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Abstract— In this paper, we propose a method for model
predictive control of linear parameter-varying (LPV) systems
described in an input-output (IO) representation and subject
to input- and output constraints. By assuming exact knowledge
of the future trajectory of the scheduling variable, the on-line
computations reduce to the solution of a nominal predictive
control problem. An incremental non-minimal state-space rep-
resentation is used as a prediction model, giving a controller
with integral action suitable for tracking piecewise-constant
reference signals. Closed-loop asymptotic stability is guaranteed
by a terminal cost and terminal set constraint, and the com-
putation of an ellipsoidal terminal set is discussed. Numerical
examples demonstrate the properties of the proposed approach.
When exact future knowledge of the scheduling variable is not
available, we argue and show that good practical performance
can be obtained by a scheduling prediction strategy.

I. INTRODUCTION

High-performance control of complex systems requires
advanced controllers which explicitly take into account the
often non-linear nature of the process under control. To
enable high-performance and cost-effective control of process
systems at different operating points it is therefore required to
have the tools to model complex systems over their complete
operating range, as well as methods to design controllers
based on these models. The framework of linear parameter-
varying (LPV) systems offers promising opportunities in this
respect. In an LPV system, the relations between input and
output signals are linear while the system itself depends upon
a time-varying and on-line measurable scheduling variable
p. This scheduling variable can frequently be thought of
as representing the variations in the operating point of the
process. This approach provides the capability to model
complex non-linear systems, while system identification and
controller synthesis can be addressed in a unified framework
which can be regarded as an extension to the powerful results
of the existing LTI theory.

The identification of LPV models from data has received
considerable attention in the literature. Efficient prediction-
error methods to identify LPV input-output (IO) models
are now available, enabling the accurate estimation of LPV-
IO models for a wide variety of non-linear systems [1].
However, most LPV control design methods – including
model predictive control – are based on state-space (SS)
representations. Efficient identification of LPV-SS models,
as well as the conversion between LPV-IO and LPV-SS
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representations, are challenging issues. Furthermore, in state-
space control an observer is often required to estimate the
model state based on actual input- and output measurements.
This increases the complexity of the design. It is also known
that the use of state estimates in MPC can deteriorate
performance, especially when disturbances are present and
constraints are active.

Hence, the development of control design methods directly
based on LPV-IO representations is of high practical interest.
An MPC approach for LPV-IO representations was presented
recently in [2], inspired by the classical generalized predictive
control (GPC) formulation [3]. There, it is assumed that the
future scheduling values are uncertain and a robust MPC
algorithm is formulated in terms of linear matrix inequalities
(LMI’s). In the work of [4], an MPC algorithm for LTI
systems given in an IO representation was developed. It was
shown that improved disturbance rejection is obtained with
respect to the case where the states of a state-space repre-
sentation have to be estimated, especially when constraints
are active. The prediction model is formulated as a non-
minimal state-space representation, equivalent to the original
LTI-IO representation. Asymptotic stability was guaranteed
through the use of a terminal equality constraint. An approach
utilizing the same equivalent state-space representation of
an IO model was presented in [5]. There, different stability
conditions without terminal constraints were derived. Some
other output-feedback MPC approaches are, e.g., [6], [7],
[8], [9]. These methods, however, do not use an input-output
model directly but rely on the availability of a state-space
description of the plant together with some form of state
estimation.

We develop an alternative MPC algorithm directly for
models given in an LPV-IO representation. An equivalent non-
minimal state-space representation is utilized as a prediction
model. The use of an equivalent representation allows us to
establish asymptotic stability using the general terminal cost-
and set-approach of [10], under the assumption that the values
of the scheduling variable are known exactly for all time.
Because the prediction model is incremental, we can track
piecewise-constant reference signals and reject piecewise-
constant disturbances. Thus our work extends [4] in two ways:
we handle the LPV case, and show that the theory of terminal
cost- and set-induced stability is applicable. For the practical
case where the future trajectory of the scheduling variable is
usually not known exactly, we provide some suggestions on
how the proposed scheme can be applied.

