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Abstract: Regularised Frequency Response Function (FRF) estimation based on Gaussian
process regression formulated directly in the frequency-domain has been introduced recently. The
underlying approach largely depends on the utilised kernel function, which encodes the relevant
prior knowledge on the system under consideration. In this paper, we show how to construct a
rich class of kernel functions, directly in the frequency-domain, based on Orthonormal Basis
Functions (OBFs), which is capable of representing a wide range of dynamical properties,
e.g., stability, resonance frequencies, damping, etc, in terms of the poles of the employed basis
functions that are treated as hyperparameters to efficiently shape the model class, i.e., the prior
in the corresponding Bayesian setting. This class of kernel functions also implicitly guarantees
the stability of the estimated FRF. The generating poles of the OBFs are tuned along with
other hyperparameters, e.g., noise variance, by maximising the marginal likelihood. Multiple
case studies are considered to show the potential of the considered kernels.

Keywords: Gaussian process regression; Orthonormal basis functions; Regularisation,
Frequency-domain; Kernel functions.

1. INTRODUCTION

Nonparametric estimation of Transfer Functions (TF) of
Linear Time-Invariant (LTI) systems provides valuable
information about the dynamics of the system under con-
sideration that can be used further to obtain an accurate
parametric model [Pintelon and Schoukens, 2012, Ljung,
1999]. The evaluation of the TF on the unit circle will
be called the Frequency Response Function (FRF) and it
has been studied extensively in the literature [Antoni and
Schoukens, 2007, Pintelon and Schoukens, 2012], etc.

One main challenge in the data-driven estimation of FRF
is the transient effect, which is due to the fact that the
input and the output signals are not periodic or their
periodicity does not match the length of the measurement
window. As a result, most of the available approaches try
suppressing the transient effect in different ways. More
specifically, via spectral analysis as in Schoukens et al.
[2006], or via a frequency-dependent smoothing proce-
dure that is applied to the Empirical Transfer Function
Estimate (ETFE) [Stenman et al., 2000]. More recent
approaches are estimating both the FRF and the transient
simultaneously [Pintelon and Schoukens, 2012], e.g., the
Local Polynomial Method (LPM) [Pintelon et al., 2010a,b],

? This research has benefited from the financial support of the
Student Mission, Ministry of Higher Education, Government of
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which uses a local polynomial smoother, and the Local
Rational Method (LRM) [McKelvey and Guérin, 2012],
which uses a local rational function as a smoother. The
drawbacks of these approaches, i.e., LPM and LRM, are:
i) both methods provide a set of local models centered
around the bins of the Discrete Fourier Transform (DFT),
for which the interpolation between the DFT bins is still
an open question; ii) the stability of the resulting estimates
cannot be guaranteed.

Alternatively, inspired by new developments of nonpara-
metric estimation of LTI impulse response models in the
time-domain [Pillonetto et al., 2014, Chen et al., 2012],
regularised frequency domain estimates of both the FRF
and the transient effects within the Gaussian Process Re-
gression (GPR) framework has been introduced in Lataire
and Chen [2016]. More specifically, both the FRF and
the transient are assumed to be a realisation of a zero-
mean real/complex GP [Schreier and Scharf, 2010] with
a certain covariance (kernel) function that encodes the
relevant prior knowledge on the system, e.g., smoothness
and stability, etc. The direct formulation of the estimation
problem in the frequency domain offers many advantages:
i) it allows the estimation to be performed in a limited
frequency band; ii) it allows for an efficient implementation
for continuous-time systems.

One critical aspect that is related to the aforementioned
approach is the design of the kernel function. It has to be
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flexible enough to describe a wide range of dynamical prop-
erties, e.g., stability, resonance behaviour, damping, etc.,
and at the same time parameterised by a low number of
hyperparameters. In Lataire and Chen [2016], the kernels
from the time-domain, e.g., Diagonal/Correlated (DC)
kernel [Chen et al., 2012] and Stable/Spline (SS) kernel
[Pillonetto and De Nicolao, 2010], have been formulated in
the frequency-domain. Moreover, it has been shown that
for both of these kernels the resulting estimates are stable,
i.e., all poles of the estimated FRF lie inside the unit circle.

