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Abstract: This paper demonstrates the application of the linear parameter-varying (LPV)
framework to control a copolymerization reactor. An LPV model representation is first developed
for a nonlinear model of the process. The LPV model complexity in terms of the model order and
the number of scheduling variables is then reduced by truncating those system states that have
insignificant direct influence on the input-output behavior of the system and do not directly
appear in the output equations of the model. It is important to note that these truncated
states are still preserved in the reduced model by affecting the scheduling parameters and hence
enabling the representation of the input-output map. Using the derived model, a linear fractional
transformation (LFT) based LPV controller synthesis approach is used to synthesize a controller
for the process. Simulation based studies of the closed-loop behavior of the system regulated
by the designed LPV controller demonstrate that the LPV controller solution outperforms a
model predicative control designed previously for this system in terms of the achieved control
performance and the online computational effort.

1. INTRODUCTION

From an industrial perspective, there are interesting incen-
tives for efficient control of polymer reactors. These include
maximization of production quality and rates and min-
imization of transition losses. Control of polymerization
reactors is a difficult task due to several challenges specific
to them. Basically, they are highly nonlinear (NL) systems
whose states exhibit strongly coupled behavior (Soroush
and Kravari, 1993), (Özkana et al., 2003), and hence
they exhibit multiple steady states, as well as oscillatory
or unstable modes at some operating points (Congalidis
and Richards, 1998). They can be highly exothermic and
result in a reactor thermal runaway in the absence of an
appropriate control strategy. Several control approaches
have been investigated for these processes, see (Richards
and Congalidis, 2006). Classical control methods such as
standard PID and multi-loop PID control, e.g., (Congalidis
et al., 1989), are commonly used as they require minimal
process knowledge. However, they are not adequate to cope
with such a multivariate control problem with strong in-
teractions between the controlled variables. A further rel-
evant control approach relies on model predictive control
techniques based on simple process models, e.g., (Maner
and Doyle, 1997), (Özkana et al., 2003), that allow a rapid

transition between different operating points. Nonlinear
control (Soroush and Kravari, 1993) has been considered as
well, which depends on the availability of a highly accurate
nonlinear model and online measurements of time-varying
(TV) model parameters.

Generally, optimal control techniques are preferred if a
good process model is available because of their presumed
superior performance (Embirucu et al., 1996). Moreover,
adaptive control strategies can be applied in order to
take the time-varying nature of the process into account,
provided that online measurements/estimations are avail-
able. Linear parameter-varying (LPV) control (Moham-
madpour and Scherer, 2012) is a promising candidate
for control design that can be classified as an adaptive
control technique based on the extension of powerful linear
time-invariant (LTI) approaches such as H2/H∞ optimal
control, see e.g., (Mohammadpour and Scherer, 2012), to
address the control design problem for NL and TV sys-
tems. LPV systems are represented by dynamical models
capable of describing TV behaviors in terms of a linear
structure depending on the so-called scheduling variables,
which are assumed to be online measurable. The varia-
tion of the scheduling variables represents time-variance,
changing operating conditions, etc. The capability of LPV
framework to model and control NL/TV systems has been
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demonstrated in terms of several successful applications,
e.g., (Abbas et al., 2014) and (Bachnas et al., 2014).

In this paper, we investigate an LPV control design strat-
egy to control a free radical solution polymerization in a
continuously stirred tank reactor (CSTR). To implement
the LPV controller, an LPV representation in state-space
form of the nonlinear model developed in (Congalidis et al.,
1989) is first introduced. The complexity of the model
is reduced by a specific model reduction approach which
also preserves the input-output behavior of the full model.
Then, the operating region is specified and the control
design approach introduced in (Scherer, 2001) is utilized
to design an LPV controller based on the mixed sensitivity
design. The objectives of this study are twofold: (1) Show
a practically applicable LPV modeling technique and com-
plexity reduction approach for copolymerization processes.
(2) Assess the capabilities of LPV control to providing high
performance control solution for polymerization reactors.