The organization of the paper is as follows. In Section II,
the notation, LPV system concept, and problem setting are
introduced. A prediction model which allows the formulation
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of an LPV-IO MPC optimization problem is developed in
Section III. Section IV provides a stability guarantee based
on a terminal set and terminal cost. Finally, the approach is
demonstrated with a simple numerical example in Section V.

II. PRELIMINARIES

In this section, the notation used throughout the paper is
introduced. Then, an overview of LPV systems and their
representations is provided. Finally, the central problem of
designing a model predictive controller for LPV systems in
an IO representation is defined.

A. Notation

Let w(k) denote the value of a (vector-valued) signal w :
N→ Rnw at time instant k, where N is the set of nonnegative
integers including zero. Let w(i|k) denote the value of w at
time k+ i predicted based on information available at time k.
The symbol wk+N

k ∈ R(N+1)nw denotes a stacked vector con-
taining the future values of w from time k up to and including
k + N , i.e., wk+N

k =
[
w>(0|k) w>(1|k) · · · w>(N |k)

]>
.

Furthermore, let q−1 denote the backward time-shift operator,
such that q−1w(k) = w(k − 1). Define the backward
difference of a signal w as δw(k) = w(k)−w(k−1). Let the
index set N[a,b] be defined as N[a,b] = {i ∈ N | a ≤ i ≤ b}.
A column vector with all elements equal to one of dimension
n is denoted by 1n. The n× n identity matrix is represented
by In. Let 0m×n denote the m× n matrix of all zeros and
let 0 simply be a zero matrix of appropriate size. Let M � 0
(M � 0) denote positive (semi)definiteness of the matrix M
and let [M ]i denote the i-th row of M .

B. LPV systems and representations

We consider discrete-time LPV systems described in terms
of input-output (IO) representations, i.e., difference equations
of the form

A
(
q−1, p(k)

)
y(k) = B

(
q−1, p(k)

)
u(k), (1a)

A
(
q−1, p(k)

)
= Iny +

ndy∑
i=1

ai (p(k)) q−i, (1b)

B
(
q−1, p(k)

)
=

ndu∑
i=0

bi (p(k)) q−i, (1c)

where y : N → Rny and u : N → Rnu are the input and
output signals respectively and where ndy, ndu ≥ 0. The
signal p : N → P is called the scheduling signal, and the
compact set P ⊂ Rnp is the so-called scheduling “space”.
It is assumed that p is a signal external to the system and
that its value is measurable on-line. In case p is a function
of the inputs or outputs of (1), the system is referred to as
a quasi-LPV system. Each coefficient function depends on
the instantaneous value p(k), which is a case referred to as
static dependence. Extension of all results in this paper to the
case of dynamic dependence – where the coefficient functions
depend on finitely many past values p(k), . . . , p(k − ndp) –
is possible, but will not be discussed for notational simplicity.
Furthermore, we require the assumption that the system has
no direct feedthrough, i.e., b0 = 0. To obtain an MPC with

built-in integral action, we add an integrator to (1) to obtain
an LPV-IO model defined in terms of input increments

A
(
q−1, p(k)

)
y(k) =

B
(
q−1, p(k)

)
(u(k − 1) + δu(k)) , (2)

where δu : N→ Rnu is the input signal and u(k− 1) ∈ Rnu

can be regarded as the state of the integrator. The polynomials
A(·, ·) and B(·, ·) are the same as in (1). An equivalent way
of representing (2) is in terms of a non-minimal state-space
realization.

Definition 1: Two LPV system representations G1 and
G2 are called equivalent, if and only if all (y, p, u) ∈
(Rny ,P,Rnu)

N with left compact support that satisfy G1 also
satisfy G2.

This representation is defined as[
x(k + 1)
y(k)

]
=

[
A (p(k + 1)) B (p(k + 1))

C 0

][
x(k)
δu(k)

]
(3)

where x : N→ Rnx is the state vector and {A(·), B(·), C}
are the (parameter-varying) matrices shown in (4) on page 3.
In (3) we consider

x(k) = [y>(k) · · · y>(k − ndy + 1)

u>(k − 1) · · · u>(k − ndu + 1)]> (5)

as the state variable with dimension nx = nyndy +nu(ndu−
1). This representation is similar to the one considered in [4]
for LTI systems. The assumption of no direct feedthrough
made earlier was necessary to allow its construction.

