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∗ Control Systems Group, Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands,

(e-mail: {p.b.cox, r.toth}@tue.nl)
∗∗Mines de Douai, IA, F-59508 Douai, France Université de Lille,
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Abstract: Many global identification approaches described in the literature for estimating linear
parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the
scheduling parameter suffer heavily from the curse of dimensionality, making identification of
moderate sized systems computationally intensive or infeasible. In this paper, we present a novel
two-step approach to estimate LPV-SS models based on a single data set with varying scheduling
signal by combining 1) LPV correlation analysis, and 2) a deterministic LPV realization scheme.
Step 1 includes the estimation of the sub-Markov parameters of the system using correlation
analysis of the involved signals. Subsequently, for Step 2, this paper presents a novel basis
reduced exact Ho-Kalman like realization scheme, which uses only sub parts of the extended
Hankel matrix. Therefore, the computational complexity is significantly reduced compared to
the full scheme. To demonstrate that the basis reduction does not lead to a loss in performance,
a simulation study is provided.

Keywords: System identification, linear parameter-varying systems, state-space representation,
correlation analysis, infinite impulse response.

1. INTRODUCTION

Identification and control of linear parameter-varying
(LPV) systems has received considerable attention in re-
cent years (e.g., Lu and Wu, 2004; van Wingerden and
Verhaegen, 2009; Mohammadpour and Scherer, 2012), be-
cause the LPV model class offers a framework for mod-
elling physical or chemical processes (e.g., Groot Wassink
et al., 2005; Veenman et al., 2009; Bachnas et al., 2014)
that exhibit parameter variations due to non-stationary
or nonlinear behaviour. Similarly to linear time-invariant
(LTI) systems, the LPV model class considers a linear
signal relation, however, the parameters of this relation
are functions of a measurable, time-varying signal, the
scheduling variable, denoted as p. This parameter varia-
tion makes it possible to embed both non-stationary and
nonlinear behaviour of the underlying physical or chemical
process. The LPV modelling paradigm originates from
the need of finding model structures, which are of low-
complexity and accurate to represent the nonlinear aspects
of systems during control design. Most available control
solutions are based on the assumption of having an LPV
state-space (SS) model, in particularly with static and
affine dependence on the scheduling signal (e.g., Moham-
madpour and Scherer, 2012). These LPV-SS models can
be parsimoniously parameterized in the multi-input multi-
output (MIMO) case compared to LPV input-output (IO)
models. However, as in the LTI case, the identification of
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LPV-SS models from IO data records is nonunique as,
possibly infinitely many, different SS realizations of the
data relations can be found. Furthermore, in the LPV-
case, realizing LPV-SS models from LPV-IO models is
computationally expensive and will, in generally, result in
rational and dynamic dependence of the resulting model
on the scheduling variable or in a non-minimal state real-
ization (Tóth, 2010). Hence, despite LPV-IO identification
is advanced, it cannot support control synthesis well.

In the LTI case, many identification methods based on
IO to SS realization schemes are known, commonly re-
ferred to as subspace identification (SID) approaches. Un-
der the assumption that data from the system is avail-
able with a varying scheduling trajectory, i.e., under the
global identification setting, extensions of LTI methods to
the LPV case can be found for the Ho-Kalman realiza-
tion (Tóth et al., 2012), LPV-SS multi-variable output-
error state-space (MOESP) approach for periodic sig-
nals (Felici et al., 2006), LPV-SS canonical variate analysis
(CVA) (Larimore, 2013), LPV “optimal” predictor-based
SID (PBSIDopt) (van Wingerden et al., 2009), and an

iterative subspace scheme (Lopes dos Santos et al., 2007),
to mention some. Unfortunately, these approaches suffer
heavily from the curse of dimensionality and result in
ill-conditioned estimation problems with high parameter
variances, therefore, the aforementioned approaches are
computationally inefficient. Consequently, a common as-
sumption to reduce dimensionality is that the excitation,
in terms of the variation of p, is periodic or white. However,
such an assumption is not always practically feasible. To
tackle the ill-conditioned estimation problem and to reduce
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the variance on the estimated parameter in van Wingerden
et al. (2009) a kernel based regularization technique has
been proposed, in which an additional computationally
expensive kernel selection step is used, as well as cross-
validation for tuning the regularization parameter.