On the other hand, inspired by realisation theory of
dynamical systems, a rich class of kernel functions for
impulse response estimation based on Orthonormal Basis
Functions (OBFs) has been introduced [Chen and Ljung,
2015, Darwish et al., 2015]. These OBFs are generated
by a cascaded network of stable inner transfer functions,
i.e., all-pass filters, completely determined, modulo the
sign, by their poles. In the frequency-domain, these OBFs
constitute a complete orthonormal basis for the function
space RH2, which is the space of functions over C, that
are squared integrable on the unit circle, analytic outside
of it and their inverse z−transform is a real sequence
[Heuberger et al., 2005, 1995]. This space is a Reproducing
Kernel Hilbert Space (RKHS) [Aronszajn, 1950] with a
well-defined reproducing kernel function [Heuberger et al.,
2005]. In terms of regularised estimate of FRF, this kernel
function has been suggested in [Chen and Ljung, 2015,
Equation 17]. However, the stability of the estimated FRF
by using such kernels has not been discussed. Furthermore,
the problem of choosing the proper number of basis
functions to be used has not been addressed.

In this paper, the formulation of a stable OBFs-based
kernels formulated directly in the frequency-domain is
given. The stability of the estimated FRF is guaranteed
by introducing a decay term that weighs the OBFs. This
simultaneously circumvents the problem of selecting the
number of basis functions to be introduced in the model.
This class of kernel functions provides an efficient way to
incorporate a wide range of prior knowledge, i.e., resonance
behaviour, stability, damping, via the generating poles
of the OBFs. Special cases of the presented kernels will
be discussed in details, i.e., Laguerre, Kautz, Generalised
OBFs (GOBFs) [Heuberger et al., 1995]. The generating
poles are considered to be unknown hyperparameters and
are tuned via maximising the Marginal Likelihood (ML)
[Rasmussen and Williams, 2006, Pillonetto and Chiuso,
2015].

This paper is organised as follows. Section 2 presents the
problem formulation, whereas Bayesian frequency domain
identification is discussed in Section 3. Section 4 gives an
overview of OBFs, their associated RKHS, reproducing
kernel defined in the frequency-domain and how such
kernel can be adopted for regularised FRF estimation.
Extensive simulation studies are reported in Section 5.
Finally, the paper is concluded in Section 6.

Notation

In the following: C denotes the complex plane, D is the
interior of the unit disc, i.e., {z ∈ C | |z| < 1}. E
denotes the expectation operator. z∗ denotes the complex
conjugate of a complex number z ∈ C, whereas the
superscript H denotes the Hermitian (complex conjugate)

transpose of a vector. R stands for real numbers, while Z
denotes the set of the integer numbers and N is the set
of all positive integers. |A| is the determinant of a square
matrix A.

2. PROBLEM FORMULATION

Consider a Single-Input Single-Output (SISO), finite-
order, asymptotically stable and LTI discrete-time data-
generating system described by

y(t) = (g ∗ u)(t) + v(t), (1)

where t ∈ Z is the discrete-time, y : Z→ R is the output,
u : Z → R is the input of the system, v(t) is a zero-
mean quasi-stationary noise process, independent of u,
and (g ∗ u)(t) is the discrete convolution of the (im)pulse
response g(·) and the input u(·) at time instant t and is
defined as

(g ∗ u)(t) =

∞∑
τ=0

u(t− τ)g(τ). (2)

It is assumed that y(t) is measured at t = 0, 1, . . . , N − 1.

Denote Ω = ejω the frequency variable for ω ∈ R, then
Ωk, for k ∈ R, is defined as

Ωk = ejωk = e
j2πk
N . (3)

It is worth to mention that for k ∈ Z, Ωk corresponds to
the kth bin of an N−point DFT, where for the sampled
signal x(τ), τ = 0, . . . , N − 1, the N−point DFT, at
frequency bin k is given by

X(k) =
1√
N

N−1∑
τ=0

x(τ)e
−j2πkτ
N , k ∈ Z. (4)

Accordingly, denote U(k), Y (k), V (k) the N−point DFT
at frequency bin k of u(t), y(t), v(t), respectively.

The frequency-domain representation of (1) is

Y (k) = G(Ωk)U(k) + T (Ωk) + V (k), (5)

where the FRF G(Ω) is computed as the Discrete-Time
Fourier Transform of the impulse response g(t), i.e.,
G(Ω) = F{g(t)} =

∑∞
τ=0 g(τ)e−jωτ and T (Ω) is the

transient, which depends on the difference u(t)−u(t+N),
for t < 0, and on the impulse response of the system
[Lataire and Chen, 2016, Lemma 1].