Remark 1: Note that (3) is dependent on p(k+1) whereas
(2) was dependent on p(k). Conversion between different LPV
system representations typically results in the introduction of
such dynamic parameter dependence [11].

C. The control problem

We consider a standard reference tracking problem. The
predictive controller KN , which is to be designed, should
regulate the output y(k) of an LPV system represented in the
form (2) to a given reference value r(k). Hard constraints
on the input increments δu(k), on the input u(k) and on the
output y(k) must be respected. To satisfy the requirements
we design a model predictive controller which, at each time
instant k, seeks a solution δu?k+N−1k to the constrained
optimization problem

min
δuk+N−1

k

N−1∑
i=0

` (e(i|k), δu(i|k)) s.t.

∀i ∈ N[0,N−1] : δu(i|k) ∈ V, u(i|k) ∈ U, y(i|k) ∈ Y,

(6)

where N ≥ 1 is the prediction horizon and e(k) = r(k)−y(k)
is the tracking error. The quadratic stage cost `(·, ·) is defined
as

`(e, δu) = e>Qe+ δu>Rδu, (7)

where Q � 0 and R � 0 are tuning parameters. The
polyhedral constraint sets V, U and Y are defined as
V =

{
δu | δu ≤ δu ≤ δu

}
,U = {u | u ≤ u ≤ u} ,Y =
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[
A(p) B(p)
C 0

]
=



−a1(p) · · · −andy−1(p) −andy
(p) (b1(p) + b2(p)) · · · bndu−1(p) bndu

(p) b1(p)
Iny 0 · · · · · · · · · · · · · · · 0 0

...
. . . . . . . . . . . . . . . . . .

...
...

0 · · · Iny
0 0 0 · · · 0 0

0 · · · 0 0 Inu
0 · · · 0 Inu

0 · · · 0 0 Inu 0 · · · 0 0
...

. . . . . . . . . . . . . . . . . .
...

...
0 · · · · · · · · · · · · 0 Inu

0 0
Iny

0 · · · · · · · · · · · · · · · 0 0


(4)

{
y | y ≤ y ≤ y

}
where δu ∈ Rnu , u ∈ Rnu and y ∈ Rny

are lower bounds on the values of the respective signals and
δu ∈ Rnu , u ∈ Rnu and y ∈ Rny are the corresponding upper
bounds. The set V must contain the origin. When a minimizer
δu?k+N−1k of (6) is found, its first element is applied to the
system as u(k) = δu?(k) + u(k − 1). At the next sample,
a new optimal sequence is computed and the procedure is
repeated. To actually solve (6), a prediction model relating
the future system outputs yk+N−1k to the decision variable
δuk+N−1k is required. This predictor is developed in the next
section.

III. THE PREDICTOR

The goal of this section is to develop an expression for the
future states xk+N−1k+1 of (3) in terms of the input increments
δuk+N−1k . To obtain a true incremental predictor leading to
integral action in the controller, we start by developing a
predictor for δxk+N−1k+1 . Such a predictor was developed in
[2] based on an infinite impulse response (IIR) representation
of (2). Here instead we derive the predictor directly in terms
of the state-space realization (3).

Remark 2: For LTI systems, an incremental predictor is
obtained easily directly from (1) by left-multiplying A(q−1)
and B(q−1) with ∆ = 1−q−1. Due to the non-commutativity
of multiplication with the time shift operator this is not
possible in the LPV case [11].

