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Abstract: In this paper, a data-driven technique for linear parameter-varying (LPV) controller
design is discussed. The proposed method allows to synthesize directly from data an LPV
controller in input-output (IO) form, without the need to identifying a model of the plant. In
the state of the art methods, the controller structure must be given a-priori. Instead, in the
proposed approach both the controller structure and parameters are automatically determined
based on a set of experimental measurements. The effectiveness of the method is demonstrated
on a numerical example.
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1. INTRODUCTION

In many applications, nonlinear plants can be modeled
as linear parameter-varying (LPV) systems. LPV systems
correspond to linear systems whose dynamics vary de-
pending on some measurable time-varying variables, the
so-called scheduling signals. In the literature, it has been
shown that accurate and low complexity models of LPV
systems can be efficiently derived from data using input-
output (IO) representation based model structures (see
Bamieh and Giarre (2002); Laurain et al. (2010); Piga
et al. (2015)), while state-space approaches appear to be
affected by the curse of dimensionality and other approach-
specific problems, see e.g., van Wingerden and Verhaegen
(2009). However, most of the control synthesis approaches
are based on a state-space representation of the system
dynamics (except a few recent works like Ali et al. (2010);
Cerone et al. (2012); Wollnack et al. (2013)), while state-
space realization of real world scale LPV-IO models is
difficult to accomplish in practice due to the complexity
of the corresponding realization theory (see Tóth (2010)
for more details). Moreover, the way the modeling error
affects the control performance is unknown for most of
the design methods and little work has been done on
including information about the control objectives into the
identification setting.

To overcome this problem, direct data-driven control de-
sign, i.e. addressing control design from experimental data
without first identifying a model of the system, appears to
be an attractive alternative methodology. This approach
would permit to avoid the critical (and time-consuming)
approximation steps related to modeling, identification
and state-space realization and it would result in an au-
tomatic procedure, in which only the desired closed-loop
behavior has to be specified by the user. Unfortunately,
most of the contributions in this field are devoted to the
linear time-invariant (LTI) framework, see e.g., Campi
et al. (2002); Formentin et al. (2013a); Bazanella et al.
(2011); Formentin and Karimi (2013, 2014).

As far as the authors are aware, the contributions to-
wards direct data-driven LPV controller design are only
few. The first attempt has been presented in Formentin
and Savaresi (2011), where data-driven gain-scheduled
controller design has been proposed to realize a user-
defined LTI closed-loop behavior. Although satisfactory
performance has been shown for slowly varying scheduling
trajectories, this methodology is far from being generally
applicable to LPV systems. As a matter of fact, in the
method presented in Formentin and Savaresi (2011), the
controller must be linearly parameterized and the reference
behavior must be LTI. The latter requirement represents a
strict limitation, since an LTI behavior might be difficult
to realize in practice, as it may require too demanding
input signals and dynamic dependence of the controller on
the scheduling signal. The recent work in Novara (2013)
also deals with LPV direct data-driven control in a de-
terministic set-membership setting and proposes an in-
teresting solution. Unfortunately, also this method suffers
from some practical limitations. Specifically, the system
must be given in a state-space form with measurable state
vector, the optimal (unknown) controller is assumed to be
Lipschitz continuous and the noise energy is supposed to
be bounded with a known bound. Additionally, Formentin
et al. (2013b) introduces a model-reference rationale for
direct controller tuning in a stochastic framework, with IO
system representation, but without strong assumptions on
the noise and the optimal controller. Unlike Formentin and
Savaresi (2011), the reference behavior may be LPV. In
that contribution, the controller structure was fixed, that
means that both the controller order and the functional
dependence on the scheduling parameters were given a-
priori. This is not realistic in most practical situations,
where finding the correct controller parameterization to
achieve given closed-loop requirements requires accurate
knowledge of the system dynamics.

In this paper, the approach in Formentin et al. (2013b) is
extended for the case where also the structure is needed
to be selected from data. The recent results in data-driven
LPV model structure selection in Tóth et al. (2011); Lau-
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Fig. 1. Data-driven LPV control configuration: the pro-
posed closed-loop behavior matching scheme.

rain et al. (2012) employing Least-Squares Support Vector
Machines (LS-SVM, see Suykens et al. (2002)) are here
exploited. Like in Formentin et al. (2013b), the controller
synthesis problem is formulated as an optimization prob-
lem, and instrumental-variable (IV) based identification
techniques are used to efficiently cope with the noise af-
fecting the signal measurements. Then, the controller will
be found through convex optimization only.

