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Abstract: This paper first describes the development of a nonparametric identification method for
linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system.
The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While
parametric identification methods require proper selection of basis functions in order to avoid over-
parametrization or structural bias, the problem of variance-bias tradeoff is avoided by estimating
the functional dependencies of the state-space representation on the LPV scheduling variables using
measured input and output data under the LS-SVM framework. The proposed formulation allows for
LS-SVM to reconstruct and uncover static, as well as dynamic dependencies on scheduling variables
in multi-input multi-output (MIMO) LPV models. This is achieved by assuming that the states are
measurable, which is a common scenario during online control of many chemical processes described
by lumped parameter models. The proposed method does not require an explicit declaration of the
feature maps of the nonlinearities of the assumed model structure; instead, it requires the selection of
a nonlinear kernel function and tuning its parameters. The developed identification method is applied
to a continuous stirred tank reactor (CSTR) model under realistic noise conditions. Another numerical
example along with the CSTR system illustrates the performance of the proposed algorithm under both
static and dynamic dependence on the scheduling variables.
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1. INTRODUCTION

Linear parameter-varying (LPV) models provide a powerful
framework for identification of nonlinear systems. Under this
framework, nonlinear models can be represented as a linear
dynamic relation of the input and output variables; the rela-
tion is itself dependent on measurable time-varying signals,
commonly known as scheduling variables. These scheduling
signals express the varying operating conditions of the system.
Thus, LPV models represent an intermediate stage between
linear time-invariant (LTI) and nonlinear systems, while pre-
serving many attractive attributes of LTI systems. This simplic-
ity of LPV models allows one to apply linear optimal control
techniques to nonlinear systems represented by LPV models,
opening up the possibility of applying powerful LPV control
synthesis tools. In particular, in process systems, it has often
been observed by control engineers and modeling practitioners
that the dynamics of the process is well captured by linear
models at any given operating condition. The concept of LPV
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models, therefore, comes in very handy in order to extend the
LTI models over a wide range of varying operating conditions.

As a natural consequence of this property, LPV identification
has attracted a lot of attention in the past decade (Rugh and
Shamma (2000)), with different identification schemes devel-
oped for both LPV input-output and state-space models (Ver-
dult and Verhaegen (2005); Felici et al. (2007); Tóth et al.
(2011); Lee and Poolla (1999); Bamieh and Giarre (2002);
Verdult (2002); Casella and Lovera (2008)).

For LPV state-space model identification, to the best of authors’
knowledge, most techniques in the literature fall under the
category of parametric approaches. In parametric approaches,
the scheduling dependencies of the model coefficients are de-
scribed as a linear combination of basis functions that need to
be chosen a priori. However, the selection of these basis func-
tions remains difficult since overestimating the number of basis
functions leads to over-parameterized models and hence a large
variance in the estimates despite the low order of the model.
On the other hand, an inappropriate selection of these functions
is known to cause structural bias (see Tóth et al. (2011)). For
state-space LPV and bilinear models, parametric methods are
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based on various subspace approaches, which are extensions of
the well-accepted subspace identification methods used for LTI
systems. These methods usually require a high computational
demand due to the enormous dimension of the data matrices
involved (the growth is polynomial in the state dimension and
exponential in the scheduling variables). Verhaegen et al. pro-
posed a solution to overcome this curse of dimensionality on
the expanse of approximation of the data equations and iden-
tify LPV state-space models with affine parameter dependence
(Verdult and Verhaegen (2002)). Other subspace-based meth-
ods were later published in Felici et al. (2007); Wingerden and
Verhaegen (2008); Tanelli et al. (2011); Lovera and Mercére
(2007).

