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Abstract: This paper introduces a systematic approach to synthesize linear parameter-varying
(LPV) representations of nonlinear (NL) systems which are originally defined by control affine
state-space representations. The conversion approach results in LPV state-space representations
in the observable canonical form. Based on the relative degree concept of NL systems, the states
of a given NL representation are transformed to new coordinates that provide its normal form.
In the SISO case, all nonlinearities of the original system are embedded in one NL function
which is factorized to construct the LPV form. An algorithms is proposed for this purpose. The
resulting transformation yields an LPV model where the scheduling parameter depends on the
derivatives of the inputs and outputs of the system. In addition, if the states of the NL model
can be measured or estimated, then the procedure can be modified to provide LPV models
scheduled by these states. Examples are included for illustration.

1. INTRODUCTION

The framework of linear parameter-varying (LPV) systems
was introduced to address the control of nonlinear (NL)
and time-varying (TV) systems using the extension of
powerful linear time-invariant (LTI) approaches such as
H2/H∞ optimal control, see e.g., [Scherer, 1996]. LPV sys-
tems are dynamical models capable of describing NL/TV
behaviors in terms of a linear structure. Signal relations
between the inputs and outputs in an LPV representation
are assumed to be linear, but, at the same time, dependent
on a so-called scheduling variable p, which is assumed to be
measurable and free (external) in the modeled system. In
this way, variation of p represents time-variance, changing
operating conditions, etc., and aims at embedding the
original NL/TV behavior into the solution set of an LPV
system [Rugh and Shamma, 2000, Tóth, 2010]. However, in
many practical systems, p is often associated with inputs,
outputs or states of the modeled system (e.g., consider
operating conditions), which contradicts its assumed prop-
erty of being free. Such situations are often labeled to be
quasi-LPV (q-LPV), however what really happens is that
the assumed freedom of p introduces conservativeness in
the embedding Hence, one important objective of LPV
modeling, besides of achieving complete embedding, is to
minimize such conservativeness.

Existing approaches for the LPV modeling of NL dy-
namical systems can be classified into three main cate-
gories: linearization-based (including multiple-model de-
sign), state-transformation & function substitution-based,
and automated conversion procedures [Tóth, 2010]. In the
first category, a NL description of the system is linearized
at several operating points, then the resulting linearized
models are interpolated to get a global approximation of
the system in an LPV state-space (LPV-SS) form, see
e.g., [Petersson and Löfberg, 2012]. State-transformation
approaches, like [Shamma and Cloutier, 1993], start with a
priori choice of states being p and try to apply a coordinate
change of the NL-SS representation to arrive to an LPV
form. Substitution-based approaches try to rewrite the
NL-SS representation in a form where NL terms can be
absorbed by p, see e.g., [Leith and Leithhead, 1998]. The
first methodology usually provides an approximation of
the system in an LPV form which is only descriptive
for slow variations of the operating point, whereas the
others usually produce an exact q-LPV representation;
however they are applicable only for a limited class of NL
representations, see [Tóth, 2010] for more details. The last
category stands for the automated approaches that try
to find an exact q-LPV representation with least possible
conservativeness, e.g., [Donida et al., 2009, Kwiatkowski
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et al., 2006, Tóth, 2010]. However, they are computation-
ally intensive algorithms and provide little system theo-
retic understanding of the choices taken.

In general 1 , the existing techniques do not pay seri-
ous attention to several issues regarding the resulting
LPV models, namely: preservation of structural properties
(minimality, controllability, etc.), singularity points of the
system, how the scheduling variable and its bounds are
chosen, what is the relation between these choices and the
behavior of the system including the practical implementa-
tion of LPV controllers based on them, and the usefulness
of the resulting LPV form for control synthesis or as a
source of model structure information for identification. In
addition, most of existing techniques are based on ad-hoc
mathematical manipulations (non-unique, non-systematic,
etc.) and require a serious level of experience to be used.
Moreover, often the scheduling parameters of the resulting
LPV model necessarily depend on the states of the original
NL system, which might not be accessible in practice.