The interesting objective is how to achieve a computa-
tionally efficient fusion of the advanced LPV-IO model
identification techniques and the available results on state-
space model estimation. This paper presents a novel two-
step method of identifying an LPV-SS system by 1) es-
timating the Markov coefficients of the LPV impulse re-
sponse representation using correlation analysis (CRA),
and 2) use the estimated coefficients to create an LPV-SS
realization with a Ho-Kalman like method. In the first
step, a simplified CRA approach is taken to estimate the
Markov coefficients, which provides a relatively efficient
method to separate estimation of these coefficients at the
cost of the input and scheduling signals being restricted
to white noise sequences. To overcome this assumption,
we are currently investigating to include a pre-whitening
filter, similar to the LTI case, to handle general input and
scheduling signals. Alternatively, any other LPV-IO finite
impulse response estimation technique (e.g., Mohammad-
pour and Scherer, 2012) may be used in the first step,
which can increase the computational demand. For the
second step, a novel basis reduced Ho-Kalman realization
scheme is proposed. The advantage of this contribution is
the drastic reduction of the amount of coefficients used
in the realization and, therefore, the decreased amount of
coefficients to be estimated in the first step.

Preliminaries and the notation used throughout the paper
are defined in Section 2. Section 3 introduces the pro-
posed correlation analysis method. The bases reduced Ho-
Kalman realization is presented in Section 4. In Section 5,
the performance of the full identification scheme is demon-
strated on a randomly generated LPV-SS model, followed
by some conclusions and final remarks in Section 6.

2. PRELIMINARIES

2.1 The LPV State-Space Model Structure

Consider a multiple-input multiple-output, discrete-time
linear parameter-varying data-generating system, defined
in terms of the following first-order difference equation,
i.e., the LPV-SS representation:

qx = A(p)x+ B(p)u, (1a)

y = C(p) x+D(p)u+ w, (1b)

where x : Z → X = Rnx is the state variable, y :
Z → Y = Rny is the measured output signal, u : Z →
U = Rnu denotes the input signal, p : Z → P ⊆ Rnp

is the scheduling variable, w : Z → Rny is a zero-mean
stationary noise processes, and q is the forward time-shift
operator, e.g., qx(t) = x(t+ 1) where t ∈ Z is the discrete
time. Let the signals u, p, w be sample paths (realizations)
of the respective stochastic processes u,p,w. Then, x
and y obtained from (1) are sample paths of stochastic
processes x,y which satisfy qx = A(p)x + B(p)u, and
y = C(p)x + D(p)u + w, with qx(t) = x(t + 1) for all
t ∈ Z. The stochastic processes u,p are independent of w
and, in addition, the signals u, p, w, y are assumed to have
left compact support. The matrix functions A(·), ...,D(·),
defining the SS representation (1), are affine combinations
of analytic functions in the scheduling variable p, given by

A(p) = A0 +

nψ∑
i=1

Aiψi(p), B(p) = B0 +

nψ∑
i=1

Biψi(p),

C(p) = C0 +

nψ∑
i=1

Ciψi(p), D(p) = D0 +

nψ∑
i=1

Diψi(p),

(2)

where ψi(·) : P → R are analytic functions on P and
{Ai, Bi, Ci, Di}

nψ
i=0 are constant matrices with appropriate

dimensions. Additionally, for well-posedness, it is assumed
that {ψi}

nψ
i=1 are linearly independent bases on P and

are normalized w.r.t. an appropriate norm or inner prod-
uct (Tóth et al., 2012).

2.2 Impulse Response of an LPV System

A stable LPV-SS model (1) has an equivalent infinite
impulse response (IIR) representation (Tóth, 2010), which
characterizes the dynamic mapping between u, p and y as
a convolution in p and u, as given in Lemma 1.