Nonparametric methods provide an alternative way to avoid
the bias-variance tradeoff by obtaining nonparametric recon-
struction of the scheduling dependencies in LPV models. In
particular, with the emergence of kernel-based techniques, a
new avenue of nonparametric identification, classification, and
data processing has appeared in the last two decades. Ker-
nels are functions that enable us to perform linear operations
in high-dimensional feature spaces, often mapping nonlinear
dependencies very efficiently using the so-called kernel trick
(Schölkopf and Smola (2002)). This has sprouted the use of
kernel-based techniques for solving different problems under
the umbrella of LPV system identification, ranging from LPV
model reduction (Rizvi et al. (2014)) to estimating coefficient
dependencies in LPV I/O models (Tóth et al. (2011)). Verhae-
gen et al. incorporated kernel methods in their earlier subspace-
based technique in order to reduce high dimensional data ma-
trices (see Verdult and Verhaegen (2005)). The identification
approaches published in Tóth et al. (2011); Abbasi et al. (2014);
Golabi et al. (2014) reported efficient kernel-based methods
employing LS-SVM for LPV I/O models; the results showed
consistent estimates of the coefficient dependencies with a very
attractive bias-variance tradeoff. A mixed parametric method
for LPV state-space identification was proposed recently in dos
Santos et al. (2014). The authors described the C matrix using
a nonparametric LS-SVM-based model, while the A matrix
was described by a parametric model. The model structure
was assumed to be in companion reachability canonical form
(CR-CF), and the coefficients were estimated using an iterative
routine.

In this work, we specifically aim to use the properties of LS-
SVM for LPV modeling of nonlinear process systems. Many
chemical processes, including high purity distillation columns,
exhothermic and non-isothermal chemical reactors, and batch
systems are inherently nonlinear. Due to their nonlinearities,
they cannot be efficiently stabilized and monitored with con-
trollers and estimators designed on the basis of linearized
models around an operating point. Sources ranging from the
Arrhenius temperature dependence of reaction rates, radiative
heat transfer phenomena, to complex reaction mechanisms
cause for the highly nonlinear behaviors in chemical processes
(Christofides and El-Farra (2005)). Increasingly, limitations of
traditional linear control and modeling methods have become
apparent in dealing with nonlinear chemical processes as pro-
cesses are required to operate over a wide range of conditions.
Multi-input multi-output (MIMO) LPV state-space models can
fill this gap by modeling the processes with a linear dynamic
relation between the process inputs and outputs, where the re-
lation itself is a nonlinear function of time-varying parameters.

This way, several linear control techniques can be easily applied
to systems represented by an LPV model.

In this paper, we present a nonparametric kernel-based identifi-
cation method for MIMO LPV state-space models with mea-
surable states; this is a common situation in several lumped
parameter models of process systems in which the states are
directly accessible for measurement. We employ LS-SVM in
order to explore the coefficient dependencies on the scheduling
variables with a good variance-bias tradeoff. We finally validate
the proposed technique on the model of an ideal continuous
stirred tank reactor (CSTR). The paper is arranged as follows.
The problem formulation is presented in Section 2. The LPV
state-space model is formulated in an LS-SVM setting and
identification algorithm is derived in Section 3. Numerical ex-
amples are provided in Section 4, where a discussion about the
results is also given. Concluding remarks are finally made in
Section 5.

2. PROBLEM FORMULATION

Consider an LPV system represented by the following discrete-
time state-space model with innovation noise model

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek,

yk =C(pk)xk + ek, (1)
where k denotes discrete time, matrices A(pk) ∈Rn×n, B(pk) ∈
Rn×nu , K(pk) ∈ Rn×ny , and C(pk) ∈ Rny×n are functions of
time-varying scheduling variables pk ∈ Rnp , and ek ∈ Rny is a
stochastic white noise process. In addition, x and y represent the
model states and sensor measurements, respectively. Assuming
that the states are available for measurement, we aim at employ-
ing nonlinear kernel functions under the LS-SVM framework in
order to estimate the functional dependencies of the state-space
matrices on the scheduling variables. We can rewrite (1) as

xk+1 = (A(pk)−K(pk)C(pk))︸ ︷︷ ︸
Ã(pk)

xk +B(pk)uk +K(pk)yk,

yk =C(pk)xk + ek, (2)
which can be reformulated as follows

xk+1 =W1Φ1(pk)xk +W2Φ2(pk)uk +W3Φ3(pk)yk,

yk =W4Φ4(pk)xk + ek, (3)
where W1,2,3 ∈Rn×nH and W4 ∈Rny×nH are unknown weighting
matrices, while matrices Φ1(pk) ∈ RnH×n, Φ2(pk) ∈ RnH×nu ,
Φ3(pk) ∈ RnH×ny , and Φ4(pk) ∈ RnH×n represent unknown
feature maps. Variable nH represents dimension of, a possibly
infinite dimensional feature space. The problem, therefore,
boils down to finding the state-space matrices dependencies
WiΦi(pk) for i = 1, · · · ,4, given the data {uk,yk,xk, pk}N

k=1,
where N is the number of data points (samples).

