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A Prediction-Error Identification Framework for Linear
Parameter-Varying Systems

Roland Téth, Peter S. C. Heuberger and Paul M. J. Van den Hof

Abstract— Identification of Linear Parameter-Varying (LPV)
models is often addressed in an Input-Output (IQ) setting
using particular extensions of classical Linear Time-Invariant
(LTI) prediction-error methods. However, due to the lack of
appropriate system-theoretic results, most of these methods
are applied without the understanding of their statistical
properties and the behavior of the considered noise models.
Using a recently developed series expansion representation of
LPV systems, the classical concepts of the prediction-error
framework are extended to the LPV case and the statistical
properties of estimation are analyzed in the LPV context. In
the introduced framework it can be shown that under minor as-
sumptions, the classical results on consistency, convergence, bias
and asymptotic variance can be extended for LPV prediction-
error models and the concept of noise models can be clearly
understood. Preliminary results on persistency of excitation and
identifiability can also established.

I. INTRODUCTION

Deliberate and efficient control of today’s industrial appli-
cations requires accurate but low complexity models of the
often nonlinear or time-varying behavior of these systems.
This raises the need for system descriptions that form an
intermediate step between linear time-invariant (LTI) sys-
tems and nonlinear/time-varying plants. To cope with these
expectations, the model class of linear parameter-varying
(LPV) systems provides an attractive candidate. In LPV
systems the signal relations are considered to be linear just
as in the LTI case, but the parameters are assumed to be
functions of a measurable time-varying signal, the so-called
scheduling variable p : Z — P, with P C R"?. The LPV
system class has a wide representation capability of physical
processes and this framework is also supported by a well
worked out and industrially reputed control theory. Despite
the advances of the LPV control field, identification of such
systems is not well developed.

II. THE NEED FOR AN LPV PREDICTION ERROR
FRAMEWORK

Existing LPV approaches are almost exclusively formu-
lated in discrete-time, commonly assuming static dependence
on p (dependence only on the instantaneous value of p), and
they are mainly characterized by the type of LPV model
structure used: input-output (10) [1], [2], [4], [12], state-
space (SS) [3], [5], [10], [11] or orthogonal basis functions
models [7]-[9]. In system identification, IO models are
widely used as the stochastic meaning of estimation is much
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better understood for such models, e.g. via the prediction-
error (PE) setting, than for other model structures. As a
consequence, extensions of some classical LTI-PE methods,
like least-squares (LS) approaches, have also been developed
in the LPV case (e.g. [1]) and due to their simplicity
they become popular in many applications. However, these
approaches are usually applied as algorithms, without the
understanding of the underlying estimation problem, the
represented model structure, or the stochastic properties. In
order to establish a mature theory for the identification of
LPV systems, first of all it needs to be understood how the
classical PE framework can be extended to the LPV case
and what the properties of the available LPV approaches are
under such a framework.

III. LPV SERIES EXPANSION REPRESENTATIONS

One of the major gaps in the LPV system theory, which
has prevented so far the analysis of PE methods, has been
the lack of a transfer function representation of LPV systems.
To overcome this problem, it has been shown in [6] that the
dynamic mapping between the input u : Z — R and the
output y: Z — R of a LPV system . can be characterized
as a convolution involving p and u. This so called impulse
response representation (IRR) is given in the form of

=

y(k) =Y (giop)(k) u(k—i)

i=0

= <i(gi<>p)qiu> (k) = ((F(g)op)u)(k), (1)

i=0

where ¢ is the time-shift operator, i.e. ¢~ 'u(k) = u(k—1), and
the coefficients g;, i.e. impulse response coefficients, are func-
tions of p(k) and its time-shifted values (i.e. p(k— 1), p(k —
2),...), which is called dynamic dependence and expressed
by the operator ¢. In identification, we aim to estimate a
dynamical model of the system based on measured data,
which corresponds to the estimation of each g;. Equation
(1) can also be seen as a series expansion of . in terms of
g and it can be shown that this expansion is convergent if
7 is asymptotically stable. Equivalence transformations of
LPV-SS and IO representations to IRR are also available.

IV. EXTENSION OF THE PREDICTION-ERROR
FRAMEWORK

By using the IRR and the established equivalence relations
it becomes possible to extend the PE framework to the
LPV case. The data generating LPV system ., with an
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asymptotically stable process and noise part is considered
as

y(k) = (Golg) o p)(k) u(k) + (Ho(q) o p) (k) eo(k) — (2)

where G, and H, are LPV IRR’s with H, being monic, i.e.
Hy(0) =1, and eo(k) is a zero-mean white noise process.
Now if p is deterministic and there exists a convergent
adjoint H] of H,, then it is possible to show that the one-step
ahead predictor of y is

y(k|k—1) = ((HJ(q)Go(q)) o p)(K) u(k)
+((1-H(9) o p)k) ¥(k). ()
With respect to a parameterized model structure, we can

define the one-step ahead prediction error as g9 (k) = y(k) —
y(k| 6) where

$(k|6)=((H"(q,0)G(q,0)) p)k) u(k)
+(1-H'(q,8))0p)k) y(k), @)

with G(q,0) and H(q,0) the IRR’s of the process and noise
part of the model structure respectively and 6 € R" are the
parameters to be estimated. Denote

Dy = {y(k),u(k), p(k) };_, (5)

a data sequence of .%5,. Then, to provide an estimate of 0
based on the minimization of &g, an identification criterion
W(Dy,0) can be introduced, like the least squares criterion

1 N
W(Dy,0) =+ )" &(k). (©6)
N3
such that the parameter estimate is
Oy = arg min W(Dy,0). @)
0eR"0

The developed PE setting can be seen as the LPV extension
of the LTI-PE framework and it can be shown that under
minor assumptions, the classical results on consistency, con-
vergence, bias and asymptotic variance can be extended for
LPV prediction-error models with linear parametrization of
the coefficient dependence and the concept of noise models
can be clearly understood. Preliminary results on persistency
of excitation and identifiability can also be established with
respect to particular model structures.
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