We can develop prediction equations for the state
(3) at time instants k and k − 1 as x̂(i + 1|k) =
A (p(k + i+ 1)) x̂(i|k) + B (p(k + i+ 1)) δu(k + i) and
x̂(i+1|k−1) = A (p(k + i)) x̂(i|k−1)+B (p(k + i)) δu(k+
i−1), where i ∈ N[0,N−1], x̂(0|k) = x(k), and x̂(0|k−1) =
x(k − 1). Then δx(i|k) = x̂(i|k) − x̂(i|k − 1), so the final
prediction equation becomes

x(i+ 1|k) = x(i|k) + δx(i+ 1|k)

= x(i|k) + x̂(i+ 1|k)− x̂(i+ 1|k − 1)
(8)

for i ∈ N[0,N−1]. Verify that indeed x(0|k) = x(−1|k) +
x̂(0|k)−x̂(0|k−1) = x(k−1)+x(k)−x(k−1) = x(k). The
predictor (8) yields unbiased predictions in steady-state and
naturally we have y(i|k) = Cx(i|k). The prediction equation
is easily implemented in an optimization problem by intro-
ducing x(i|k), x̂(i|k) and x̂(i|k − 1), i ∈ N[1,N ] as decision
variables and by using equality constraints to describe the

relationship (8). By using that e(i|k) = r(i|k)−Cx(i|k) and
substituting (8) in (6), the predictive control law for systems
modeled in terms of LPV-IO representations is obtained. No
assumptions on the type of parameter dependence of (1) were
necessary and hence the controller can readily be applied
to any model identified from data. Again, it must be noted
that computation of (8) requires the future scheduling values
pk+N−1k+1 . Then, the LPV prediction model essentially reduces
to an LTV model. Under the assumption that these values are
available, in the next section we show how to obtain sufficient
conditions on the MPC control law such that closed-loop
asymptotic stability can be inferred.

IV. STABILITY

In the previous section, the basic formulation for pre-
dictive control of LPV systems described in terms of IO
representations was developed. In this section, it is shown
how asymptotic stability and recursive feasibility can be
guaranteed by adding a terminal cost and a terminal set
constraint to (6).

A. Terminal cost and set-induced stability

We provide a stability guarantee by the concept of a
terminal cost and a terminal state constraint, using the
definition of the state vector (5). We can express the input-
and output constraints defined by U and Y in terms of a state
constraint set X as X = {x | x ≤ x ≤ x}, where

x =

[
1ndy

⊗ y
1ndu−1 ⊗ u

]
, x =

[
1ndy

⊗ y
1ndu−1 ⊗ u

]
.

Let the reference r be a piecewise constant signal with the
target steady state value rss and let the corresponding steady
state input be denoted uss. Also assume that in steady state,
the scheduling variable takes a constant value pss. It follows
that the target steady state becomes

xss =
[(
1ndy

⊗ rss
)>

(1ndu−1 ⊗ uss(pss))
>
]>

where uss can be found by solving the linear system of
equations(

ndu∑
i=1

bi(pss)

)
uss =

Iny +

ndy∑
j=1

aj(pss)

 rss.
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Note that if nu > ny, multiple consistent steady-state
solutions (uss, rss) are possible and one can pick any. If
nu < ny, it is in general not possible to find a consistent
pair (uss, rss): in practice, this can be handled by limiting the
number of components in rss that are freely chosen. Since uss
is directly represented in xss and because uss is a parameter-
dependent function, the requirement that p in steady state
takes a fixed value pss is necessary except when rss = 0. Thus,
if p is a signal external to the system, it must be required to
be piecewise constant. Define the deviation of the state x̃ as

x̃(k) = x(k)− xss (9)

and the shifted state constraint set X̃ as

X̃ = {x̃ | x− xss ≤ x̃ ≤ x− xss} . (10)

Now, consider the augmented MPC problem

min
δuk+N−1

k

(
N−1∑
i=0

˜̀(x̃(i|k), δu(i|k))

)
+ F (x̃(N |k)) s.t.

∀i ∈ N[0,N−1] : δu(i|k) ∈ V, u(i|k) ∈ U, y(i|k) ∈ Y,
x̃(N |k) ∈ X̃f

(11)

where F : X̃→ R is a continuous positive-definite terminal
weight function and where the terminal set X̃f is a subset of
X̃. The modified stage cost ˜̀(x̃, δu) in the above problem is
given by