Lemma 1. Any asymptotically stable 1 , discrete-time LPV
system has a convergent series expansion in terms of the
pulse-basis {q−i}∞i=0 and coefficients hi∈Rny×nu , given by

y =
∞∑
i=0

(hi � p)q−iu+ w, (3)

where the operator � : (R,PZ) → RZ
∞ denotes (hi �

p) = hi(p(t + τ1), . . . , p(t − τ2)) with τ1, τ2 ∈ Z, w is the
noise process, τ1 ≥ −τ2 (commonly τ1, τ2 ≥ 0), and R
defines the set of all real polynomial functions with finite
dimensional domain.

For a stable, discrete-time, LPV system represented by (1),
the IIR coefficients {(hi � p)}∞i are given by

y = D(p)︸ ︷︷ ︸
h0�p

u+ C(p)B(q−1p)︸ ︷︷ ︸
h1�p

q−1u+

C(p)A(q−1p)B(q−2p)︸ ︷︷ ︸
h2�p

q−2u+ · · ·+ w, (4)

where the coefficients hi will converge to the zero function
as i → ∞. These IIR coefficients are also known as the
Markov coefficients. For notional ease, define ψi(p) = ψi

and the signal vector ψ =
[

1 ψ1 · · · ψnψ
]> ∈ Rnψ . The

Markov coefficients can be written as

C(p)A(q−1p) · · · A(q−(m−1)p)B(q−mp) =
nψ∑
i=0

nψ∑
j=0

· · ·
nψ∑
k=0

nψ∑
l=0

CiAj · · ·AkBlψi
←−
ψ

(1)
j . . .

←−
ψ

(m)
l , (5)

where the individual products CiAj · · ·AkBl are the sub-

Markov parameters for m = 1, 2, . . . and
←−
[·](τ) denotes the

signal [·] shifted τ steps backwards in time, i.e.,
←−
ψ

(τ)
i =

q−τψi. The latter notation is used to denote the effect of
the time-shift operator in a product form. The Markov
coefficients in (4) are independent of the parametrization
of the matrix functions, while the sub-Markov parameters
are dependent on the parametrization of the functional
dependencies in (2).

1 An LPV system, represented in terms of (1), is called asymptot-
ically stable, if for all trajectories of {u(t), p(t), y(t)} satisfying (1),
with u(t) ≡ 0 for t ≥ 0, w(t) ≡ 0 and p(t) ∈ P, it holds that
limt→∞ |y(t)| = 0.
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3. CORRELATION ANALYSIS

The first step of the proposed identification scheme is
to estimate the sub-Markov parameters via correlation
analysis (CRA). CRA results in an estimation procedure
which grows linearly in the number of data points and is
used to estimate each parameter individually. Hence, the
correlation based estimation method has a low computa-
tional load. The estimated sub-Markov parameters give an
overall estimate of the dynamics in an IIR form, which, in
the next step, is transformed to an SS form, as given in
Section 4. For CRA, the following assumptions are taken:

A1 The noise process w in (3) is white with a Gaussian
distribution, i.e., w ∼ N (0,Σ2

w) where Σ2
w ∈ Rny×ny

is the covariance.
A2 The input process u is a white noise process with

finite variance, i.e., var(u) = Σ2
u.

A3 Each process ψi , ψi(p) is assumed to be a white
noise process with an additive constant, i.e., ψi =

ψ̃i + c where ψ̃i has finite variance (σ2
ψ0

= 1,

var(ψ̃i) = σ2
ψi

for i = 0, 1, . . . , nψ) and c ∈ R.

The processes ψ̃i are mutually independent and ψ̃i
is independent of u.

The last assumption is not over restrictive, e.g., if each
ψi is a function of pi only and the analytic function ψi
is odd and bounded with ψ̃i(0) = 0 and it is driven by
a white noise scheduling signal pi with finite variance,
then A3 is satisfied. In addition, the constant c of A3
will be absorbed in the matrices A0, . . . , D0 during the
identification process. The first step in the CRA is to
define the k-dimensional cross-correlation. In the sequel, ψ
denotes the process [ 1 ψ1 · · · ψnψ ]>. Additionally, in A3,
Ivs denotes the set {s, s+ 1, · · · , v}.
Definition 2. The k-dimensional cross-correlation func-
tion for the stationary signals (u,y,ψ) is defined as

Ryψs1 ···ψsnu(τs1 , . . . , τsn , τu) =

E
{

y
←−
ψ

(τs1 )
s1 · · ·

←−
ψ

(τsn )
sn

(←−u (τu)
)>}

,

where E{x} denotes the expected value of x, si is a specific
index sequence with s1, . . . , sn ∈ Inψ0 , and τsi ∈ Z+

0 is the
time shift associated with the specific basis index si.