Given the exact input and measured outputN−point DFT
spectra U(k) and Y (k), we are aiming at estimating G(Ω)
and T (Ω).

3. BAYESIAN FREQUENCY-DOMAIN
IDENTIFICATION

In the Bayesian approach to system identification within
the GPR framework, the unknown function to be esti-
mated is assumed to be a realisation of a zero-mean GP
with a certain covariance (kernel) function that encodes
our priori knowledge about it. Given observed data of joint
Gaussian processes and a prior mean and covariance, the
goal is to obtain the a posteriori mean and covariance,
which can be used for prediction of the unknown function
at arbitrary input values.

For the LTI system (1), it holds true that the FRF takes
both real (typically at 0 Hz and at the Nyquist frequency)
and complex values. As a result, it is not possible to model
it as a real or as a complex GP. Hence, both the FRF
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and the transient have to be defined as a Real/Complex
GP (RCGP) [Lataire and Chen, 2016, Section 2]. More
specifically, an RCGP η(k) is defined as

η(k) ∼ RCGP(m,K,C) | KR, (6)

where m,K,C are the mean, covariance, and relation func-
tions, respectively, and KR is a set of indices that indicates
where η(k) is real, i.e., KR = {0,±N/2,±2(N/2), . . .}. Fol-
lowing the Bayesian approach within the GPR framework,
the FRF G(Ωk) and the transient T (Ωk) are assumed to be
independent of each other and are assumed to be RCGPs
over k ∈ R:

G(Ωk) ∼ RCGP(0, αGK,αGC) | KR (7)

T (Ωk) ∼ RCGP(0, αTK,αTC) | KR, (8)

where αG ≥ 0, αT ≥ 0, K,C are well-defined covariance
and relation functions, respectively. OnceK,C are defined,
the Maximum a Posteriori (MAP) estimates Ĝ and T̂
of the FRF and the transient, respectively, can be easily
computed [Lataire and Chen, 2016].

3.1 Kernel functions in the frequency-domain

A natural way to construct the kernel function for FRF
estimation is to utilise the duality between the FRF and
impulse response function, i.e., G(ejω) =

∑∞
τ=0 g(τ)e−jωτ ,

and the linearity of the Fourier transform, to derive
the corresponding covariance and relation functions in
the frequency-domain. More specifically, if the impulse
response function g is assumed to be a realisation
of a zero-mean GP with covariance cov(g(t), g(s)) =
αGP (t, s), t, s = 0, 1, . . ., then, G(ejω) is an RCGP with

E{G(ejω)} = F{E{g(t)}} = 0, (9)

αGK(ejωk , ejωl) = E{G(ejωk)G∗(ejωl)}, (10)

αGC(ejωk , ejωl)=E{G(ejωk)G(ejωl)}=αGK(ejωk , e−jωl),
(11)

K(ejωk , ejωl) =

∞∑
τ=0

∞∑
τ ′=0

P (τ, τ ′)e−jωkτejωlτ
′
. (12)

In Lataire and Chen [2016], the authors make use of
such approach to define kernel functions used in the time-
domain based literature for FRF estimation, e.g., Diago-
nal/Correlated (DC) [Chen et al., 2012] and Stable/Spline
(SS) kernel [Pillonetto and De Nicolao, 2010]. For the sake
of space, we refer the reader to the formulation of these
kernels in the frequency domain in [Lataire and Chen,
2016, Equations 55,56]. Furthermore, it has been proven
that these kernels guarantee the stability of the resulting
estimates. A sufficient condition on the kernel function
to guarantee the stability of the estimated FRF is to
satisfy the condition in [Lataire and Chen, 2016, Property
7] or equivalently, the corresponding impulse response of
the estimated FRF must be absolutely summable, i.e.,
g(t) = F−1{Ĝ(ejω)}, where F−1 denotes the inverse
Fourier transform.

Remark 1. Regarding the kernel function for the transient
T (Ω), it has been shown in [Lataire and Chen, 2016,
Section 5.3] that a computational convenient way is to
assume G(Ω) and T (Ω) have the same kind of covariance
function, but with different scaling hyperparameters αG

and αT.

The aforementioned kernels can describe stability and
smoothness of the estimated FRF. However, as recom-

mended in Lataire and Chen [2016], kernels that are able
to describe other dynamical properties would be benefi-
cial in the frequency-domain identification, e.g., resonance
behaviour, damping, etc., but keeping a simple structure
of the kernel function. In the next section, we show how
to construct a class of kernel functions directly in the
frequency-domain which have such advantages via the use
of OBFs.