˜̀(x̃, δu) = x̃>
[
Q 0
0 0

]
x̃+ δu>Rδu (12)

with Q and R as in (7). It is easily seen that (12) is just a re-
expression of (7) in terms of the state (5). Let the evolution
of the state deviation (9) of the system (2) be written as
x̃(k + 1) = f (x̃(k), δu(k), p(k)). Then suppose that there
exists a stabilizing state feedback controller of the form
δu = κf (x̃) and a set X̃f such that
C.1 X̃f is inside the (shifted) state constraint set (X̃f ⊆ X̃),

it is closed, and contains the origin;
C.2 The control constraint is satisfied in X̃f : κf (x̃) ∈

V, ∀x̃ ∈ X̃f ;
C.3 X̃f is positively invariant under κf (x̃): f (x̃, κf (x̃), p̄) ∈
X̃f , ∀x̃ ∈ X̃f , ∀p̄ ∈ P;

C.4 F (·) is a local Lyapunov function in X̃f , with the prop-
erty that F (f (x̃, κf (x̃), p̄)) − F (x̃) ≤ −˜̀(x̃, κf (x̃)),
∀x̃ ∈ X̃f , ∀p̄ ∈ P.

We can now state the main result of this section.
Proposition 1: Suppose that
(i) At each time instant k, the trajectories rk+Nk and pk+Nk

are known,
(ii) For any desired reference rss, it holds that rss ∈ Y and

uss ∈ U,
(iii) Either the signal p takes a constant value pss in steady

state, or rss = 0,
(iv) There is no plant-model mismatch and there are no

disturbances,
(v) There exists a local feedback controller κf (·), a terminal

weight and a terminal set such that conditions (C.1)-
(C.4) are satisfied.

Then the model predictive control law defined by (11)
asymptotically stabilizes the system (2), for all initial values
x(0), rN0 and pN0 for which the optimization problem (11)
is feasible.

Proof: The proof follows the reasoning of
[10]. Let ũ?k be the solution to (11) at time k, i.e.,
δu?k = {δu?(0|k), . . . , δu?(N − 1|k)}. Applying this
optimal input sequence together with the scheduling
sequence pk+Nk yields the optimal (predicted) state
trajectory x̃?k = {x̃?(0|k), . . . , x̃?(N |k)} and now the value
function, i.e., the optimal cost in (11), at time k is given
as V (k) =

∑N−1
i=0

˜̀(x̃?(i|k), δu?(i|k)) + F (x̃?(N |k)).
Since x̃?(N |k) ∈ X̃f , at time k + 1, a feasible input
sequence can be created by shifting the previously obtained
sequence and appending the action of the local controller, i.e.,
δusk+1 = {δu?(1|k), . . . , κf (x̃?(N |k))}. Applying this input
together with the scheduling sequence pk+Nk+1 yields the state
trajectory x̃sk+1 = {x̃?(1|k), . . . , x̃?(N |k), x̃s(N |k + 1)}.
The constructed sequences δusk+1 and x̃sk+1 give an
upper bound V̂ (k + 1) on V (k + 1). Then it follows
that V (k + 1) − V (k) ≤ V̂ (k + 1) − V (k) =
−˜̀(x̃?(0|k), δu?(0|k)) + ˜̀(x̃?(N |k), κf (x̃?(N |k))) −
F (x̃?(N |k)) + F (x̃s(N |k + 1)) and since
˜̀(x̃?(0|k), δu?(0|k)) ≥ 0 it is guaranteed that
V (k + 1)− V (k) ≤ 0 if F (x̃s(N |k + 1))− F (x̃?(N |k))
< −˜̀(x̃?(N |k), κf (x̃?(N |k))). This condition follows by
the requirement (C.4) and implies that V (·) is a Lyapunov
function for the closed-loop system. By positive invariance
of X̃f , it can be concluded that the model predictive control
law defined by (11) asymptotically stabilizes the system
(2), for all initial values x(0), rN0 and pN0 for which the
optimization problem (11) is feasible.

Remark 3: In the LTI case, the tracking of a constant
nonzero reference is equivalent to stabilization around the
origin. As stated in Assumption (iii) in Proposition 1, in the
LPV case this holds not true: a more stringent condition on
the evolution of the scheduling signal p is necessary in case
that the reference value is nonzero.