The paper is organized as follows: In Section 2, the NL dy-
namical model of the copolymerization reactor is reviewed
and an LPV state-space model representation of the pro-
cess is developed. In Section 3, a low-complexity LPV
representation for the process is developed. The synthesis
of an LPV controller and the closed-loop implementation
are demonstrated in Section 4. Finally, conclusions are
drawn in Section 5. Notations considered in this paper are
standard. The subscripts a, b, i, s, t, z are used to indicate
monomer A, monomer B, initiator, solvent, chain transfer,
and inhibitor, respectively. The symmetric completion of
a matrix is denoted by ∗ and ker[X ] denotes the nullspace
of a matrix X .

2. PRELIMINARIES

2.1 Nonlinear Dynamic Model of The Process

In this paper, we consider the model of the solution copoly-
merization reactor developed in (Congalidis et al., 1989); a
flow diagram of the process is shown in Fig. 1. Monomers
A and B, which are methyl methacrylate and vinyl acetate,
respectively, are continuously added with initiator, solvent,
and chain transfer agent, which are benzene, azobisisobu-
tyronitrile and acetaldehyde, respectively. Moreover, an
inhibitor, which is mdinitrobenzene, may enter with the
fresh feed as an impurity. The reactor is assumed to be
a jacketed, well-mixed tank. A coolant flows through the
jacket to remove the heat of polymerization. The NL
mathematical model is based on a free radical mechanism
with 27 separate reactions, and is given by

Unreacted feed

Coolant

Coolant

Fa

Fb

Fs

Fz

Fi

Ft

Polymer Solvent

Fig. 1. Copolymerization reactor

d

dt
Ck = −φlCk +

Fk

MkV
−

∑

k Fk

V ρ
Ck, (1a)

(k, l) =
{

(a, 1), (b, 2), (i, 3), (s, 4), (t, 5), (z, 6)
}
,

d

dt
Tr =

φ7

cρ
Ca +

φ8

cρ
Cb−

SU

V cρ
(Tr−Tj) +

∑

kFk

V ρ
(Trf −Tr),

(1b)

d

dt
λa = φ1Ca −

∑

k Fk

V ρ
λa, (1c)

d

dt
λb = φ2Cb −

∑

k Fk

V ρ
λb, (1d)

d

dt
ψ0 = φ9Ca + φ10Cb −

∑

k Fk

V ρ
ψ0, (1e)

d

dt
ψ1 = φ11Ca + φ12Cb −

∑

k Fk

V ρ
ψ1, (1f)

d

dt
ψ2 = φ13Ca + φ14Cb −

∑

k Fk

V ρ
ψ2, (1g)

where the inputs are the flow rates Fa, Fb, Fi, Fs, Ft, Fz

in kg/h, and the reactor jacket temperature Tj is in K.
The states are the concentrations Ca, Cb, Ci, Cs, Ct, Cz in
kmol/m3, the reactor temperature Tr in K, the molar
concentrations of monomer in polymer λa, λb and the mo-
ments of molecular weight distribution are ψ0, ψ1, ψ2. The
variables φi, i ∈ {1, · · · , 14} are NL functions of the states
(see Appendix A for their definition). The constant param-
eters are the molecular weights Ma,Mb,Mi,Ms,Mt,Mz,
the reactor volume V , the heat surface area S, the overall
heat transfer coefficient U , the heat capacity c, the density
ρ and the reactor feed temperature Trf ; see Table 1 for the
value of these constant parameters. The important reactor
output variables for control are Tr and

Gpi = MaV φ1Ca +MbV φ2Cb, (2a)
Yap = φ15λa, (2b)
Mpw = φ16ψ2, (2c)

where Gpi, Yap,Mpw are the polymer production rate in
kg/h, mole fraction of monomer A in the polymer and the
weight average molecular weight in kg/kmol, respectively;
for the definition of φ15 and φ16, see Appendix A.