In this paper, inspired by the feedback linearization theory,
a systematic procedure is proposed to convert control
affine NL state-space representation into state minimal
LPV-SS representations in an observable canonical form.
A particular advantage of this canonical form that it can
be directly converted into an equivalent LPV input-output
form using recently developed LPV realization theory
[Tóth, 2010]. This way the obtained form is useful both
for control synthesis and model structure selection. This
procedure can be seen as a novel state transformation
approach as the idea is based on transforming the states
of a given NL representations into the normal form such
that in the SISO case all nonlinearities in the NL model are
realized in only one NL term. Then, an exact substitution-
based technique is presented to provide the LPV model.
The state transformation leads to the systematic construc-
tion of scheduling signals which depend on the inputs,
outputs, and their derivatives if the original states of the
NL model cannot be provided during practical implemen-
tation. Explanation why such a scheduling construction is
practically useful will be analyzed in detail. Examples are
also provided to illustrate the procedure.

The paper is organized as follows: Section 2 introduces the
concept of LPV representations considered in this work.
The proposed NL to LPV model conversion procedure is
described in Section 4. A modification of this procedure
is presented in Section 4 to give an alternative conversion
scheme in case of low relative degree of the system. The
examples are given in Section 5 and conclusions are drawn
in Section 6.

2. LPV REPRESENTATIONS

Continuous-time state-space representation of general
LPV systems is defined as [Tóth, 2010]:

d

dt
z = (A ⋄ p)z + (B ⋄ p)u, (1a)

y = (C ⋄ p)z + (D ⋄ p)u, (1b)

where u : T → R
nu , y : T → R

ny , z : T → R
n and

p : T → P are the input, output, state, scheduling signals
of the system, respectively, T = R is the time axis, and
P ⊆ R

np denotes the scheduling set which is assumed to

1 except the decision tree algorithm in [Tóth, 2010].

be compact. Furthermore, A, . . . , D in (1) are matrices
of real meromorphic functions 2 with a finite number of
essential arguments and the operator ⋄ is used as a short
hand notation for the evaluation of these functions on a
given trajectory of p and with a unique indexing of the

arguments based on the sequence p, d
dt
p, d2

dt2
p, . . . , i.e.,

(X ⋄ p) := X(p,
d

dt
p,
d2

dt2
p, . . . ). (2)

In other words, this operator expresses the evaluation of
the function X along a scheduling trajectory p and its
derivatives, corresponding to a dynamic mapping between
p and X or so called dynamic dependence. Dependence
on the value of p(t) only is called static dependence. For
simplicity of presentation, we consider in the sequel SISO
systems only, i.e., nu = ny = 1 in (1); furthermore we
assume w.l.o.g. that (D ⋄ p) = 0 as this term is always
eliminable via y. We frequently drop the dependence on
time t to simplify the notation.

Canonical forms of state-space representations are im-
portant as they provide the common ground of equiva-
lent transformations between state-space and input-output
representations. Here, we are interested in the so-called
LPV observability canonical form as the proposed NL to
LPV conversion procedure results in such form. Moreover,
transforming an LPV-SS observable canonical form to an
LPV-IO form and vice-versa has a direct formula based
solution, while this is not true for other state-basis in
general, see [Tóth, 2010]. The structure of the system
matrices in the observability canonical representation are
given by [Tóth, 2010]:

[

(A ⋄ p) (B ⋄ p)
(C ⋄ p) 0

]

=










0 1 . . . 0 βn−1
...

...
. . .

...
...

0 0 . . . 1 β1
α0 α1 . . . αn−1 β0
1 0 . . . 0 0










⋄ p, (3)

for the SISO case, where {αi}n−1i=1 , {βi}n−1i=1 are meromor-
phic. A special form of (3) is given by considering βi = 0,
i = 1, . . . , n− 1, which is of particular importance in this
work and will be referred in the sequel to as the simplified
observability form whereas the form (3) will be referred to
as the full observability form.

