nb, this
down to the following min-max problem:

min
ξ1,··· ,ξnb

max
z∈Ω

nb∏
j=1

∣∣∣∣ z − ξj

1 − zξ∗j

∣∣∣∣ . (7)

hap. 10-11 in (Heuberger et al., 2005) for
s on this problem and solution methods. In
ext section, we elaborate on the determina-
f the regions Ω on the basis of sampled pole
ons, possibly with uncertainty bounds.

4. FUZZY POLE CLUSTERING

tive-function-based, fuzzy clustering algo-
s, such as FCM, have been extensively used
ide collection of applications (Kaymak and

s, 2002). Generally, an FCM partitions the
et into overlapping groups, that describe an
lying structure within the data (Jain and
s, 1988). In this way, it offers the possibility



to separate the observed poles not only by hard
borders, but with membership-based, overlapping
areas, which incorporate not only the local, but
the global data coherency. Moreover, FCM clus-
tering does not rely on assumptions common to
conventional statistical methods, such as the un-
derlying statistical distribution of the data, and
therefore it is useful in the situation of pole clus-
tering where little prior knowledge exists.

Let Z = [zk]Nk=1 ∈ D
N , be the set of observed

poles for clustering. A cluster i is represented
by its center (or prototype) vi ∈ D. We denote
V = [vi]

c
i=1, where c ∈ N is the number of clusters.

The membership matrix is U = [μik]c×N , where
μik is the degree of membership of zk to cluster i.
The fuzzy constraints on μik ∈ [0, 1] are

c∑
i=1

μik = 1 for ∀k; 0 <
N∑

k=1

μik < N for ∀i. (8)

For the measure of similarity, the distances dik

between vi and zk, are computed through the
so called associated metric gi of the ith cluster:
d2

ik = g2
i (zk, vi). Generally, fuzzy pole clustering

can be viewed as the minimization of the FCM-
functional formulated as

J (V,U) =
c∑

i=1

N∑
k=1

μm
ikd2

ik, (9)

where m ∈ (1,∞) is a design parameter which
determines the fuzziness of the resulting partition.
The minimization of (9) subject to (8) is com-
monly achieved by alternating optimization. The
algorithm can be given as

The basic FCM algorithm

FC0 Set an initial value for V,
FC1 Solve Û = argmin

U
J (V,U),

FC2 Solve V̂ = argmin
V

J
(
V, Û

)
,

FC3 If J
(
V̂, Û

)
has converged, then stop.

Else set V = V̂ and goto FC1.

This minimization approach does not guaran-
tee that the global optimum of (9) will be
reached, however convergence to –initial condition
dependent– local minima always holds through
the FC1 and FC2 provided descent. Furthermore,
if m → 1 the clustering becomes hard, each zk

only belongs to 1 cluster, however if m → ∞, then
each zk becomes an equal member of every cluster.
In practice, usually the value m = 2 is applied. For
more details on the properties and mechanism of
FCM clustering see Chap. 3 in (Bezdek, 1981).

By assigning different metrics for the FCM al-
gorithm, different fuzzy partitions of Z can be
achieved. In the literature several metrics are used
for clustering purposes. We present three which we
found the most applicable for pole clustering.
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lidian, g2
(e)(x, y) = (x − y)T (x − y). In clus-

theory it is known that for data with two
es, like Re (zk) and Im (zk) for the pole loca-
{zk}, g(e) is the most effective choice among
Minkowski metrics. Furthermore, g(e) is
etric to any feature directions, therefore the
ined clusters are spherical.

halanobis, g2
(m)(x, y) = (x − y)T Υ(x − y),

Υ is the inverse covariance matrix of the
et belonging to the cluster. Through Υ, g(m)

s the shape of the cluster to the variance
determined group of poles. This provides

idal cluster shapes.