Table 1. Constant parameters for the model

Ma 100.10 kg/kmol V 1 m3

Mb 86.09 kg/kmol S 4.6 m2

Mi 164.00 kg/kmol U 216.00 J/m2·s·K
Ms 78.11 kg/kmol c 2.01 kJ/kg·K
Mt 44.05 kg/kmol ρ 879.00 kg/m3

Mz 168.11 kg/kmol Trf 353.00 K

The main control objective in (Özkana et al., 2003) was to
provide a fast transition between two operating points as
shown in Table 2 with a controller that is robust against
unmeasured disturbances. The first operating point, OP1,
given in (Congalidis et al., 1989) was obtained for a
monomer feed ratio FA/FB = 0.2 while the second one,
OP2, was obtained by increasing the ratio by 0.25 keeping
FB constant. In order to achieve this objective, the ma-
nipulated variables to control the four previously specified
output variables are chosen –based on the investigation
in (Congalidis et al., 1989)– to be Fa, Fb, Ft and Tj. For
comparison purposes, we consider in this work the same
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control objective and associated variables; the other inputs
are kept constant as shown in Table 1.

Table 2. Operating conditions for the process

OP1 OP2
Gpi (kg/h) 23.35 24.9
Yap 0.56 0.64
Mpw (104kg/kmol) 3.4 3.9
Tr (K) 353.06 353.3

2.2 LPV State-Space Representation

The design of an LPV gain-scheduled controller for the
copolymerization reactor is based on an LPV state-space
representation of the form

d

dt
x = A(θ)x + B(θ)u, (3a)

y = C(θ)x + D(θ)u, (3b)

where u : T → R
nu , y : T → R

ny , x : T → R
n are the

input, output, and state of the system, respectively, and
T = R

+
o is the time domain. The mappings A(·), B(·),

C(·) and D(·) are continuous matrix-valued functions of a
set of variables referred to as scheduling variables vector
θ ∈ Pθ, where Pθ ⊆ R

nθ denotes the scheduling regime
which is assumed to be compact. θ is a function of a
measurable signal vector p : T → R

np in the system and
this functional dependence is expressed as θ = g(p), where
g : Rnp → R

nθ is a continuous mapping. The scheduling
set Pθ is assumed to be overapproximated by a polytope,
defined as the convex hull given by the vertices θvi

, i.e.,

Pθ := Co{θv1
, θv2

, . . . , θvnv
}, (4)

where nv = 2nθ , and Pθ is based on the convex hull of the
bounds of θi. An LPV state-space representation is called
to have affine scheduling dependence if the model depends
affinely on θ. For the representation (3), this means that
any of the matrices A, . . . ,D can be represented as

Ma(θ) = Ma
0 + θ1M

a
1 + . . .+ θnθ

Ma
nθ
. (5)

Since θ can be expressed as a convex combination of nv

vertices θvi
, if (5) holds true, it follows that the system

can be represented by a linear combination of LTI models
at the vertices. This is called a polytopic LPV state-space
representation, where for any of the matrices A, . . . ,D we
have Mp(θ) =

∑nv

i=1 αiM
p(θvi

), such that
∑nv

i=1 αi = 1
and αi ≥ 0 are the convex coordinates.

3. LPV MODELING OF THE PROCESS

The NL model (1) depends affinely on the NL functions
φ1, . . . , φ16, and hence, one can easily rewrite (1) in the
form (3) by considering φ1, . . . , φ16 and

∑

k Fk to be the
scheduling variables that correspond to θ ∈ R

17. In this
case, θ is a vector-valued function of the inputs and states
of the system which is a function of the measurable signal
vector p according to

p =
[
Fa Fb Fi Fs Ft Fz Ca Cb Ci Cs Ct Cz Tr λa λb ψ1

]⊤
.

(6)
The scheduling set Pθ can be defined by obtaining bounds
on θ based on operational limits of p, which can be com-
puted according to the operating region defined in Table 2.
This provides an exact polytopic LPV representation for

(1). However, it could be too complex for LPV control
synthesis to achieve a specific desired control performance
due to the large number of scheduling variables, which is 17
here. Based on the observations reported in (Hoffmann and
Werner, 2014), the large number of scheduling variables
renders the synthesis problem intractable due to the large
number of underlying matrix inequalities (Apkarian et al.,
1995) or decision variables (Scherer, 2001). Furthermore,
even if rendered tractable in an LFT framework, the
necessary structural constraints may render the resulting
control performance overly conservative. Finally, online
controller implementation may turn out to be excessively
costly. Therefore, it is necessary to obtain an LPV model
with a small number of scheduling variables and a reduced
order.