3. KERNEL-BASED LPV STATE-SPACE MODEL
IDENTIFICATION

The estimates of the LPV state-space matrices in the form of
WiΦi(pk) can be obtained by minimizing the following cost
function

J =
1
2

4

∑
i=1
||Wi||2F +

1
2

N

∑
k=1

e>k Γek, (4)

over W1,2,3,4, where ‖·‖F denotes the Frobenius norm, and Γ =
diag(γ1, · · · ,γn) is a diagonal weighting matrix on the residual
errors ek, and is known as the regularization matrix. The afore-
described optimization problem can be solved by introducing
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Lagrange multipliers and substituting the inner product ΦiΦ
>
i

using an a priori chosen nonlinear kernel function as shown in
Tóth et al. (2011). This is expected to give us a nonparametric
estimate of the coefficients function matrices representing the
state-space matrices of the original LPV model. We define the
Lagrangian function as
L (W1,W2,W3,W4,α,β ,e) =

J−
N

∑
j=1

α
>
j
{

W1Φ1(p j)x j +W2Φ2(p j)u j +W3Φ3(p j)y j− x j+1
}

−
N

∑
j=1

β
>
j
{

W4Φ4(p j)x j + e j− y j
}
, (5)

where α j ∈Rn, β j ∈Rny are the Lagrange multipliers at discrete
time j. Due to the convexity of the problem, the global optimum
is obtained when the derivatives are equal to zero as follows
∂L

∂α j
= 0⇒ x j+1 =W1Φ1(p j)x j +W2Φ2(p j)u j +W3Φ3(p j)y j,

(6a)

∂L

∂W1
= 0⇒W1 =

N

∑
j=1

α jx>j Φ
>
1 (p j), (6b)

∂L

∂W2
= 0⇒W2 =

N

∑
j=1

α ju>j Φ
>
2 (p j), (6c)

∂L

∂W3
= 0⇒W3 =

N

∑
j=1

α jy>j Φ
>
3 (p j), (6d)

∂L

∂W4
= 0⇒W4 =

N

∑
j=1

β jx>j Φ
>
4 (p j), (6e)

∂L

∂e j
= 0⇒ β j = Γe j, (6f)

∂L

∂β j
= 0⇒ y j =W4Φ4(p j)x j + e j. (6g)

Substituting (6a)-(6g) in (3), we can write the following
xk+1 =W1Φ1(pk)xk +W2Φ2(pk)uk +W3Φ3(pk)yk

=

{
N

∑
j=1

α jx>j Φ
>
1 (p j)

}
︸ ︷︷ ︸

W1

Φ1(pk)xk +

{
N

∑
j=1

α ju>j Φ
>
2 (p j)

}
︸ ︷︷ ︸

W2

Φ2(pk)uk

+

{
N

∑
j=1

α jy>j Φ
>
3 (p j)

}
︸ ︷︷ ︸

W3

Φ3(pk)yk, (7)

yk =

{
N

∑
j=1

β jx>j Φ
>
4 (p j)

}
︸ ︷︷ ︸

W4

Φ4(pk)xk +Γ
−1

βk︸ ︷︷ ︸
ek

. (8)

Replacing the inner-product Φi(pk)
>Φi(p j) by a kernel func-

tion k̄i(p j, pk), we further define kernel matrices Ω and Ξ as

[Ω] j,k =
3

∑
i=1

z>i ( j)k̄i(p j, pk)zi(k),

[Ξ] j,k = x>j k̄4(p j, pk)xk, (9)

where zi(k) =


xk, i = 1
uk, i = 2
yk, i = 3.

While a wide variety of kernel functions exists in the literature
to choose from, commonly used kernels include the Radial

Basis Function (RBF), polynomial or sigmoid kernels among
many others (see Schölkopf and Smola (2002)). A typical RBF
kernel, also known as the Gaussian kernel, is represented by

k̄i(p j, pk) = exp

(
−
∥∥p j− pk

∥∥2
2

2σ2
i

)
, (10)

where σi is a free kernel parameter, and ‖·‖2 represents the 2-
norm. We can now write (7)-(8) in a compact form as follows

Xk+1 = αΩ, (11)

Y = βΞ+Γ
−1

β , (12)
where Ω ∈ RN×N and Ξ ∈ RN×N are kernel matrices as defined
above, α = [α1 · · ·αN ] ∈ Rn×N and β = [β1 · · ·βN ] ∈ Rny×N

are the matrices containing the Lagrange multipliers, Xk+1 =
[x2 · · ·xN+1] ∈ Rn×N and Y = [y1 · · ·yN ] ∈ Rny×N contain the
states and outputs for the N samples, respectively. The solution
to the above equations can be obtained as follows