The remainder of the paper is as follows. The formulation
of the design problem is provided in Section 2, whereas
Section 3 outlines the main idea behind the proposed
methodology. Then, in Section 4 the technical derivation of
the method is provided. The effectiveness of the proposed
method is shown on a numerical example in Section 5,
where it is also compared to the performance of the state
of the art approach in Formentin et al. (2013b).

2. PROBLEM FORMULATION

Consider the one degree-of-freedom (DOF) control archi-
tecture depicted in Fig. 1. Let Gp denote the unknown
single-input single-output (SISO) LPV system to be con-
trolled, described by the difference equation

A(p, t, q−1)yo(t) = B(p, t, q−1)u(t), (1)

where u(t) ∈ R is the input signal, yo(t) ∈ R is the
noise-free output and p(t) ∈ P ⊆ Rnp is a vector of np
(exogenous) measurable scheduling variables. From now
on, the case of np = 1 will be considered in order to keep
the notation simple. In (1), A(p, t, q−1) and B(p, t, q−1)
are polynomials in the backward time-shift operator q−1

of finite degree na and nb, respectively, i.e.,

A(p, t, q−1)=1+

na∑
i=1

ai(p, t)q
−i, B(p, t, q−1)=

nb∑
i=0

bi(p, t)q
−i,

where the coefficients ai(p, t) and bi(p, t) are allowed to be
nonlinear dynamic mappings of the scheduling sequence.
In other words, such coefficients are not constrained to be
(static) functions of p(t) only, but they may also depend on
p(t−1), p(t−2), . . . , i.e., on finite many time-shifted values
of p(t). The measured output of the system is supposed to
be corrupted by an additive, zero-mean, stationary colored
noise w(t), i.e.,

y(t) = yo(t) + w(t). (2)

The system Gp is assumed to be stable, where the notion
of stability is defined as follows.

Definition 1. An LPV system, represented in terms of
(1), is called stable if, for all trajectories {u(t), y(t), p(t)}
satisfying (1), with u(t) = 0 for t ≥ 0 and p(t) ∈ P, it
holds that ∃ δ > 0 s.t. |y(t)| ≤ δ, ∀t ≥ 0.

Notice that, due to linearity, an LPV system that is stable
according to Definition 1 also satisfies the Bounded-Input

Bounded-Output (BIBO) stability condition in the L∞
norm, see Tóth (2010).

Consider that, as the objective of the control design, a
desired closed-loop behavior Mp is given by a state-space
representation

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t),
yd(t) = CM (p, t)xM (t) +DM (p, t)r(t), (3)

where yd denotes the desired closed-loop output for a
given reference signal r. In the following, the operator
M(p, t, q−1) will be used as a shorthand form to indi-
cate the mapping from r to yd via the reference model.
Formally, M is such that yd(t) = M(p, t, q−1)r(t) for all
trajectories of p and r. In case the reference model is
given in an IO form, this can be realized in a state-space
representation through the approaches presented in Tóth
et al. (2012).

The class of controllers Kp(θ) is selected as

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(r(t)− y(t)), (4)

where

AK(p, t, q−1) = 1 +

naK∑
i=1

aKi (p, t)q−i, (5)

BK(p, t, q−1) =

nbK∑
i=0

bKi (p, t)q−i, (6)

aKi (p, t) =

ni∑
j=1

aKi,jfi,j(p, t), b
K
i (p, t) =

mi∑
j=0

bKi,jgi,j(p, t),

and fi,j(p, t) and gi,j(p, t) are unknown nonlinear (possibly
dynamic) functions of the scheduling variable sequence p.
The parameter vector θ, characterizing the controller Kp,
is herein the collection of the unknown constant terms aKi,j
and bKi,j . Notice that the controller should be assumed to
be dynamically dependent on p in order to have enough
flexibility to achieve the user-defined behavior. As a matter
of fact, a static dependence would be a rather strong
assumption for most real-world systems (see Tóth (2010)).

The model-reference control problem addressed in this
paper can be stated as follows.