In the following, we reduce the complexity of the NL model
(1) in terms of its dynamical order so that it can be used to
obtain a low-complexity LPV model, i.e., with a reduced
order and reduced number of scheduling variables. For the
operating region that is considered here (see Table 2), it
has been shown in (Maner and Doyle, 1997) that closing
the temperature loop with a PI controller, i.e., assigning
the manipulated variable Tj to only control Tr, yields the
system well-conditioned, which can provide a full explo-
ration of the interaction compensation abilities of mul-
tivariable control. Safety reasons could be a justification
for closing the temperature loop to prevent the reactor
runaway. By closing the temperature loop, in (Maner and
Doyle, 1997), a well-conditioned 3 × 3 control problem has
been obtained, which results in a better control perfor-
mance compared to the 4 × 4 control problem. Therefore,
(1b) can be truncated, which reduces the dynamical order
of the model by one and removes the functions φ8 and
φ9 without any approximation as the reduced model still
can receive information of Tr via the other functions, see
Appendix A.

Next, we further reduce the dynamical order of the ob-
tained 3×3 representation of the model (1), i.e., the model
(1) without (1b) and with the outputs (2), such that the
exact input-output behavior between the full and reduced
models is preserved. The idea is to truncate all the states
that do not explicitly affect the outputs of the model. By
observing (2), it can be seen that the three outputs of the
model are directly affected by the states Ca, Cb, λa, ψ2.
Therefore, the remaining states of the original model can
be truncated, and hence, we can obtain the following
reduced model

d

dt
Ca = −φ1Ca +

Fa

MaV
−
Fisz

V ρ
Ca −

(Fa + Fb + Ft)

V ρ
Ca,

(7a)

d

dt
Cb = −φ2Cb +

Fb

MbV
−
Fisz

V ρ
Cb −

(Fa + Fb + Ft)

V ρ
Cb,

(7b)

d

dt
λa = φ1Ca −

Fisz

V ρ
λa −

(Fa + Fb + Ft)

V ρ
λa, (7c)

d

dt
ψ2 = φ̃13Ca −

Fisz

V ρ
ψ2 −

(Fa + Fb + Ft)

V ρ
ψ2, (7d)

with the outputs in (2), where

φ̃13 =
φ13Ca + φ14Cb

Ca

, (8)
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and Fisz = Fi +Fs +Fz, which is assumed to be a constant
parameter as it is composed of non-manipulated variables.
The variations of Fi, Fs and Fz during operation are con-
sidered to be unmeasured disturbances. In (8), Ca = 0 is
prohibitive as it is meaningless to have zero concentration
of polymer A, and hence, (8) remains bounded in the
meaningful operational regime.

Now, an exact LPV representation for (7) with (2) can be
written as in (3) where the state matrices in terms of φi

are given by

A(·) =














−(φ1 +
Fisz

V ρ
) 0 0 0

0 −(φ2 +
Fisz

V ρ
) 0 0

φ1 0 −

∑

k Fk

V ρ
0

φ̃13 0 0 −
Fisz

V ρ














,

(9a)

B(·) =












1

MaV
−
Ca

V ρ
−
Ca

V ρ
−
Ca

V ρ

−
Cb

V ρ

1

MbV
−
Cb

V ρ
−
Cb

V ρ
0 0 0

−
ψ2

V ρ
−
ψ2

V ρ
−
ψ2

V ρ












, (9b)

C(·) =

[
MaV φ1 MbV φ2 0 0

0 0 φ15 0
0 0 0 φ16

]

, D = 0, (9c)

where
∑

k Fk = Fisz + FA + FB + FC. Note that for the
representation (9), the functions φ1, φ2, φ̃13, φ15, φ16 and
the states Ca, Cb, ψ2 constitute the scheduling vector θ
resulting in total 8 scheduling variables. Next, we further
reduce this dimension by introducing a new input vector