α = Xk+1Ω
−1, (13)

vec(β ) =
(

IN⊗Γ
−1 +Ξ

>⊗ Iny

)−1
vec(Y ), (14)

where ⊗ denotes the Kronecker product and vec(·) denotes
vectorization function, which stacks subsequent columns in
a matrix below one another; matrices IN and Iny represent
identity matrices of dimensions N and ny, respectively. The
solution (14) is obtained using the solution to the classical
sylvester equation (Bartels and Stewart (1972)). Once trained,
the estimate of the state-space matrices can be calculated by
using (6b)-(6e) as

Ãe(·) =W1Φ1(·) =
N

∑
k=1

αkx>k k̄1(pk, ·), (15a)

Be(·) =W2Φ2(·) =
N

∑
k=1

αku>k k̄2(pk, ·), (15b)

Ke(·) =W3Φ3(·) =
N

∑
k=1

αky>k k̄3(pk, ·), (15c)

Ce(·) =W4Φ4(·) =
N

∑
k=1

βkx>k k̄4(pk, ·), (15d)

where subscript e denotes estimate. Once estimates of Ã,C,K
are obtained, estimate Ae = Ãe+KeCe can be calculated accord-
ingly. This gives a nonparametric estimate of the state-space
matrices. It is noteworthy here that the parameter matrices Wi or
the basis functions Φi(·) are not accessible explicitly. What we
are able to estimate via nonlinear kernel functions is WiΦi(·).

Identification of LPV models with dynamic dependence on the
scheduling variables

Next, we consider the case, where the state-space matrices of
the LPV model have dynamic dependence on the scheduling
variables. Such an LPV state-space model can be described by

xk+1 = A(pk, ñ)xk +B(pk, ñ)uk +K(pk, ñ)ek,

yk =C(pk, ñ)xk + ek, (16)
where A(pk, ñ) = A(pk, · · · , pk−ñ) signifies the dependence of
A on ñ past values of the scheduling variables. Substituting
ek = yk −C(pk, ñ)xk in the equation for xk+1, we can rewrite
the above set of equations as

xk+1 = Ã(pk, ñ)xk +B(pk, ñ)uk +K(pk, ñ)yk,

yk =C(pk, ñ)xk + ek, (17)

1st IFAC LPVS, Grenoble, France, Oct. 7-9, 2015 ThAT1.2

Copyright © 2015 IFAC
 

87



Fig. 1. Example 1: Elements (functions) a11,a12 and a21 of the state matrix as a function of scheduling variable pk and its delayed
sample pk−1. Solid blue line represents the original elements while the circled red line indicates their estimates.

where Ã(pk, ñ) = A(pk, ñ)− K(pk, ñ)C(pk, ñ). Following the
same procedure as before, we arrive at the following equation
for the states xk for k ∈ {1, · · · ,N}

xk+1 =
3

∑
i=1

{(
N

∑
j=1

α jz>i ( j)Φ>i (p j, ñ)

)
Φi(pk, ñ)zi(k)

}
,

yk =

{
N

∑
j=1

β jx>j Φ
>
4 (p j, ñ)

}
Φ4(pk, ñ)xk +Γ

−1
βk, (18)

where zi(k) is defined as before. The kernel matrices Ω and Ξ

can then be written in a modified form as

[Ω] j,k =
3

∑
i=1

z>i ( j)k̄i(p( j, ñ), p(k, ñ))zi(k).

[Ξ] j,k = x>j k̄4(p( j, ñ), p(k, ñ))xk. (19)
The RBF kernel is calculated as follows

k̄i(p( j, ñ), p(k, ñ)) = exp

(
−‖p( j, ñ)−p(k, ñ)‖2

2

2σ2
i

)
, (20)

where p( j, ñ) =
[

p>j p>j−1 · · · p>j−ñ

]>
. Other kernels can be

defined in a similar way. By applying the kernel function over
a dynamic range of present and past values of the scheduling
variables, dynamic coefficient dependencies of the state-space
matrices on the scheduling variables can be mapped. In the
next section, we examine the performance of the developed
algorithm by means of different nonlinear examples with static
and dynamic dependence on the scheduling variables.