Problem 1. (Model-reference control). Assume that a col-
lection of open-loop noisy data DN = {u(t), y(t), p(t)}
t ∈ IN

1 = {1, . . . , N} from (1), a reference model (3)
and a controller class Kp(θ) as defined in (4) are given.

Based on DN , determine the parameter vector θ̂ defining

the controller Kp(θ̂), so that θ̂ asymptotically converges to
θ◦, as N → ∞.

3. DIRECT DESIGN FROM DATA

To start with, assume that the following statements hold:

A1. there exists a value θ◦ such that the controller Kp(θ
◦)

realizes Mp in closed-loop;

A2. (4) is globally identifiable, i.e., for two instances of
the parameter vector θ, namely θ(1) and θ(2), there exists
a trajectory of u and p such that the response of the
feedback interconnection (according to Fig. 1) of (1)
and (4) is different if θ(1) ̸= θ(2). This implies that θ◦ is
unique;

A3. the dataset DN is persistently exciting with respect
to the used parameterization, i.e., based on DN , θ◦ can
be uniquely determined.
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A4. M(p, t, q−1) is invertible, where the inverse of a LPV
mapping is defined as follows.

Definition 2. Given a causal LPV map M with input
r, scheduling signal p and output yd. The causal LPV
mapping M† that gives r as an output when fed by yd,
for any trajectory of p, is called the left inverse of M .

The computation of the left inverse of a LPV map is
not straightforward; a solution to this problem has been
discussed in Formentin et al. (2013c).

Notice that, under Assumption A1, Problem 1 can be
reformulated as the optimization task (7) over a generic
time interval IN

1 , where A(p, t) and B(p, t) are identified
from DN and the argument q−1 has been dropped for
the sake of readability. If a consistent method is used for
the identification of A(p, t) and B(p, t) (e.g., the PEM
method in Tóth (2010)), and the polynomials are correctly
parameterized, the estimate of the system asymptotically
converges to the real A(p, t) and B(p, t) and the controller
resulting as the solution of (7) makes the closed-loop sys-
tem asymptotically converge to (3), thus solving Problem
1. However, such a model-reference problem is very hard
to solve. In what follows, the solution to Problem 1 will
be given, by reformulating it in a different fashion, which
does not require neither to parameterize nor to identify
the system Gp.

The proposed approach is based on two key ideas. The
first one is that, under Assumption A4, the dependence
on the choice of r can be annihilated. As a matter of fact,
by rewriting the first constraint of (7) as

r(t) =M†(p, t, q−1)ε(t) +M†(p, t, q−1)yo(t), (8)

where M† denotes the left inverse of M , the optimization
(7) can be reformulated as indicated in (9). Notice that,
unlike in (7), the reference signal (8) is a projection of
yo and ε to reconstruct r. Specifically, such a projection
corresponds to the sum of two terms: (i) the reference
trajectory that would produce the data y as an output,
in case the closed-loop system is equal to Mp, (ii) a
term compensating the mismatch between Mp and the
actual closed-loop system, parameterized by θ. In this
way, it even becomes indifferent whether r exists or not in
the real system, as (8) corresponds to a virtual reference
signal satisfying the above given conditions. In other
words, Problem (9) still corresponds to a closed-loop model
matching task, but now it can be solved based on the open-
loop data DN (together with model information, since Gp

is still needed to compute the optimal solution).

Now we take another observation. Since the available data
in DN is generated according to the system equations in
the first and second constraints in (9), DN can be used -
under Assumption A3 and w = 0 - as an alternative way
to describe the dynamics of the system.

Consider then the problem illustrated in (10) (underneath
Equation (9)) where u, y and p are taken from the available
dataset DN . Notice that such a problem is independent of
the analytical description of A(q−1, p) and B(q−1, p) and
therefore no model identification is needed to solve it. If the
data are noiseless, the global minimizer of (10) coincides
with that of (7), since ε̃ = ε, providing the optimal
controller achieving Mp in closed-loop and yielding ε̃ = 0.

In case of noisy data (i.e., w ̸= 0 and ε̃ ̸= ε), the
estimate of the optimal controller would be biased even in
case of known parameterization of the controller achieving
the desired closed-loop behavior. As a matter of fact, in

the latter case, the optimization procedure (10) pushes
for ε̃ = 0, whereas ε = 0 in (9) means ε̃(t) = (1 +

A†BA†
K(θ◦)BK(θ◦))†w(t).