Theorem 3. In case A1-A3 hold and the output signal is
generated by a stable LPV system (1) with dependency
structure (2), then all sub-Markov parameters satisfy

Cs1As2As3 · · ·Asn−1Bsn =

Ryψs1 ···ψsnu(τs1 , . . . , τsn , τu)

σ2
ψs1
· · · σ2

ψsn

Σ−2u , (6)

and

Ds1 =
Ryψs1u

(0, 0)

σ2
ψs1

Σ−2u , (7)

where τsi = i − 1 and τu = τsn are the time-shifts of
the signals ψs1 , . . . ,ψsn ,u for a specific index sequence

s1, . . . , sn ∈ Inψ0 .

The proof of Th. 3, which follows from direct calculations
of the covariance of (4), is not given due to space re-
strictions. An approximation of the cross-correlation and
variances in Theorem 3 can be used to estimate the sub-
Markov parameters by a finite measured dataset DN =

{u(k), p(k), y(k)}Nk=1. The variance of the involved signals
is estimated by the unbiased sample variance and the k-
dimensional cross-correlation is approximated via

R̂yψi···ψju(τi, . . . , τj , τu) =

1

N − τu + 1

N∑
t=τu+1

y
←−
ψ

(τi)
i · · ·

←−
ψ

(τj)
j

(←−u (τu)
)>

. (8)

It is assumed that the time series u,ψ,x,y,w are such
that limN→∞ R̂yψi···ψju(·) = Ryψi···ψju(·). For example,
this assumption holds with probability 1 if u,ψ,x,y are
jointly ergodic. Joint ergodicity has been proven in case ψ
is a random binary noise and u is white noise (Petreczky
and Bako, 2011).

The proposed CRA method may need a large dataset for
accurate parameter estimates, depending on the number
of sub-Markov parameters we wish to use in the second
step. However, the proposed version of Kalman-Ho allows
a significant reduction of the number of sub-Markov pa-
rameters needed to be estimated, thus decreasing the size
of the required dataset.

4. LPV-SS MODEL REALIZATION

In this section, a Hankel based realization algorithm for
LPV-SS models is outlined. The realization reconstructs
the system matrices of the LPV-SS model using the sub-
Markov parameters of the IIR. This realization scheme
can also be used to efficiently reconstruct the model
order (Tóth et al., 2012).

4.1 The Extended Hankel Matrix

The proposed realization algorithm is an extension of
the well-known LTI Ho-Kalman realization scheme, using
the sub-Markov parameters of the IIR (4) under the
assumption that the underlying system has an LPV-
SS realization in the form of (1) with the dependency
structure of (2). As in Tóth et al. (2012), define

M1 =
[
B0 · · · Bnψ

]
, (9a)

Mj =
[
A0Mj−1 · · · AnψMj−1

]
, (9b)

then the k-step extended reachability matrix is given as

Rk = [M1 · · · Mk ] , (10)

where Rk ∈ Rnx×
(
nu

∑k

l=1
(1+nψ)

l
)
. Analogously to the

extended reachability matrix, define

N1 =
[
C>0 · · · C>nψ

]>
, (11a)

Nj =
[

(Nj−1A0)> · · · (Nj−1Anψ )>
]
, (11b)

then the k-step extended observability matrix is given as

Ok =
[
N>1 · · · N>k

]>
, (12)

where Ok ∈ R
(
ny

∑k

l=1
(1+nψ)

l
)
×nx . The extended Hankel

matrix of (1) can be defined as

Hij = OiRj , (13)

where Hij ∈ R
(
ny

∑i

l=1
(1+nψ)

l
)
×
(
nu

∑j

l=1
(1+nψ)

l
)
. Note

that without significant loss of generality, in the sequel
we assume that the LPV system has a jointly minimal SS
representation in the form of (1) with affine dependence
on ψi’s, i.e., (1) is (structurally) reachable and observable
in the sense that rank(Mnx

) = nx and rank(Nnx
) = nx. In
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this case, rank(Hij) = nx, for i, j ≥ nx. For a realization
algorithm of such a minimal representation based on the
extended Hankel matrix see Tóth et al. (2012); Petreczky
and Mercere (2012).