[
u1

u2

u3

]

=










1

MaV
−
Ca

V ρ
−
Ca

V ρ
−
Ca

V ρ

−
Cb

V ρ

1

MbV
−
Cb

V ρ
−
Cb

V ρ

−
ψ2

V ρ
−
ψ2

V ρ
−
ψ2

V ρ










︸ ︷︷ ︸

E

[
Fa

Fb

Ft

]

. (10)

The transformation matrix E is non-singular for all values
of Ca, Cb and ψ2 is in the specified operating range. Then,
a new B matrix for the LPV model can be introduced as

B =






1 0 0
0 1 0
0 0 0
0 0 1




 (11)

in terms of the new input vector (10) considered for
the model. Note that this yields a constant B matrix.
Moreover, we define new outputs as

y1 = Gpi, (12a)
y2 = Yap/φ15 = Yap(λa + λb), (12b)
y3 = Mpw/φ16 = Mpwψ1, (12c)

and hence, a new C matrix for the model can be introduced
as

C(·) =

[
MaV φ1 MbV φ2 0 0

0 0 1 0
0 0 0 1

]

. (13)

Introducing the new inputs and outputs results in a LPV
representation (3) of relatively low complexity for the NL
model with state-space matrices given by

A(θ)=














−(θ1+
Fisz

V ρ
) 0 0 0

0 −(θ2+
Fisz

V ρ
) 0 0

θ1 0 −(
θ4

V ρ
+
Fisz

V ρ
) 0

θ3 0 0 −
Fisz

V ρ














,

(14)
(11), (13) and D = 0, where θ1 = φ1, θ2 = φ2, θ3 = φ̃13,
θ4 = Fa + Fb + Ft; θ1, · · · , θ4 compose the entries of the
scheduling vector θ. Taking into consideration (10) and
(12), the LPV representation (3) with (14) has the same
input-output map as of the NL model (1). Note that θi

are functions of the preserved variables collected in p as
described by (6).

Next, the parameter set Pθ is defined based on the bounds
of θ, see (4). First, we choose an initial range 1 for the
manipulated inputs Fa, Fb and Ft, and we refer to such
range as input range. Then, we grid the input range to
produce a set of grid points; these can then be used
to generate a set of operating points by computing the
corresponding steady-state values of the state vector of
(1), such that the operating points defined in Table 2 are
covered. Finally, a set of values of θ is computed for each
operating point, based on which the bounds of θ can be
computed and hence Pθ is defined. The input range can be
redefined after the control synthesis step according to the
closed-loop operation. It turns out that the input range

18 ≤ Fa ≤ 22.5, 87 ≤ Fb ≤ 93, 1 ≤ Ft ≤ 4 kg/h,

is sufficient to define Pθ, based on the bounds of θ that are
obtained as

0.1618 ≤ θ1 ≤ 0.1771, 0.4823 ≤ θ2 ≤ 0.5861,
0.0170 ≤ θ3 ≤ 0.0202, 2.6124 ≤ θ4 ≤ 4.0512.

(15)

Finally, it is important to point out that feasibility of LPV
control design based on the derived LPV model, depends
on the possibility to measure or estimating p in (6) at every
time instant. This is assumed here in order to assess the
performance of LPV control on the underlying process.
It has been shown in (Richards and Congalidis, 2006),
(Soroush and Kravari, 1993) that most of the elements of p
can be measured or estimated in real time, hence fulfilling
the taken assumptions is also practically feasible.