An identification approach dealing with model structure
learning as well as proper stochastic treatment of the noisy
framework will be presented in the next section.

4. NONPARAMETRIC DESIGN

In what follows, the problem will be analyzed in the
primal form, whereas the nonparametric estimation will
be derived based on the dual form of the optimization
problem, according to the LS-SVM framework.

4.1 Primal problem

Let us write the p-dependent functions aKi (p, t) and
bKi (p, t) in (5) and (6) as

aKi (p, t)= θ⊤i ψi(p, t) i = 1, . . . , naK , (11a)

bKi (p, t)=θ
⊤
i+naK

+1ψi+naK
+1(p, t) i = 0, . . . , nbK , (11b)

where θi ∈ RnH is a vector of unknown parameters and
ψi(p, t) (with i = 1, . . . , naK +nbK +1) is a nonlinear map
from the original scheduling space P to an nH-dimensional
space, commonly referred to as the feature space. Unlike
the case of parametric controller design in Formentin et al.
(2013b), neither the maps ψi nor the dimension nH of the
vectors θi and ψi are specified. Potentially, θi and ψi(p, t)
can be infinite-dimensional vectors (i.e., nH = ∞).

Now, let us define

ξo(t) =M†(p, t)yo(t)− yo(t), ξ(t) =M†(p, t)y(t)− y(t)

and the vector x ∈ Rnf (with nf = naK + nbK
+ 1) as

x(ξ, t)=[−u(t−1) . . .− u(t−naK ) ξ(t) . . . ξ(t−nbK
)]
⊤
.

(12)
and let xi(ξ, t) be the i-th component of the vector x(ξ, t).

Based on the introduced notation, the constraint in (10)
can be rewritten in the regression form:

u(t) =

nf∑
i=1

θ⊤i ψi(p, t)xi(ξ, t) +BK(p, t, q−1)M†(p, t)ε̃(t)︸ ︷︷ ︸
ε̃u(t)

.

To design the controller based on the data record DN , the
controller design problem is formulated in the LS-SVM
framework as the following convex optimization problem:

min
θi,ε̃u

1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥∥∥
N∑
t=1

zi(t)ε̃u(t)

∥∥∥∥∥
2

2

(13a)

s.t. ε̃u(t)=u(t)−
nf∑
i=1

θ⊤i ψi(p, t)xi(ξ, t), ∀t ∈ IN
1 , (13b)

where the instrument zi(t) ∈ RnH has the dimension of
ψi(p, t) (thus zi(t) can be an infinite-dimensional vector)
and it has to be constructed to be uncorrelated with the
noise term ξo(t)− ξ(t) = (M†(p, t)− 1)w(t), i.e.,

E{zi(t)(M†(p, t)− 1)w(t)} = 0, ∀t ∈ IN
1 , i = 1, . . . , nf .

Note that, since the map ψi(p, t) does not depend on the
noise w(t), the instrument zi(t) is constructed as follows:

zi(t) = ψi(p, t)xi(ξ̂, t), (14)
where

x(ξ̂, t)=
[
−u(t−1) . . .−u(t−naK ) ξ̂(t) . . . ξ̂(t−nbK

)
]⊤
,
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min
θ,ε

∥ε∥2ℓ2
s.t. ε(t) = M(p, t)r(t)− yo(t), ∀t ∈ IN

1 ,
A(p, t)yo(t) = B(p, t)u(t), ∀t ∈ IN

1 ,
AK(p, t, θ)u(t) = BK(p, t, θ)(r(t)− yo(t)), ∀t ∈ IN

1 .

(7)

min
θ,ε

∥ε∥2ℓ2
s.t. A(p, t)yo(t) = B(p, t)u(t), ∀t ∈ IN

1 ,
AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)yo(t)− yo(t)), ∀t ∈ IN

1 .

(9)

min
θ,ε̃

∥ε̃∥2ℓ2
s.t. AK(p, t, θ)u(t) = BK(p, t, θ)

(
M†(p, t)ε̃(t) +M†(p, t)y(t)− y(t)

)
, {u(t), y(t), p(t)} ∈ DN .