4.2 A Basis Reduced Algorithm for Ho-Kalman Realization

In the Hankel matrix, many entries are repetitive elements
of the same sub-Markov parameters. By selecting only the
necessary, i.e., non repetitive parts, a bases reduced, ex-
act, deterministic Ho-Kalman like approach can be found,
which drastically decreases the computational load, com-
pared to the full realization scheme of Tóth et al. (2012).
Similar reduced realization scheme has been proposed for
bilinear systems (Petreczky and Peeters, 2010) or as model
order reduction scheme for linear switched systems (Bas-
tug et al., 2014). First, we define a notation to indicate
which sub-Markov parameters of the extended reachabil-
ity, observability and Hankel matrices are selected. Define
[Ivs ]n as the set of all sequences of the form (i1, . . . , in)
with i1, . . . , in ∈ Ivs . The elements of Ivs will be viewed as
characters and the finite sequences of elements of Ivs will
be referred to as strings. Then [Ivs ]n is the set of all strings
containing exactly n characters. Then a selection with
n ≥ 0 is constructed from α ∈

[
Inψ0
]n
0

with
[
Inψ0
]n
0

= {ε} ∪
Inψ0 ∪ . . . ∪

[
Inψ0
]n

and ε denoting the empty string. As an

example,
[
I10
]2
0

= {ε, 0, 1, 00, 01, 10, 11}. Define by #(α)
the amount of characters of a single string in the set. Ap-
plying a sequence α will give the ordering of multiplication
of matrices {Ai}

nψ
i=0 for #(α) ≥ 1, given by

Aα =

#(α)∏
i=1

A[α]i
= A[α]#(α)

· · ·A[α]2
A[α]1

, (14)

where [α]i denotes the i-th character of the string α. The
product (14) for the empty set α = ε is Aα = I.

To characterize the selection of one single parameter in
the Hankel matrix (13), define the (i, j)-th element of a
sub-Markov parameter by

C [i]
γ AαB

[j]
β , (15)

which corresponds to the (i, j)-th element of the matrix
CγAαBβ ∈ Rny×nu for α ∈ [Inψ0 ]n0 , β ∈ Inψ0 , γ ∈ Inψ0 .

Then, a basis selection of the extended reachability matrix
of (10) is denoted by

ς =
{

(ας1, β1, j1), · · · , (αςnr
, βnr , jnr)

}
, (16)

where ας1, . . . , α
ς
nr
∈
[
Inψ0
]n
0
, β1, . . . , βnr ∈ Inψ0 , and

j1, . . . , jnr ∈ Inu
0 . The length of a string αςi may vary. Using

this basis, a sub-matrix of the extended reachability matrix
is selected, defined by

Rς =
[
Aας1B

[j1]
β1
· · · Aαςnr

B
[jnr ]
βnr

]
, (17)

where Rς ∈ Rnx×nr and [jk] denotes the jk-th column
of the matrix AαkBβk ∈ Rnx×nu for k = 1, . . . , nr. For
example, the basis selection given by

ς = {(ε, 0, 1), (3, 2, 1), (032, 1, 3)} ,
results in the sub-matrix of the extended reachability
matrix given by

Rς =
[
B

[1]
0 A3B

[1]
2 A2A3A0B

[3]
1

]
.