In the following, it is shown how κf (·), F (·) and X̃f can
be computed such that Proposition 1 holds. For simplicity, we
compute the local controller as a robust LTI state feedback
controller, i.e., κf (x̃) = −Kx̃. Then we can select F (·) to
be a quadratic control Lyapunov function for the closed-loop
system under κf (·), i.e.,

F (x̃) = x̃>Px̃. (13)

The terminal set can be defined as an ellipsoid of the form

X̃f = {x̃ | F (x̃) ≤ α} (14)

where α > 0.

B. Local controller synthesis

Under the assumption of affine, polynomial or rational
parameter dependence a local controller meeting Condition
(C.4) can be computed for our non-minimal state-space
representation (3) using robust control techniques [12], [13].
We assume that a static state feedback K ∈ Rnu×nx was
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computed such that it satisfies the combined performance-
and stability constraint

∀p̄ ∈ P : [A(p̄)−B(p̄)K]
>
P [∗]

− P +Q+K>RK ≺ 0, (15)

where P � 0 is a Lyapunov matrix. Then, this fact
immediately leads to the main result of this section.

Proposition 2: Suppose that
(i) There exists a symmetric matrix P � 0 and a matrix

K ∈ Rnu×nx such that (15) holds;
(ii) If the target state xss is non-zero, then p takes a constant

value pss in steady state. Furthermore let xss be an
equilibrium of the open-loop system at pss, i.e., xss ∈
ker (A(pss)− I).

Then the controller κf (x̃) = −Kx̃ stabilizes the system (2)
at xss for all parameter values pss, and the terminal weight
F (x̃) = x̃>Px̃ is a Lyapunov function satisfying Condition
(C.4).

Proof: Suppose xss = 0. Then (C.4) follows from (15)
since K is independent of p. If xss 6= 0, then it can be verified
that (C.4) is still true because by point (ii) above it holds
that A(pss)xss = xss and because δuss = 0 by definition.

As shown in the following section, the choice for a robust
state feedback controller κf (x̃) = −Kx̃ makes computing
the terminal set particularly simple. A drawback however, is
that a single robust LTI controller may not be able to satisfy
the performance requirement over the complete operating
range. To overcome this limitation, it is possible to extend
the local controller synthesis procedure to the synthesis of
LPV controllers (see also, [12], [13]). Alternatively, one can
compute multiple robust controllers for different parts of the
operating range and compute a terminal cost and terminal set
for each of these controllers.

C. Computing the terminal set

When a local controller has been designed according to
the procedure outlined in the previous section, the maximum
value of α in (14) must be computed such that conditions (C.1)
and (C.2) are satisfied. Since κf (x̃) = −Kx̃, it must hold
that −Kx̃ ∈ V for all x̃ ∈ X̃f . Note that if X̃f lies within the
state constraint set (10), the constraints on u are automatically
satisfied in the future due to the property of positive invariance.
The chosen ellipsoid X̃f in terms of (14) must therefore be
contained inside a polyhedron Wf ⊆ X̃ which can be defined
as Wf = {x̃ | Af x̃ ≤ bf} where Af ∈ R2(nx+nu)×nx and
bf ∈ R2(nx+nu) are given as follows:

Af =
[
−Inx

K> Inx
−K>

]>
,

bf =
[
(xss − x)

> −δu> (x− xss)> δu
>
]>

.

Note that X̃f ⊆ Wf ⊆ X̃, where X̃ defines the state
constraints, Wf is the part of X̃ where the input constraints
on δu are satisfied, and where X̃f is positively invariant.
The optimization problem of finding the maximum volume
ellipsoid contained within a polyhedron is a convex second-
order cone program [14]. In our case, since P is fixed and

we only need to find the scalar α, it can be reformulated
as a problem with a linear objective function and quadratic
constraints as

max
α̃

α̃ s.t. α̃2 [Af ]i P
−1 [Af ]

>
i ≤ [bf ]

2
i , i ∈ N[1,2(nx+nu)]

where α̃ =
√
α. Since bf is dependent on xss, the value of α

must be computed separately for every desired pair (rss, pss).
This can be done off-line and the resulting values of α can
be stored in a look-up table.