4. RATIONAL ORTHONORMAL BASIS FUNCTIONS

In this section, we introduce a general class of OBFs,
namely, GOBFs, and its special case, i.e., Laguerre and
Kautz basis, their properties, the corresponding RKHS
and the associated reproducing kernel function.

4.1 An overview

Since we are interested in proper, stable and real rational
transfer functions with real-valued impulse response, we
introduce a particular set of orthonormal basis functions
which constitute a complete basis for RH2. Let Gb ∈
RH2−, i.e., the subspace of RH2 which is restricted to
real, rational and proper functions, be an inner function,
i.e., all-pass filter, which satisfy Gb(ejω)G∗b(ejω) = 1 with
McMillan degree ng > 0. Let (A,B,C,D) be a minimal
balanced State-Space realisation of Gb(ejω). Note that Gb

is completely determined, modulo the sign, by its poles
Λng = [ξ1 · · · ξng ] ∈ Dng :

Gb(ejω) = ±
ng∏
i=1

1− ξ∗i ejω

ejω − ξi
, (13)

with Λng containing real poles and/or complex conjugate
pole pairs. The class of GOBFs is obtained by cascading
identical nthg order all-pass filters and can be written in a
vector form as [Heuberger et al., 2005]:

Vτ (ejω) = V1(ejω)Gτ−1b (ejω), for τ > 1, (14)

where V1(ejω) = (ejωI − A)−1B. Let ϕi = [V1]i denote
the ith element of the vector transfer function V1. Then, a
particular GOBF basis consists of the functions

Ψ = {ψτ}∞τ=1 =
{
ϕiG

l
b

}ng,∞
i=1,l=0

, with τ = l ·ng+i. (15)

These functions, i.e., (15), constitute a complete orthonor-
mal basis for RH2. As a result, any G(ejω) ∈ RH2 can be
decomposed as

G(ejω) =

∞∑
τ=1

cτψτ (ejω), (16)

which is the generalisation of Trigonometric Basis Func-
tions (TBF), i.e.,

{
e−jωτ

}∞
τ=1

, where all the generating
poles are assumed to be at 0 . It can be shown that the
rate of convergence of this series expansion is bounded by
ρ = maxτ |Gb(ε−1τ )|, called the decay rate, where {ετ} are
the poles of G(ejω) [Oliveira e Silva, 1996]. In practice,
only a finite number of terms {ψτ}nb

τ=1, i.e., truncation
of the expansion (16) is used. However, a model struc-
ture corresponding to a truncation of (16) can achieve
an arbitrary low modeling error with a relatively small
number of parameters due to the faster convergence of
the series representation than in the TBF case, which in
system identification results in decreased variance of the
final model estimate [Tóth et al., 2009].

The two interesting special cases of GOBFs defined in
(14) are detailed below, namely, the (2-parameter Kautz
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functions) for ng = 2, and as Laguerre functions for ng = 1
[Heuberger et al., 2005]. Laguerre basis are defined as

ψτ (ejω) =

√
(1− ξ2)

ejω − ξ

(
1− ξejω

ejω − ξ

)τ−1
, ξ ∈ (−1, 1), (17)

where the parameter ξ is known as the Laguerre parameter
or generating pole. The impulse response of Laguerre basis
functions exhibit an exponential decay. However, Laguerre
functions do not allow the use of complex poles, hence,
they are less suitable, i.e., they offer a lower achievable
decay rate in capturing systems with oscillatory response.
In this case, the two-parameter Kautz basis functions
result in a more appropriate structure. The two-parameter
Kautz basis are the set of orthonormal functions

ψ2τ−1=

√
1− c2(ejω − b)

ej2ω + b(c− 1)ejω − c

(
−cej2ω+b(c− 1)ejω+1

ej2ω+b(c−1)ejω − c

)τ−1
ψ2τ=

√
(1− c2)(1− b2)

ej2ω + b(c− 1)ejω − c

(
−cej2ω+b(c− 1)ejω+1

ej2ω+b(c−1)ejω − c

)τ−1
,

(18)

where b, c ∈ (−1, 1). Note that (18) corresponds to a
repeated complex pair ξ, ξ∗ ∈ D [Wahlberg, 1994].