Analogously, a basis of the extended observability ma-
trix (12) can be selected by

ν =
{

(i1, γ1, α
ν
1), · · · , (ino , γno , α

ν
no

)
}
, (18)

where αν1 , . . . , α
ν
no
∈
[
Inψ0
]n
0
, γ1, . . . , γno

∈ Inψ0 , and

i1, . . . , ino ∈ Iny

0 . This defines the sub-matrix of the extend
observability matrix, as

Oν =

[ (
C

[i1]
γ1 Aαν1

)>
· · ·
(
C

[jno ]
γno

Aανno

)> ]>
, (19)

where Oν ∈ Rno×nx and [ik] denotes the ik-th row of
matrix CγkAαk ∈ Rny×nx for k = 1, . . . , no. If the sets
ς and ν are chosen appropriately, and if (1) is jointly
minimal, then rank(Rς) = nx, rank(Oν) = nx, and hence
rank(OνRς) = nx. For this case define

Hν,ς = OνRς , Hν,ς,k = OνAkRς ,
Hν,k = OνBk, Hk,ς = CkRς ,

(20)

where Hν,ς ∈ Rno×nr , Hν,ς,k ∈ Rno×nr , Hν,k ∈ Rno×nu

and Hk,ς ∈ Rny×nr . A realization from the sub-Hankel
matrices (20) is given in Theorem 4 using singular value
decomposition (SVD).

Theorem 4. Define a column and row selection nr, no ≥ nx
with rank(Hν,ς) = nx and compute the SVD

Hν,ς = UΣV >. (21)

Denote by Un, Vn the first n columns of the matrices
U ,V , respectively and Σn the upper n by n matrix of Σ.
Consider the matrices

Âk = Ô†νHν,ς,kR̂†ς , B̂k = Ô†νHν,k,
Ĉk = Hk,ςR̂†ς ,

(22)

with the pseudo inverses R̂†ς = Vnx
Σ
−1/2
nx and Ô†ν =

Σ
−1/2
nx U>nx

for k∈Inψ0 . The set of matrices {Âi,B̂i,Ĉi,Di}
nψ
i=0

defines an LPV-SS model

qx = Â(p)x+ B̂(p)u, y = Ĉ(p)x+ D̂(p)u+ w,

Â(p) = Â0 +

nψ∑
i=1

Âiψi(p), B̂(p) = B̂0 +

nψ∑
i=1

B̂iψi(p),

Ĉ(p) = Ĉ0 +

nψ∑
i=1

Ĉiψi(p), D(p) = D0 +

nψ∑
i=1

Diψi(p)

which is isomorphic to the original LPV-SS representation
(1), i.e., there is a constant, nonsingular transformation
matrix T ∈ Rnx×nx , such that,

TÂi = AiT, T B̂i = Bi, Ĉi = CiT, (23)

for all i ∈ Inψ0 .

The proof of Th. 4, which follows from the properties of
the SVD on the Hankel matrix (21), is not given due to
space restrictions.

If the sub-Hankel matrix Hν,ς is filled by the estimated
sub-Markov parameters, then the state order nx can be
picked based upon the magnitude of the singular values,
i.e., an approximate realization (e.g., see Kung, 1978).

This bases reduced realization can considerably decrease
the size of the Hankel matrix and, therefore, reducing the
computational load, compared to the realization on the
full Hankel matrix (13). In the basis reduced realization,
the SVD is only applied on a no × nr matrix instead of

a matrix with size ny
∑i
l=1(1 + nψ)l × nu

∑j
l=1(1 + nψ)l
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Table 1. The mean and standard deviation (std) of the BFR, VAF, and execution time of the estimation algorithm per Monte Carlo run
for different SNRy = {∞, 40, 25, 10, 0}dB. The performance criteria are based on the simulated output of the estimated model on the
validation dataset and NMC = 100 Monte Carlo simulations are performed.