4. NUMERICAL EXAMPLES

4.1 Example 1

The following numerical example of a second order discrete-
time LPV state-space model is considered.

xk+1 = A(pk, pk−1)xk +B(pk)uk + ek,

with

A(pk, pk−1) =

[
p3

k + p2
k−1 pk tanh(pk−1)

p3
k + pk−1 p2

k

]
, and

B(pk) =

[
sat(pk)

sin(2π pk)+ cos(2π pk)

]
,

where

sat(pk) =


−0.5, pk <−0.5

0.5, pk > 0.5
0 otherwise.

Fig. 2. Example 1: Elements a22,b11 and b21 of the LPV state-
space matrices as a function of the scheduling variable pk.
The solid blue line represents the original functions while
the circled red line indicates their estimates.

Fig. 3. Example 1: States x1, x2 of the LPV system model.
The solid blue and the circled red lines represent the
original and simulated state response of the estimated
model, respectively. Variable k denotes time samples.
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Table 1. Example 1: Monte-Carlo simulation re-
sults for example 1: BFR values for the underlying

coefficient functions.

Fcn Mean (BFR) STD (BFR) Fcn Mean (BFR) STD (BFR)
a11 89.24% 0.532 a12 88.01% 0.718
a21 93.01% 0.098 a22 92.05% 0.188
b11 87.22% 1.102 b21 92.54% 0.021

As can be noticed, elements a11,a12 and a21 have a dynamic
dependence on pk, while a22,b11 and b21 depend only on pk. A
total of 1200 samples of scheduling variables pk ∈ [−1,1] are
generated as pk = sin(0.5k). Input signals uk are generated ran-
domly. The generated data is divided into 900 and 300 samples
for training and validation, respectively. Gaussian white noise
ek is added such that an output signal-to-noise ratio (SNR) of
25 dB is maintained. RBF kernel is chosen with its parameters
tuned as σi = 0.45 ∀i and Γ = diag{300,300}. The proposed
LS-SVM algorithm is run and the Lagrange multipliers are
estimated. Validation is performed on the validation data; we
define Best Fit Ratio (BFR) as

BFR := 100% ·max
(
‖x− x̂‖2
‖x− x̄‖2

,0
)
,

where x̂ and x̄ represent predicted states and mean value of
the states, respectively. An average output BFR of 92.05%
with a standard deviation of 1.54 is achieved for 100 runs
of the Monte-Carlo simulation. BFR statistical information
for the underlying functional dependencies of the coefficients
over p ∈ [−1,1] is tabulated in Table 1. Estimated elements
a11,a12, and a21 of the state-space matrix A that have dynamic
dependence on the scheduling variable are shown in Figure 1.
Other functions, namely a22,b11 and b21 are shown in Figure
2; the estimated functions do not show dependency on time-
shifted scheduling variables, and are hence, plotted in a two-
dimensional plot. Figure 3 shows predicted states as compared
to the actual ones. The BFR values, as well as the approximated
functional dependencies shown in the figures, demonstrate the
remarkable ability of the proposed kernel-based method to
estimate nonlinear dependencies, with both static and dynamic
dependence, with a great accuracy.

4.2 Example 2: A continuous stirred tank reactor

In the second example, the model of an ideal continuous stirred
tank reactor (CSTR) is considered. Schematic diagram of the
CSTR process is shown in Figure 4. It shows the chemical
reaction, under ideal conditions, that converts an inflowing
liquid to a product; this reaction is non-isothermal as described
in Tóth et al. (2010). A heat coolant-based exchanger is used
in order to control the temperature inside the reactor. The first
principles-based model is described as

Ċ2 =
Q1

V
(C1−C2)− k0e−

EA
RT2 C2,

Ṫ2 =
Q1

V
(T1−T2)−

UHE

AHE
(T2−Tc)+

∆Hk0

ρcρ

e−
EA
RT2 C2. (21)

A typical control objective is to regulate the concentration and
the temperature in the reactor, denoted by C2 and T2, respec-
tively. To this end, variables Q1 and Tc, which represent the
flow of inflowing liquid and the temperature of the coolant,
respectively, are used as manipulatable control signals. Steady-
state operating conditions as described in Roffel and Betlem
(2007) and Tóth et al. (2010), are tabulated in Table 2. The

Fig. 4. An ideal continuous stirred tank reactor

Table 2. Example 2: Steady-state values of vari-
ables and constants for the CSTR model