4.2 OBFs based kernels in the frequency domain

It is well-known that the space spanned by the OBFs, i.e.,
RH2, is a RKHS [Ninness et al., 1999] with the following
reproducing kernel

K(ejω, ejω
′
) =

∞∑
τ=0

ψτ (ejω)ψ∗τ (ejω
′
), (19)

and with the following well-defined inner product

〈f1, f2〉RH2
=

1

2π

∫ π

−π
f1(ejω)f∗2 (ejω)dw, (20)

for any f1, f2 ∈ RH2.

Now, let’s investigate the stability of the estimated FRF.
Similarly to the reasoning presented in Darwish et al.
[2015], when the space spanned by the OBFs. i.e., RH2,
where the functions in that space are not necessarily ra-
tional, is utilised as a hypothesis space, the corresponding
impulse response function estimates will belong toR`2(N),
i.e., the space of squared summable real sequences, due
to the isomorphism between RH2 and R`2(N) [Oliveira e
Silva, 1996]. The stability condition for finite-dimensional
LTI systems (with a rational proper transfer function) is
that the impulse response should be absolutely summable,
i.e., ĝ(t) ∈ R`1(N), whereR`1(N) is the space of absolutely
summable real sequences. However, R`2(N) 6⊂ R`1(N),
which means that the hypothesis space should be restricted
to a subspace that only contains real, rational and proper
functions, i.e., RH2−. In order to guarantee the stability
of the estimated FRF and to solve the problem of deter-
mining the right number of basis functions, in this paper,
we include a decay term that weighs the OBFs

K(ejω, ejω
′
) =

∞∑
τ=0

dτ (β)ψτ (ejω)ψ∗τ (ejω
′
), (21)

where the decay term dτ (β) → 0 as τ → ∞. Possible
choices are

dτ (β) = τ−β , dτ (β) = βτ with β ≥ 0, 0 ≤ β < 1, (22)

respectively, where β is considered to be a hyperparameter
that determines the decay rate of the expansion in (21)

and the decay term, i.e., dτ (β), with β tuned by marginal
likelihood optimization acts as an automatic way to select
the number of significant basis functions that are needed
to construct the kernel. Note that the relation function C
can be constructed accordingly via (21) and (10)-(11).

Remark 2. In absence of more sophisticated prior infor-
mation, in many circumstances, monotonically decreasing
weights (22) is effective and able to well guard against the
ill-conditioning affecting the system identification prob-
lem. However, depending on the available knowledge, other
parameters can be introduced in the decay term that de-
scribe more complicated shapes for the weights. Similarly,
when a prior information is available, this can support the
choice of the basis functions. This fits in the framework
developed in the paper, e.g., if the number of resonance
peaks is known, we can use such information to decide the
number of real or complex pairs that should be considered
for GOBFs.

4.3 Hyperparameters tuning

The kernel function defined above, i.e., the OBFs based
kernel, depends on some unknown hyperparameters that
need to be tuned from the observed data. These hyperpa-
rameters are the scaling parameters αG and αT, the noise
variance σ2, β the parameter that determines the decay
rate of the expansion and ϑ a vector of the generating poles
of the OBFs. Denote by θ the vector of the hyperparame-
ters, i.e., θ = [ αG αT σ2 β ϑ> ]>. One popular approach
to tune θ within the Bayesian framework is by maximising
the log Marginal Likelihood, i.e., log p(Y (K) | θ) of the
output spectrum [Rasmussen and Williams, 2006]

log (Y (K | θ)) = −1

2
Y (K)HΓ−1Y (θ)Y (K)

− 1

2
log |ΓY(θ)| − nr

2
log 2π − nc log π, (23)

where K = {k1, k2, . . . , kn} ⊂ {0, . . . , N/2} is the set of
DFT-frequency indices that lie in the frequency band of
interest, ΓY is the augmented covariance matrix and can
be constructed from the covariance and relation functions,
i.e., K and C (21) and (10)-(11), see [Lataire and Chen,
2016, Equation 36] for constructing ΓY, nr is the number
of frequencies where the FRF has real values and nc is the
number of frequencies where the FRF has complex values.

5. SIMULATION STUDIES

In this section, the presented OBFs based kernel function
is tested and compared to the existing kernels, i.e., DC
kernel, for FRF estimation. A challenging system is con-
sidered to show the capability of the presented kernel to
model a wide range of dynamical properties, specifically
resonance behaviour, with a simple kernel structure.