Hν,ς H2,2

∞dB 40dB 25dB 10dB 0dB ∞dB 40dB 25dB 10dB 0dB

BFR [%]
mean 83.40 82.55 83.26 82.17 77.20 83.02 82.38 83.46 81.67 76.46
std 4.163 4.551 4.938 4.753 5.527 4.442 5.069 4.225 4.846 6.117

VAF [%]
mean 97.62 97.31 97.56 97.26 95.47 97.43 97.24 97.65 97.09 95.21
std 1.295 1.602 1.457 1.564 2.336 1.432 1.596 1.153 1.565 2.524

Time Elapsed [s]
mean 2.600 2.676 2.482 2.370 2.401 18.85 16.59 17.47 16.86 16.70
std 2.174 · 10−11 3.262 · 10−2 0.2018 0.9189 3.317 0.9581 0.2595 1.162 0.5729 0.4682

in the full realization case. Note that no × nr, in the
minimal case, is nx × nx. The amount of sub-Markov
parameters in (20) is nonr +(1+nψ)(nonr +nonu +nynr),
which increases linearly in all parameters nψ, nr, no, nu, ny,

compared to ny
∑i
l=1(1 + nψ)l · nu

∑j
l=1(1 + nψ)l, which

grows exponentially with increasing i and j and polyno-
mially with increasing nψ. To illustrate, the realization of
a system with input/output dimension ny = nu = 2, state
dimension nx = 4, and scheduling dimension nψ = 5, the
full Hankel matrix H2,2 has 7056 elements, while the sub-
Hankel matrices for nr = no = 10 have only 940 elements.
Note that a realization based on these Hankel matrices is
equivalent and it is in both cases an exact realization.

5. SIMULATION EXAMPLE

In this section, the performance of the developed two-step
identification procedure is demonstrated via a Monte Carlo
based simulation example using a randomly generated
stable LPV system defined in the form of (1).

5.1 Data-Generating System and Model Structure

The data-generating system is randomly generated and
has output and input dimension ny = nu = 2, scheduling
dimension nψ = 5, minimal state dimension nx = 4,
and the known basis functions are ψi = pi. The system
is asymptotically stable on the domain ψi ∈ [−1 1] for
i ∈ Inψ1 with a quadratic Lyapunov function defined by
a constant symmetric matrix (Scherer, 1996). The LPV
system is available at the website of the authors.

The identification dataset is constructed from white input
signals with uniform distribution u ∼ U(−1, 1), and white
scheduling signals with random binary distribution pi =
{−0.9, 0.9} each of length N = 5 · 103. The output y is
corrupted by an additive white Gaussian noise w ∈ Rny

where the variance is chosen such that the signal-to-noise-
ratio (SNR)

SNR[i]
y = 10 log

∑N
t=1(y[i](t))2∑N
t=1(w[i](t))2

,

varies for different Monte Carlo experiments: SNR[i]
y =

{40, 20, 10, 0} dB for all i = 1, . . . , ny. The [i] denotes
the i-th channel, i.e., element of the vector signals, and

SNR[i]
y is the corresponding SNR on the output y[i].

The performance of the scheme is tested on a noiseless
validation data set of length Nval = 200, with signals

u(t) =

[
0.5 cos(0.035t)
0.5 sin(0.035t)

]
+ δu(t),

pi(t) = 0.25− 0.05i+ 0.4 sin

(
0.035t+

2iπ

5

)
+ δpi(t)

where δu(t) ∈ Rnu , δpi(t) ∈ R are i.i.d. sequences with
U(−0.15, 0.15) for i = 1, . . . , np. The simulated output ŷ
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Fig. 1. The estimated unfolded impulse response and the true
impulse response. The estimation dataset contained N = 5 ·103

data points with an SNR
[i]
y = 25dB additive white noise on the

output.

of the estimated model is compared to the true output y
of the data-generating system by means of the best fit rate
(BFR) and the variance accounted for (VAF) 2

BFR=max

{
1−

1
N

∑N
t=1‖y(t)− ŷ(t)‖2

1
N

∑N
t=1‖y(t)− ȳ‖2

, 0

}
100%, (24)

VAF=max

{
1−

1
N

∑N
t=1‖y(t)− ŷ(t)− ē‖22
1
N

∑N
t=1‖y(t)− ȳ‖22

, 0

}
100%, (25)

using the noise free validation data set with different
realizations of u, p from the ones used in the estimation
dataset. In (24), ȳ defines the mean of the true noiseless
output y(t), ŷ(t) is the simulated output, and ē in (25)
is the mean of the error between y(t) and ŷ(t). To study
the statistical properties of the developed identification
scheme, a Monte Carlo study with NMC = 100 runs is
carried out, where in each run, a new realization of the
input, scheduling, and noise sequences are taken under the
above given specifications. The Monte Carlo study shows
the performance of the following cases:

C1 Correlation analysis (CRA) with basis reduced Ho-
Kalman LPV-SS realization;

C2 Correlation analysis (CRA) with full Ho-Kalman
LPV-SS realization.