V Reactor volume 5 m3

C1 Concentration of the inflowing liquid 800 kg/m3

C2 Concentration in the reactor 213.69 kg/m3

Q1 Inflowing rate 0.01 m3/s
Q2 Outflowing rate 0.01 m3/s
k0 Pre-exponential term 25s−1

EA Activation energy of reaction 30,000 (J/kg)
T1 Temp. of inflowing liquid 353 K
T2 Temp. in the reactor 428.5 K
Tc Coolant temperature 300 K
ρ Density 800 kg/m3

cρ Specific heat 1000(J/kg.s)
∆H Heat of reaction 125,000 J/kg

UHE Heat transfer coefficient 1,000 (J/kg.s)
AHE Surface area of heat exchanger 1 m2

h Liquid level 5 m
R Gas constant 8.31 (J/mol.K)

authors in Tóth et al. (2010) show that introducing a step-
disturbance in the inflowing rate of the liquid shows different
behavior in the dynamics of the controlled variables T2 and C2
in terms of both the time constant and the relative gain when
operating at different values of the inflowing liquid concentra-
tion C1. Since the raw material can be obtained from different
sources, the concentration C1 can have differing values ranging
from 50% to 150% of the nominal value. The dynamics differs
not only in the values of the time constant and the relative
gains, the response also shows a change in the sign of the gain
exhibiting non-minimum phase behavior. It is evident that a PID
controller designed for the nominal value of C1 might easily fail
to stabilize the plant. Hence, LPV modeling naturally appears
to be a logical representational choice, using the concentration
C1 as the scheduling variable. It is assumed that the reactor
is mixed ideally, that the density and the physical properties
of the process remain constant, that the reaction is first order
with a temperature relation according to Aarrhenius law, and
that the temperature increase in the coolant over the coil can be
neglected. It is also assumed that the inflow and outflow rates,
Q1 and Q2, are kept equal to each other.

For the aforedescribed system, a pseudo random binary se-
quence (PRBS) of the two inputs are used to excite the CSTR
model. A trajectory of slowly varying scheduling variable, C1,
is generated ranging from 50% to 150% of the nominal value
given in Table 2. Gaussian white noise is added such that SNRs
of 20dB and 30dB are maintained for T2 and C2, respectively.
An RBF kernel is selected for training and regularization, and
kernel parameters are tuned to be Γ = diag{104, 104} and σ =
620. Both σ and Γ are tuned after a fine grid search over pos-
sible combinations of parameter values. An adequate sampling
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Fig. 5. (Top to bottom): Concentration in reactor C2; error in C2
estimation; reactor temperature T2; error in T2 estimation;
concentration of inflowing liquid C1. Variable C1 repre-
sents the scheduling variable. Solid blue lines represent the
actual values while dotted red lines represent the predicted
ones.

time of 60s is chosen, and the model is simulated to generate
input and output samples. Collected data is divided into training
and validation sets and the proposed LS-SVM routine is run.
Trained model is then validated on noise-free validation data
and results are shown in Figure 5; an output BFR of 85.04%
is achieved. The scheduling variable trajectory is also shown
in Figure 5. While LPV modeling based on orthogonal basis
functions (OBF) have shown comparatively higher BFR values
for validation data in Tóth et al. (2010), the OBF method uses
a polynomial interpolation of order 8. As opposed to that, in
the present method, the state order is not increased, and a good
approximation is achieved with a second order LPV state-space
approximation.

5. CONCLUDING REMARKS

This paper has introduced a non-iterative and nonparametric
identification scheme for LPV state-space models whose states
are available for measurement, a situation often occurring in
process systems, where the states are directly measurable. The
proposed technique is an extension to the LS-SVM identifica-
tion method for LPV models in an input-output form introduced
in (Tóth et al. (2011)). We utilize a dual optimization scheme
that lowers the variance of the estimates and is able to uncover
the structural dependency of a MIMO LPV model without over-
parametrization. Both static and dynamic dependence of the
state-space matrices on the scheduling variables have been ex-
plored under noisy conditions. As a case study, nonlinear model
of an ideal CSTR has been considered and the proposed model
is used to fit identification data, giving encouraging prediction
results when subjected to a fresh set of validation data. The
proposed method, which requires only a proper choice of a
kernel and tuning of the respective kernel parameters is able
to map nonlinear dependencies, thereby providing a model that
can be used to design LPV controllers.
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