Remark 4: We have shown the construction of an ellip-
soidal invariant set, since it can be used in the most general
case of rational parameter dependency. If the parameter
dependency of the matrices (4) is affine and P is a polytope,
it is also possible to compute a polyhedral invariant set X̃f
following, e.g., the well-known methods of [12].

Remark 5: If the local controller is allowed to be LPV, then
the same procedure can be used to find a suitable ellipsoidal
terminal set. Only the polyhedron Wf needs to be modified
such that the input constraint is satisfied for all possible
scheduling values.

D. Practical considerations

In many practical scenarios, it may happen that condition
(i) of Proposition 1 is not satisfied. In particular the sequence
pk+Nk may not be exactly known in advance. Additionally,
in the quasi-LPV case, p is generated by the system itself
as opposed to it being a free external signal. When this
occurs, we propose to compute an estimation p̂k+Nk of pk+Nk

and use this in solving the on-line optimization problem.
Given the inherent robustness properties of MPC [10], it can
be reasonably expected that stability will be preserved and
that performance will not degrade too much. This idea seems
especially applicable to our controller since it exhibits integral
action – and has thus a certain capability of disturbance
rejection – by design. Some possibilities to provide this
estimation are:
• Gain-scheduling: assume that the future values of the

scheduling variable stay equal to the current measured
value p(k). This classical approach can work well if the
time variation of p is “sufficiently slow”.

• Data-driven estimation: based on past measured values,
it is possible to fit a model describing the evolution of
p. This approach is suitable when p is an external signal
and varies somewhat predictably (i.e., when it can be
considered to be generated by an autonomous process).

• Previous MPC predictions: when the scheduling variable
is output-dependent (i.e., the system is quasi-LPV), the
output predictions made by the MPC at the previous time
instant can be used to give an estimation of the future
scheduling values at the current time instant. That is,
the predicted sequence {y(0|k − 1), . . . , y(N |k − 1)} is
used to generate an estimate of pk+Nk .

A quasi-LPV example is provided in the next section.

V. NUMERICAL EXAMPLES

In this section, two numerical examples are given to
demonstrate the algorithm.
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Fig. 1. Simulation result for positioning system with external, known
scheduling.

A. Positioning system with known scheduling

Consider a classical parameter-varying angular positioning
system [15], which can be described by an LPV model of
the form (1) with the coefficient functions

a1 (p(k)) = 0.1p(k)− 2.0, a2 (p(k)) = 1.0− 0.1p(k),

b1 (p(k)) = 0, b2 (p(k)) = 0.00787

where the scheduling signal is p(k) = α(k−2) with α(k) the
time-varying parameter which can vary in the range [0.1, 5].
The measured output y(k) is the angular position [rad]. There
is an input constraint |u(k)| ≤ 2. In comparison to a state-
space control approach, measurement or estimation of the
angular velocity is not necessary. The goal of the simulation
is to bring the system from a certain initial position to the
target position rss = 0 [rad]. The used tuning parameters were
N = 8, Q = 1 and R = 0.5. Since the parameter dependency
of the system is affine and p(k) varies within a polytope,
a polyhedral terminal set was calculated as the maximum
positively invariant set under a feedback law satisfying (15).
The simulation output for a reference step change from
−0.20π [rad] to 0 [rad] and a certain scheduling trajectory
is shown in Figure 1. As predicted by the theory, output
converges to the reference value and the input constraint is
respected.

B. Positioning system with internal scheduling

We now consider the same setup as in Section V-A. The
only difference is that now the scheduling variable p(k) is
no longer an external signal with known future evolution.
Instead, p(k) = α(k − 2) is dependent on y(k) according to
α(k) = 2.45 sin (y(k)) + 2.55. In this situation the stability
guarantees of Proposition 1 are no longer applicable as
discussed in Section IV-D. Instead, we use the “previous MPC
predictions”-scheme to make estimates of pk+Nk . Furthermore,
the reference step value is changed to 0.1π [rad] to show
that indeed the controller tracks a piecewise constant nonzero
reference without any steady-state error. The results are shown
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Fig. 2. Simulation result for positioning system with internal scheduling.

in Figure 2. It can be seen that even though the theoretical
assumptions are not satisfied, the system shows good control
performance similar to the previous example.
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