(10)

with ξ̂(t) being an approximation of the noise-free signal
ξo(t) independent of the noise w(t). This choice of the
instrument is inspired by the LTI framework, where the
instrument leading to the minimum variance estimate is
given by the noise-free signal. Note that two criteria are
considered in problem (13). Specifically, the second term
in the objective function of (13) aims at minimizing the
(projection) of the residuals ε̃u(t), while the regularization
term

∑nf

i=1 θ
⊤
i θi is included to prevent overfitting. In fact,

since the dimension nH of the parameter vector θi is not
specified and it can be potentially infinite, penalizing the
2-norm of θi is essential to achieve an accurate estimate
of the functions aKi (p, t) and bKi (p, t) in terms of the
bias/variance trade-off. The regularization parameter γ is
tuned by the user to balance this trade-off.

Let us introduce the matrix notation:

Ψi =

 ψ⊤
i (p, 1)

...
ψ⊤
i (p,N),

 , E =

 ε̃u(1)
...

ε̃u(N)

 , (15)

Xi(ξ) =


xi(ξ, 1) 0 · · · 0

0 xi(ξ, 2)
...

...
. . . 0

0 · · · 0 xi(ξ,N)

 . (16)

Then, Problem (13) can be written in the compact form:

min
θi,εu

1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥Ψ⊤
i Xi(ξ̂)E

∥∥∥2
2

(17a)

s.t. E = U −
nf∑
i=1

Xi(ξ)Ψiθi. (17b)

Proposition 1. The controller parameters θ̂NP,IV, obtained
by minimizing Problem (17), asymptotically converge
(w.p. 1) to:

lim
N→∞

θ̂NP,IV = θ◦ −R−1γ−1θ◦,

where

R = lim
N→∞

γ−1I +
1

N2
Ψ⊤ZZ⊤Ψ.

Proof 1. Note that Problem (13) can be also written as:

min
θ

1

2
θ⊤θ +

γ

2N2

∥∥Z⊤ (U −Ψθ)
∥∥2
2
, (18a)

with

θ =
[
θ⊤1 . . . θ⊤nf

]⊤
, (19)

Ψ =

 ψ⊤
1 (p, 1)x1(ξ̃, 1) . . . ψ⊤

nf
(p, 1)xnf

(ξ̃, 1)
. . . . . . . . .

ψ⊤
1 (p,N)x1(ξ̃, N) . . . ψ⊤

nf
(p,N)xnf

(ξ̃, N)

 , (20)

Z =

 z⊤1 (1) . . . z⊤nf
(1)

. . . . . . . . .
z⊤1 (N) . . . z⊤nf

(N)

 . (21)

The solution of Problem (18) is achieved for:

θ̂NP,IV =

(
γ−1I +

1

N2
Ψ⊤ZZ⊤Ψ

)−1
1

N2

(
Ψ⊤ZZ⊤U

)
.

(22)
Note that the input vector can be expressed as:

U = Ψoθ
◦ = Ψθ◦ + (Ψo −Ψ)︸ ︷︷ ︸

∆Ψ

θ◦, (23)

where θ◦ is the solution of Problem 7 and Ψo is defined as:

Ψo =

 ψ⊤
1 (p, 1)x1(ξo, 1) . . . ψ⊤

nf
(p, 1)xnf

(ξo, 1)
. . . . . . . . .

ψ⊤
1 (p,N)x1(ξo, N) . . . ψ⊤

nf
(p,N)xnf

(ξo, N)

 .
Substitution of (23) in (22) leads to:

θ̂NP,IV = θ◦+(
γ−1I +

1

N2
Ψ⊤ZZ⊤Ψ

)−1(
1

N2
Ψ⊤ZZ⊤∆Φθ◦ − γ−1θ◦

)
.

The term 1
NZ

⊤∆Φ converges to 0 w.p. 1 as N goes to

infinity, thus lim
N→∞

θ̂NP,IV = θ◦ −R−1γ−1θ◦. �

Note that the bias term R−1γ−1θ◦ in the estimate of

the controller parameters θ̂NP,IV does not depend on the
realization of the noise w(t), and it is only due to the
regularization term 1

2

∑nf

i=1 θ
⊤
i θi used in Problem (17).