4. LPV CONTROL

4.1 LPV Control Synthesis

This section presents the design of an LPV controller
with a fixed Lyapunov function using an H∞ loop-shaping
approach based on the gain-scheduling LPV synthesis re-
sults of (Scherer, 2001). The LPV-LFT gain-scheduling
approach is considered here since it provides a versatile
LPV controller synthesis framework capable of handling
plants with rational parameter-dependency and poten-
tially a large number of parameters while maintaining
1 One can initially use the control input levels that have been
observed in (Özkana et al., 2003) and (Congalidis et al., 1989).
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low implementation complexity through affinely scheduled
controllers in the case of plants with affine parameter-
dependency (Hoffmann and Werner, 2014). The method
requires the formulation of the LPV representation (3) in
a linear fractional transformation (LFT) form as
[
A(θ) B(θ)
C(θ) D(θ)

]

=

[
A Bu

Cy Dyu

]

+

[
Bθ

Dyθ

]

Θ(I−DθθΘ)−1 [Cθ Dθu]

(16)
where Θ = diag(θ1Ir1, · · · , θnθ

Irnθ
) is a parameter ma-

trix that includes all the scheduling variables. Note that,
parameter-affine LPV models, Dθθ = 0. Moreover, for the
derived LPV model of the copolymerization reactor, we
have Dyu = 0, Θ = diag(θ1, · · · , θ4) ∈ R

4×4. Since both
the plant and the controller are time-varying systems, the
H∞ norm is interpreted in terms of the induced L2-gain.

The design objective considered here is to stabilize the
closed-loop system in the operating range defined in Ta-
ble 2 with a fast tracking capability and disturbance rejec-
tion taking into consideration the control input constraints
as (Özkana et al., 2003)

0 ≤
FA

FB

,≤
36

90
, 0 ≤

FC

FB

≤
5.4

90
,

0 ≤ FB ≤ 180 kg/h, 317.754 ≤ Tj ≤ 388.366 K.

A standard mixed sensitivity loop-shaping approach is
adopted here to meet the design objectives. The gener-
alized plant is shown in Fig. 2. In order to shape the
closed-loop sensitivity and control sensitivity functions,
the weighting filters

WS=diag

(
8.326×10−2

s+9.02×10−4
,

1.088×10−1

s+1.01 ×10−3
,

1.193×10−1

s+1.09×10−5

)

WKS=diag

(
1642s+3.885×104

s+2.367×104
,

641.7s+6.205×104

s+9.67×104
,

1679s+1243

s+740.5

)

are used, respectively. The sensitivity weighting filter WS

has been tuned to satisfy the closed-loop bandwidth to
provide a desired fast response and to drive the steady-
state error towards zero. By freezing the scheduling vari-
ables vector θ of the LPV model at different values in the
scheduling set Pθ, a set of LTI models has been obtained,
from which the required bandwidth has been inferred. On
the other hand, the control sensitivity weighting filter WKS

has been adjusted to impose an upper bound on the control
sensitivity to restrict the control effort and impose a limit
on the sensitivity function peak, resulting in a reduction
in overshoot. Given WS and WKS, an LFT formulation of
the generalized plant is obtained as





˜A(θ) B̃p(θ) B̃(θ)
C̃p(θ) D̃pp(θ) D̃pu(θ)
C̃(θ) D̃yp(θ) D̃(θ)



 =





Ã B̃p B̃u

C̃p D̃pp D̃pu

C̃y D̃yp D̃yu



 +





B̃θ

D̃pθ

D̃yθ



 Θ
[
C̃θ D̃θp D̃θu

]
. (17)

Next, a condition for the existence of a gain-scheduled
controller is reviewed.

r

WS
y

P(θ)

WKS

−
e

zs

zk

K(θ)

u

Fig. 2. Generalized plant interconnected with the LPV
controller.

Theorem 1. (Scherer, 2001) There exists an LPV con-
troller in an LFT form, such that the closed-loop system
in Fig. 2 is internally stable for all θ ∈ Pθ, if there exists
positive definite symmetric matrices X > 0, Y > 0 of
appropriate size and multipliers M = M⊤, N = N⊤ that
satisfy the linear matrix inequality (LMI) conditions

V ⊤
X






∗
∗
∗
∗
∗
∗






⊤



0 X 0 0
X 0 0 0
0 0 M 0
0 0 0 Γ














I 0 0
Ã B̃θ B̃p

0 I 0
C̃θ 0 D̃θp

0 0 I
C̃p D̃pθ D̃pp










VX <0, (18a)