lmogorov, g2
(k)(x, y) =

∣∣∣ x−y
1−xy∗

∣∣∣2, a metric on
y. By applying g(k), the pole clustering and
inimization of (7) can be done in one step,
sense, that we assign exactly one basis pole
vi, to each obtained cluster. This directly
s from the substitution of g(k) into (9).
ver, because of the symmetrical properties of
hich induces spherical clusters, and because
assumption of 1 assigned pole per region,

pproach constitutes only the simplest case
joint mechanism of Steps 1 and 2 in the

fication sequence. Here, worst-case 1-width
ality holds separately in each region and
an n-width sense for the whole Z. On the
hand, g(k)-based FCM is computationally
tive and provides a fast and reliable solution
e joint clustering and Kolmogorov problem.

determination of the number of ‘natural’
s in Z is also important for the successful
ation of the previously given FCM method.
rity-based cluster merging is frequently
or this purpose (Kaymak and Setnes, 2002).
sequel, similarity-based merging is going to

ed in our FCM solution.

rojecting the observed poles from D into
si-continuous domain of C

−, based on the
f discrete/continuous pole conversion: zk =
where τ0 = mink |zk|, more effective pole

ring can be achieved in the new domain.
onlinear quasi-continuous projection (QCP)
ts the derived linear cluster shapes from C

−

urves of D, resulting in a more representative
ption of banana-shaped regions. QCP also
ves scatter of Z and magnifies distances
es are approaching T. QCP provides an
ative way of pole clustering, but can not
plied for g(k) as this is not a metric in C

−.
ermore, uncertainty of the observed poles
lso be included in the above presented FCM
thm by letting each zk have a volume. This
cation changes the calculation of d2

ik, using
ge or worst-case values of the associated gi

e volume data set.



Table 1. Results of FCM pole clustering

Test case Euc. Mah. Kol.

Avrg. num. of iterations3: Nav 27 30 32
Num. of obtained clusters: c 5 5 5
Xie-Beni index4: χ (dB) -34.07 -62.64 -21.64
Worst-case Kol. dis.: ρ (dB) -11.65 -13.48 -12.58

5. RESULTS OF APPLICATION

As an example, we consider a discrete-time, as-
ymptotically stable LPV system, which is sensi-
tive to parameter variations. This system is given
in a parameter-affine controller canonical form:

x (k + 1) = (A0 + A1ζ (k))x (k) + Bu (k)(10)

y (k) = Cx (k) + Du (k) (11)

where ζ : Z → [−1, 1], is the scheduling parameter
vector and the matrices are defined as

A0 =
[
01×4 A021

I4×4 A022

]
;A1 =

21
800

·
[
01×4 A121

I4×4 A122

]
;

B =
[
1 01×4

]T ;C =
[
I1×5

]
;D = 0,

where A021 = 0.155, A121 = 0.1, A022 =[−1.155, 3.244, −4.561, 3.302
]T , and A122 =[−0.1, 1, −1, 0.1

]T . By fixing ζ(k) to set-point
values {ζi}np

i=1 = {−1;−1 + h; . . . ; 1}, where h =
0.4, np = 6 local LTI representations of the LPV
system can be obtained, whose pole locations are
the samples of the ζ-dependent pole movements.
These LTI systems represent in our identification
approach the results of local identification.

For the obtained N = 6 · 5 pole locations, the
previously introduced metrics-based FCM algo-
rithm was applied (with similarity-based merg-
ing) starting from N/2 random initial clusters
and with m = 2. The cluster centers were let to
extend in volumes; this modification is explained
in (Kaymak and Setnes, 2002). Furthermore, QCP
was used in the Euclidian (E) and the Maha-
lanobis (M) cases. The results of the algorithms
are presented in Table 1 and Figure 1.

Here the cluster borders are given with bold
lines. By using the cluster centers as basis poles,
Ξnb

= V, nb = c, the resulting Kolmogorov region
Ω (ρ,Ξc) is also given in the figures (thin line) with
the corresponding ρ in Table 1. Based on these
results, the following observations can be made:

• The differences in Nav
3 are relatively small,

and in a few iteration steps the optimization
in each case hits the minimum. However, in
the (M)-case the FCM can easily get stuck in
a local minimum, therefore several runs are
necessary to obtain the global minimum.