However, the controller parameters θ̂NP,IV minimizing (17)
cannot be computed since an explicit representation of the
feature maps ψi(p, t) and of the instruments zi(t) would be
needed. In order to compute both the parameters θi and
the feature maps ψi(p, t), the dual formulation of Problem
(17) is considered next, according to the IV-based version
of LS-SVM proposed in Laurain et al. (2015).
4.2 Dual problem

Let us define the Lagrangian L(α, θ, e) associated to Prob-
lem (17):

L(α, θ, E) =
1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥Ψ⊤
i Xi(ξ̂)E

∥∥∥2
2
+

−α⊤

(
E − U +

nf∑
i=1

Xi(ξ)Ψiθi

)
,
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where α ∈ RN are the Lagrangian multipliers. The global
optimum of (17) is obtained when the Karush-Kuhn-
Tucker (KKT) conditions reported in the following are
fulfilled for all i = 1, . . . , nf :

∂L
∂θi

= 0 → θi = Ψ⊤
i Xi(ξ)α, (24a)

∂L
∂E

= 0 → α =
γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)E, (24b)

∂L
∂α

= 0 → E = U −
nf∑
i=1

Xi(ξ)Ψiθi. (24c)

By substituting (24a) into (24c), we obtain:

E = U −
nf∑
i=1

Xi(ξ)ΨiΨ
⊤
i Xi(ξ)α. (25)

Then, substitution of (25) into (24b) leads to:

α =
γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)U+

− γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)

nf∑
j=1

Xj(ξ)ΨjΨ
⊤
j Xj(ξ)α,

which has the solution

α =R−1
D (Ψi)

1

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)U, (26)

with

RD(Ψi) =γ
−1I +

1

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)×

×
nf∑
j=1

Xj(ξ)ΨjΨ
⊤
j Xj(ξ).

The importance of the LS-SVM approach lies in the
fact that the Lagrangian multipliers α can be computed
without the proper knowledge of the feature maps ψi(p, t)
characterizing the matrix Ψi. As matter of fact, only the
Grammian matrix Ωi = ΨiΨ

⊤
i is required to compute the

dual parameters α. According to the LS-SVM framework,
the Grammian matrices Ωi (with i = 1, . . . , nf) can be
defined in terms of kernel functions without the explicit
knowledge of Ψi. More specifically, the generic (t, k)-th
entry of Ωi, which is given by the inner product [Ωi]t,k =⟨
ψi(p, t), ψi(p, k)

⟩
, can be described by a positive definite

kernel function κi(p, t, k), i.e.,

[Ωi]t,k =
⟨
ψi(p, t), ψi(p, k)

⟩
= κi(p, t, k). (27)

Specification of the kernels instead of the maps ψi is called
the kernel trick (see Vapnik (1998)) and it provides the
solution for (26) in terms of:

α =R−1
D (Ωi)

1

N2

nf∑
i=1

Xi(ξ̂)ΩiXi(ξ̂)U (28)

with

RD(Ωi) = γ−1I+
1

N2

nf∑
i=1

Xi(ξ̂)ΩiXi(ξ̂)

nf∑
j=1

Xj(ξ)ΩiXj(ξ).

A typical choice of kernel, which provides uniformly effec-
tive representation of a large class of smooth functions, is
the Radial Basis Function (RBF) kernel:

κi(p, t, k)=e
−

∥p(t)−p(k)∥2
2

σ2
i , (29)

where σi > 0 is a so-called hyper-parameter characterizing
the width of the RBF and it is tuned by the user (e.g.,
through cross-validation).

Once the Lagrangian multipliers α are computed through
(28), the p-dependent coefficient functions aKi (p, t) and
bKi (p, t) characterizing the LPV controller (5)-(6) are ob-
tained from (11) and (24a), i.e.,

aKi (�) = ψ⊤
i (�)θi = ψ⊤

i (�)Ψ⊤
i Xi(ξ)α =

=
N∑
t=1

ψ⊤
i (�)ψi(p, t)︸ ︷︷ ︸
κi(p,t,�)

xi(ξ, t)αt,

bKi (�) = ψ⊤
i+naK

+1(�)θi+naK
+1 =

= ψ⊤
i+naK

+1(�)Ψ⊤
i+naK

+1Xi+naK
+1(ξ)α =

=
N∑
t=1

ψ⊤
i+naK

+1(�)ψi+naK
+1(p, t)︸ ︷︷ ︸

κi+naK
+1(p,t,�)

xi+naK
+1(ξ, t)αt.