V ⊤
Y






∗
∗
∗
∗
∗
∗






⊤



0 Y 0 0
Y 0 0 0
0 0 N 0
0 0 0 Γ−1















−Ã⊤ −C̃⊤
θ −C̃⊤

p

I 0 0
−B̃⊤

θ 0 −D̃⊤
pθ

0 I 0
−B̃⊤

p −D̃⊤
θp −D̃⊤

pp

0 0 I











VY >0,

(18b)

[∗ ]⊤M
[
I
Θ

]

> 0, [∗ ]⊤ N

[

−Θ⊤

I

]

< 0, ∀θ ∈ Pθ (18c)
[
X I
I Y

]

> 0, (18d)

where VX = ker[Cy Dyθ Dyp], VY = ker[B⊤
u D⊤

θy D
⊤
pu] and

Γ = diag(1/γI,−γI) such that γ > 0, which represents
the induced L2-gain as the desired performance measure.

The multipliers M and N are related to the LPV schedul-
ing channels, which can be partitioned as

M =

[
M11 M12

M⊤
12 M22

]

, N =

[
N11 N12

N⊤
12 N22

]

. (19)

It is desired here to synthesize an affinely scheduled
controller such that the scheduling block Θ of the plant is
copied to the controller; hence, we consider the following
conditions for the multipliers (19) (Hoffmann et al., 2014),
M11 > 0, M11 = −M22, M12 = −M⊤

12, N11 > 0,
N11 = −N22, N12 = −N⊤

12,MijΘ = ΘMij, NijΘ =
ΘNij , i, j ∈ {1, 2}. These constraints are referred to as
D/G-scaling. The construction of the extended matrices
Xcl and multipliers Mcl are necessary to solve for the
controller matrices in LMI problems, which follows along
the lines of (Dettori and Scherer, 2001). Furthermore,
when solving for the controller matrices, DK

θθ = 0 has
to be imposed in order to enforce affine scheduling. The
parameter-dependent state-space model matrices of the
affinely scheduled controller K(θ) are then computed by
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Fig. 3. Closed-loop response for the transition from OP1 to
OP2 with the LPV controller, reference signal (red).

[
AK(θ) BK(θ)
CK(θ) DK(θ)

]

=

[
AK BK

u

CK
y DK

yu

]

+

[
BK

θ

DK
yθ

]

Θ
[

CK
θ DK

θu

]
, (20)

which is a 10th order 3 × 3 LPV controller for the problem
under study. In terms of the control implementation,
the LPV controller (20) requires relatively low online
computation as it is just required to update the controller
state-space matrices at each time instant given the value
of the Θ block.

4.2 LPV Controller Implementation

The implementation of the LPV controller on the full NL
model of the plant is shown in Fig. 3 and Fig. 4, which
illustrate the closed-loop output and input responses,
during the transition from OP1 to OP2. Note that, to
compute the state-space matrices of the controller via (20)
at each sampling instant, the measurement/estimation of
p should be available to compute θ and consequently to
construct the block Θ ∈ R

4×4. As observed in (Özkana
et al., 2003), the production rate Gpi and the temperature
Tr show faster response in comparison with the polymer
composition Yap and the molecular weight Mpw; however,
all outputs require less than 10 hours to reach the steady-
state values without violating the input constraints. This
provides faster response than the controller proposed in
(Özkana et al., 2003), which was more than 15 hours. This
has a significant impact on reducing the off-specification
products.

The effect of an unmeasured disturbance is examined
next. We study the effect of the presence of an inhibitor
flow in the fresh feed during the transition from OP1 to
OP2, i.e., Fz 6= 0. The capability of the LPV controller
is demonstrated for an inhibitor disturbance of 4 parts
per 1000 (mole basis) during the period (1.5-3.0 h) as in
(Özkana et al., 2003). In contrast with the MPC controller
examined in (Özkana et al., 2003), the LPV controller
here rejects the disturbance effect without yielding any
of the input flow rates to be saturated and without
showing aggressive response as shown in Fig. 5 and Fig. 6.
Moreover, the control inputs almost stay within the same
ranges as without disturbance, compare Figs. 4 and 6.
For the tracking capability, some oscillations are observed
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Fig. 4. Manipulated variables during the transition from
OP1 to OP2 with the LPV controller.
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Fig. 5. Closed-loop response in the presence of an unmea-
sured disturbance in inhibitor during the transition
from OP1 to OP2, reference signal (red).

in the outputs, see Fig. 5, that vanish within less than
30 hours to reach the desired values, which is still faster
than the response with the controller proposed in (Özkana
et al., 2003). A small overshoot is also observed in the Mpw

response.