In the realization step, the extended Hankel matrix is
constructed from the 2-step observability matrix and
the 2-step reachability matrix, i.e., H22. For the ba-
sis reduced realization no = nr = 10 bases are used,
where the controllability matrix is spanned by ς =
{(ε, 0, 1), (ε, 1, 1), (ε, 1, 2), (ε, 2, 1), (ε, 3, 1), . . . , (ε, 5, 2)} and
the observability is spanned by ν = {(1, 0, ε), (2, 0, ε), . . . ,
(2, 4, ε)}. The basis of the Hankel matrix is selected by
using the entries of the full Hankel matrix with the largest
absolute value. The case study is performed on a Macbook
pro, late 2013 with 2.6GHz Intel Core i5 and Matlab 2014b.

2 Usually the BFR and VAF are defined per channel. Equations (24-
25) are the average of these performance criteria over all channels.
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5.2 Obtained Results

In Fig. 1, two estimated impulse responses are given. Note
that the figure is a 2D version of the multidimensional IIR
for a particular scheduling variable. The CRA is capable
of identifying the model parameters. However, parameters
with larger time-shifts, hence more multiplications of the
scheduling signal ψsi , show larger variance due to the large
amount of multiplications of the variance σψsi in (6), which
is replaced by its estimate in the identification approach.

Table 1 shows the mean and standard deviation of the
BFR, the VAF, and the time elapsed per case for NMC =
100 Monte Carlo simulations. The table indicates that the
performance, in terms of the average BFR or VAF, of
the basis reduced realization scheme is slightly better in
most noise circumstances, but not significantly. This slight
improvement may be caused by the selection of the basis,
which selects the largest absolute entries. Consequently,
the selection of bases has lower relative variance on the es-
timated parameters compared to the other bases, e.g., the
noise has a lower relative contribution in the basis reduced
Hankel matrix Hν,ς then in the full Hankel matrix H2,2.
However, a significant reduction, appropriately 7 times, in
computation time is seen for the basis reduced scheme, due
to the reduced amount of estimated parameters, roughly
7.5 times less.

The obtained results show that the presented estimation
and realization schemes are capable of identifying the
original LPV system. In addition, the estimation time can
be significantly reduced by selecting an appropriate basis
without the loss of performance.

6. CONCLUSION

In this paper, we have presented a numerically attractive
LPV-SS identification and realization algorithm. The sub-
Markov parameters are obtained via CRA based upon
input-scheduling-output observations. These parameters
are used to build the sub-Hankel matrices, on which the
deterministic realization scheme is executed to recover an
LPV-SS model. An advantage of the proposed CRA esti-
mation algorithm is its simplicity and low computational
complexity, as the algorithm is linear in the number of
samples and in the number of parameters. The Ho-Kalman
like realization scheme reduces significantly the computa-
tional complexity and the amount of parameters to be
estimated, without losing performance. The simulation
study has shown that the two-step identification scheme
is capable of identifying a randomly generated MIMO
LPV-SS model. As future work, we would like to 1) make
the assumptions (A1-A3) on the data set more realistic,
and 2) to use the outcome of the proposed algorithm
as a starting point of a non-linear gradient-based search
algorithm, in order to get a maximum likelihood estimate.
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IQC-Based LPV controller synthesis for the NASA
HL20 atmospheric re-entry vehicle. In Proc. of the
AIAA Guidance, Navigation, and Control Conf., 1–16.
Chicago, Illinois, USA.

1st IFAC LPVS, Grenoble, France, Oct. 7-9, 2015 ThAT1.3

Copyright © 2015 IFAC
 

96