• All algorithms converge to c = 5, which
corresponds to the number of clusters by
visual grouping.
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he shapes of the resulting cluster regions,
omputed from the membership functions by
ridding, are different in each case:
E) Euclidian case. Cluster shapes are spher-

ical, containing unstable poles. The re-
gions are also large near T introducing
unnecessary uncertainty for the grouped
poles. Some pole locations on the real
axis are left out from the pole regions.
The algorithm treats these unlikely dy-
namics as outliers which results in that
they are only partly belonging to a clus-
ter. This property is important in a noisy
case, where outliers due to noise can
compromise the effectiveness of the ob-
tained regions.

) Mahalanobis case. The resulting regions
are curved ellipsoidals, corresponding to
a better description of the underlying
pole structure. However, they also con-
tain parts of E. One of the clusters char-
acterizes the real axis, directly repre-
senting real pole movements. As it can
be seen, QCP enhances the resulting
shapes, curving the ellipsoids due to the
projection.

) Kolmogorov case. The cluster shapes are
spherical and well placed strictly inside
of D, with very tight bounds near T.

4 is small in all of the cases, showing that
ach partition represents well the underlay-
ng structure. It is the smallest in the (M)-
ase which is a direct consequence of the
daptive-norm-based clustering, and it is the
argest in the (K)-case due to the magnified
egion near the origin.
he resulting Kolmogorov boundary with
b = c = 5 OBFs is relatively tight in all
ases containing the obtained clusters. ρ is
lso acceptable which means small modelling
rror if these OBFs are used for identifica-
ion. In the (M)-case, ρ is the best, which is
gain a consequence of the adaptive cluster
hapes. The (K)-case delivers the second best
esult due to its 1-width optimality based
ffectiveness making it superior among other
ymmetrical-metrics-based FCM solutions.

important to note that by applying the n-
result on the obtained Ω regions, repre-
by the cluster boundaries restricted to
even better selection of OBFs can be

ed, if more poles are assigned to clusters

is based on the results of 10 runs starting from
initial clusters.

checking the validity of the partition the Xie-Beni
y index χ (Xie and Beni, 1991) was applied, which

common ground of comparison between different
s driven FCMs. The smaller the value of χ, the better
responding fit.



with large volumes or complicated shapes. This is
accomplished through the mechanism described
in (Heuberger et al., 2005) in Chap. 11, where
through a nonlinear optimization with high com-
putational load the desired n-width optimal OBFs
can be determined.

6. CONCLUSION

The FCM-based pole clustering, presented in this
paper, offers an attractive procedure for deter-
mining pole regions based on local observations
of an LPV system. The determined regions can
be used to synthesize an effective set of OBFs
in the Kolmogorov n-width sense for fixed-order
local identification of the physical process. This
contribution enables the use of the n-width result
to determine an optimal set of OBFs for this
specific LPV identification approach.

However, to derive a method, which is capable of
the joint application of the n-width result and the
pole clustering still remains an open question. It is
believed that such a method can be derived from
incorporating the n-width theory directly into the
FCM mechanism, like the 1-width optimality of
the (K)-case. The results presented in this paper
are a first step towards this joint solution.
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Mäkil
b
sy

Murra
(1
e

Ninne
fy
sy
4

Olivei
fo
ti
W
p

Pinku
T

Verdu
sp
e
3

Xie, X
su
A

361
erger, P.S.C., P.M.J. Van den Hof, and Bo
ahlberg, Eds. (2005). Modeling and Iden-
fication with Rational Orthonormal Basis
unctions. Springer-Verlag.
erger, P.S.C., P.M.J. Van den Hof, and O.H.
osgra (1995). A generalized orthonormal
asis for linear dynamical systems. IEEE Tr.
ut. Contr. 40(3), 451–465.
A.K. and R.C. Dubes (1988). Algorithms for
lustering Data. Englewood Cliffs: Prentice
all. New Jersey.
ak, U. and M. Setnes (2002). Fuzzy clus-
ring with volume prototypes and adap-
ve cluster merging. IEEE Tr. Fuzzy Sys.
0(6), 705–711.
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(a) Euclidian-FCM
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(b) Mahalanobis-FCM
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(c) Kolmogorov-FCM

Fig. 1. Results of FCM clustering: sampled poles (o) and resulting cluster centers (×), cluster boundaries
(bold lines), and Kolmogorov boundaries (thin lines).
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