It should be emphasized that in contrast with the model
predictive control implementation in (Özkana et al., 2003),
which was based on multiple piecewise linear models of the
process, the LPV controller of this paper is designed based
on an exact representation of the original NL model, and
hence, stability and performance of the closed-loop system
are guaranteed.

5. CONCLUSIONS

In this paper, a low complexity LPV model for a solution
copolymerization reactor has been derived by truncating
the system states that do not explicitly appear in the
output equations of the model. In order to preserve the
same input-output behavior as the full model, the trun-
cated states of the reduced model are considered as exter-
nal scheduling signals. Based on developed reduced-order
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Fig. 6. Manipulated variables response in the presence of
an unmeasured disturbance in inhibitor during the
transition from OP1 to OP2.

model, a standard gain-scheduled LPV controller has been
designed and successfully implemented on the full model to
ensure the closed-loop system stability and performance. A
satisfactory performance of the process has been achieved
with the LPV controller when transitioning between two
operating points with and without input disturbance and
the results have been compared with previously reported
ones.
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Appendix A. NONLINEAR FUNCTIONS

The NL functions in model (1) are as follows:

φl = fl(Ca, Cb, Ci, Cz, Tr) =
Rk

Ck

,

φ7 = f7(Ca, Cb, Ci, Cz, Tr) = (−∆Hpaa)kpaaC
·
a,

φ8 = f8(Ca, Cb, Ci, Cz, Tr) = (−∆Hpba)kpbaCaC
.
b/Cb

+ (−∆Hpab)kpabC
.
a + (−∆Hpbb)kpbbC

.
b,

φ9 = f9(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcaa(ψa.

0 )2

+ kcabψ
a.
0 ψ

b.
0 + L1ψ

a.
0

)
/2Ca,

φ10 = f10(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcbb(ψb.

0 )2

+ L2ψ
b.
0

)
/2Cb,

φ11 = f11(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcaaψ

a.
0 ψ

a.
1

+ kcab(ψb.
0 ψ

a.
1 ) + L1ψ

a.
1

)
/Ca

φ12 = f12(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcab(ψa.

0 ψ
b.
1 )

+ kcbbψ
b.
0 ψ

b.
1 + L2ψ

b.
1

)
/Cb

φ13 = f13(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcaa

(
(ψa.

1 )2

+ ψa.
0 ψ

a.
2

)
+ kcab(2ψa.

1 ψ
b.
1 + ψb.

2 ψ
a.
0 ) + L1ψ

a.
2

)
/Ca

φ14 = f14(Ca, Cb, Ci, Cs, Ct, Cz, Tr) =
(
kcab(ψa.

2 ψ
b.
0 )

+ kcbb

(
(ψb.

1 )2 + ψb.
0 ψ

b.
2

)
+ L2ψ

b.
2

)
/Cb

φ15 = f15(λa, λb) = 1/(λa + λb),
φ16 = f16(ψ1) = 1/ψ1,

where Rk’s are the reaction rates, which are given by
equations (4-9) in (Congalidis et al., 1989); C.

a, C.
b, ψa.

0 ,
ψa.

1 , ψa.
2 , ψb.

0 , ψb.
1 and ψb.

2 are defined in equations (11),
(12), (31-36), respectively, in (Congalidis et al., 1989), and
−∆Hpaa, −∆Hpba, −∆Hpab and −∆Hpbb are thermody-
namic constant parameters.

1st IFAC LPVS, Grenoble, France, Oct. 7-9, 2015 FrA2T1.1

Copyright © 2015 IFAC
 

206