5.1 Considered system

We consider a randomly generated 20th order, LTI and
discrete-time system G generated by the drss Matlab
function. The sampling period Ts is 1 s. We make sure
that there are two dominant complex conjugate pole pairs.
These dominant poles are located at 0.95± j0.25,−0.17±
j0.89, see Figure 1 for the the impulse response and the
pole/zero plots of the generated system.
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Fig. 1. Left: The impulse response. Right: Poles (×) and
zeros (o), of the considered system.

5.2 Identification settings

Monte-Carlo (MC) simulations of 100 runs are performed,
where at each run a new realisation of the input u(t) and
the noise v(t) are utilised according to (1). The considered
system is used to generate a data set of length N = 512 for
each MC run using a white and periodic zero-mean input
u and an additive white Gaussian noise v. The variance
of v is chosen such that the Signal-to-Noise Ratio (SNR),
which is defined as

SNR = 10 log10

(∑N
τ=1 ỹ

2(τ)∑N
τ=1 v

2(τ)

)
(24)

where ỹ denotes the noise-free system output, is corre-
sponding to two case for the SNR: 10 dB or 40 dB.

The considered estimators are:

• GPTF with DC kernel;
• GPTF with OBFs based kernel, specifically, with

GOBFs based kernel where the poles of the inner
function Gb are {ξ1, ξ∗1 , ξ2, ξ∗2}, which are considered
as hyperparameters;
• Parametric model identified with the Identification

toolbox of Matlab (2016a), more specifically, an
Output-Error (OE) model with the true order of the
system, i.e., using the command oe(20,20). We will
call this estimator as an Oracle estimator, in the sense
that it knows the true model structure and order.

For each MC run, the hyperparameters of the GPTF
estimators, for both DC and OBFs kernels, are tuned by
maximising the ML (23). The estimation is performed on
a limited frequency band, i.e., from ω = 0.1 rad/s to ω = 3
rad/s. For the GPTF estimator, 241 frequency domain
samples in the mentioned range were used, whereas the
OE model was estimated based on the whole data record.

5.3 Results and discussion

The performance measure that is used to determine the
quality of the estimated FRF with different estimators is
the averaged Mean Squared Error (MSE) over all frequen-
cies in the band of interest, i.e.,

MSE =
1

100

100∑
i=1

(
1

N

N∑
k=1

|Ĝi(Ωk)−G(Ωk)|2
)
, (25)

where Ĝi is the estimated FRF at the MC run i, which
is calculated on a more dense frequency grid, i.e., 966
frequencies, but within the same frequency band as the
training data set.

The averaged MSE for the estimates over all the frequen-
cies in the considered frequency band is summarised in

Table 1.
Averaged MSE of all estimates (in dB) for different SNR scenarios.

Estimator 10 dB 40 dB

GPTF (DC) 46.45 -0.28
GPTF (GOBFs) 33.46 -7.05
OE (20th-order) 50.94 6.89

Table 1. It can be seen from the table that the GPTF
estimators perform better than the parametric estimator,
even though the latter makes use of more data points
and more importantly it makes use of the true model
structure. Moreover, the GPTF estimator with the GOBFs
based kernel shows a significant improvement with respect
to the GPTF estimate with the DC kernel. The main
reason is that the complex conjugate poles included in
the GOBFs based kernel are better at modeling the res-
onance behaviour and result in a smoother estimate. To
visualise such results, the left parts of Figure 2, 3, show
the estimated FRF and the true function at the validation
set of frequencies of one MC run within the considered
frequency band for both cases of SNR of 10 dB and 40
dB, respectively. The right parts of the figures show the
error associated with the employed estimators in dB. From
these figures, it can be easily seen that the OBFs based
kernel performs well compared to the DC kernel estimator
and can deliver an acceptable response even in the high
frequency range.

6. CONCLUSION

In this paper, we presented the formulation of the OBFs-
based kernels directly in the frequency-domain. These ker-
nels can be used for simultaneously obtaining a regularised
estimate for the FRF and the transient in the Bayesian set-
ting within the GPR framework. Such formulation results
in a flexible class of kernel functions, which are capable
of describing a wide range of dynamical properties, e.g.,
stability, resonance behaviour, damping, etc, directly via
the generating poles of the OBFs. The generating poles are
dealt with as unknown hyperparameters and are tuned by
maximising the ML. Special cases of the presented class
of kernel functions are considered and their capability to
model the FRF and the transient is shown with extensive
simulation studies.
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Fig. 2. Left: Plot of one MC realisation of the estimated FRF with different estimators and the true one in case of
SNR=10dB. Right: The error (in dB) associated with the considered estimators.
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