Note that the resulting controller coefficient functions
only depend on the available observations in DN and the
specified kernel functions κi(p, t, �). The knowledge of the
system dynamics and the feature maps ψi(p, t) are not
required.

5. NUMERICAL EXAMPLE

In this Section, the effectiveness of the proposed data-
driven approach is demonstrated via the same numerical
example used in Formentin et al. (2013b). The LPV system
Gp to control is defined as

xG(t+ 1) = p(t)xG(t) + u(t)
yo(t) = xG(t)
y(t) = yo(t) + w(t),

(31)

where p is an exogenous parameter taking values in P =
[−0.4, 0.4]. Let the desired behavior for the closed-loop
system Mp be given by the second order plant

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t)
yM (t) = CM (p, t)xM (t) +DM (p, t)r(t).

(32)

where

AM (p, t) =

[
−1 1

−1−∆p(t) 1

]
, BM (p, t) =

[
1 + p(t)
1 + ∆p(t)

]
,

CM = [1 0] , DM = 0, [∆p(t) = p(t)− p(t− 1)] ,

and yM is the desired closed-loop trajectory for y(t).

For control design, a data set DN of N = 1000 mea-
surements are collected, by performing an experiment on
(31), where u(t) is selected as a white noise sequence with
uniform distribution U (−1, 1) and p(t) = 0.4 sin(0.06πt).
The output measurements are corrupted by a white noise
sequence w(t) with normal distribution N (0, σ2) and stan-
dard deviation σ = 0.2. Under this experimental setting,
the resulting Signal to Noise Ratio (SNR) is 9.8 dB.

As a preliminary step, recall that M† is needed to com-
pute ξ. Such an inverse can be obtained as suggested in
Formentin et al. (2013b). A nonparametric controller can
then be designed through the approach of Section 4. The
controller is given in the IO form:

u(t) = aK1 (p(t), p(t− 1))u(t− 1)+

+ bK0 (p(t), p(t− 1)) (r(t)− y(t))+

+ bK1 (p(t), p(t− 1)) (r(t− 1)− y(t− 1)) ,
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Fig. 2. Nonparametric controller design: closed-loop out-
put response y and desired output response yM .

where the dependence of aK1 , bK0 and bK1 on p(t) and
p(t− 1) is not a-priori specified. The values of the hyper-
parameters γ and σi are chosen through cross-validation.
The obtained values of γ and σi are: γ = 77844 and σi =
2.9 for all i = 1, 2, 3. The realized closed-loop trajectory
y and the reference r are plotted in Fig. 2. The obtained
results show that, although no a-priori information on the
dependence of the controller parameters aK1 , bK0 and bK1
on the scheduling signal p is used, the designed controller
achieves similar performance to the parametric controller
achieved in Formentin et al. (2013b). The mean squared

error MSE = 1/Ncl

∑Ncl

t=1 (y(t)− yM (t))
2
computed for a

dataset with Ncl = 400 closed-loop samples, is 0.1565 for
the proposed approach, against the value of 0.0407 ob-
tained for the parametric design. This fact quantitatively
illustrates the obvious correlation between the available
preliminary knowledge and the achievable accuracy. Obvi-
ously, the parametric approach gives the best performance
provided that the reference model is achievable and the
structure of the optimal controller is a-priori available.
However, the nonparametric approach is the only available
solution when the structure of the controller needs to be
identified directly from data, which is the usual case in a
real-world scenario.

6. CONCLUDING REMARKS

In this paper, a novel data-driven method has been intro-
duced to directly design LPV model-reference controllers
from IO data without the need to parameterize, identify
and transform into a state-space form an explicit LPV
model of the system. The method guarantees that the opti-
mal controller achieving the reference closed-loop behavior
is asymptotically obtained in case neither the structure
nor the parameter vector of the optimal controller are a-
priori known. The controller is given as the solution of a
single convex optimization problem. Future research will
be devoted to the implementation of this approach on real-
world applications.
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