3. CONVERSION TO THE SIMPLIFIED
OBSERVABILITY FORM

Consider a SISO NL system represented by

d

dt
x = f(x) + g(x)u, (4a)

y = h(x), (4b)

where x : T→ X is the state vector of the system, X is an
open set of Rn and f(x) : X → R

n, g(x) : X → R, h(x) :
X→ R are assumed 3 to be real-valued analytic functions
(C∞ functions) of x defined on X. This means that any
order partial derivatives of these functions exist and are

2 f : Rk → R is a real meromorphic function if f = g

h
, where

g, h : Rk → R are holomorphic (analytic) and h 6= 0.
3 This assumption is due to technical convenience and can be relaxed
to “smooth enough” (at most Cn) functions in terms of the proposed
conversion approach.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6908



continuous. The form (4) represents a class of NL systems
commonly referred to as control-affine NL systems; it
constitutes a class of mechanical systems which are often
encountered in applications [Nijmeijer and van der Schaft,
1990]; furthermore, it can describe many first-principles
models used in process systems [Henson and Seborg, 1998].

The problem investigated in this section is to convert
NL systems represented by (4) with x ∈ X0 to the
simplified LPV observable form, where X0 ⊆ X is an open
neighborhood of x0. The basic idea is to first transform
the NL representation (4) into the so-called normal form,
[Isidori, 1995], using coordinate transformation, and then
apply factorization to convert the resulting normal form
to the simplified LPV observability form.

To transform (4) to the normal form, one has to construct
a coordinate transformation as

z = (Φ(x) ⋄ u) = [(φ1(x) ⋄ u) . . . (φn(x) ⋄ u)]⊤ , (5)

where (Φ(x) ⋄ u) denotes a smooth function defined on X0

with static dependence on x and dynamic dependence on
u. The resulting normal form is given by

d

dt
z1 = z2, . . .

d

dt
zn−1 = zn−2,

d

dt
zn = ᾱ ⋄ (y, u), (6a)

y = z1, (6b)

where ᾱ is a smooth function with dynamic dependence
on (y, u). The mapping Φ should define a local diffeomor-
phism, i.e., its Jacobian matrix should be nonsingular at
x0, in order to qualify as a local coordinate transformation
on the open set X0 [Isidori, 1995]. Moreover, we restrict
u, such that (Φ(x) ⋄ u) is a local diffeomorphism, which
imposes constraints on u and its derivatives. Now, given
the representation (6), if ᾱ can be factorized as

ᾱ ⋄ (y, u) =
(
γ ⋄ (y, u)

)
+
(
β0 ⋄ (y, u)

)
u

+
n−1∑

i=0

(
αi ⋄ (y, u)

)
zi+1, (7)

then the simplified LPV observable canonical form (3)
obtained with the additional term γ. The scheduling
variable p of the resulting LPV representation includes
elements of (u, y). Next, we characterize the scheduling set
P of the resulting LPV form. Let us define the so-called
latent behavior of the NL representation (4) with x ∈ X0

and u ∈ D ⊆ R as follows:

BL :=
{
(y, u, x) ∈ Cmy(T,R)× Cmu(T,D)× C1(T,X0)

s.t. (6) is satisfied
}
,

where Ck(T,R) denotes the space of k continuously differ-
entiable functions T → R. The behavior BL is a set of
admissible solutions of (4) such that x ∈ X0 and u ∈ D. In
addition, we define the so-called manifest behavior of the
NL representation (4) with x ∈ X0 and u ∈ D as follows

B :=
{
(y, u) ∈ Cmy(T,R)× Cmu(T,D) | ∃ x ∈ C1(T,X0)

s.t. (y, u, x) ∈ BL

}
,

which is the set of admissible input-output trajectories of
(4) such that x ∈ X0 and u ∈ D; for more details see
[Willems, 2007]. Then, the scheduling set P can be defined
as

P :=

my∏

ν=0

Yν ×
mu∏

µ=0

Uµ, (8)

where

Yν ⊆
{
dν

dtν
y | d

i

dti
y ∈ Yi, for 0≤ i<ν, ∃u ∈ Cmu(T,D),

dj

dtj
u ∈ Uj for 0≤j<ν, s.t. (y, u) ∈ B

}

,

Uµ ⊆
{
dµ

dtµ
u | d

k

dtk
u ∈ Uk, for 0≤k<µ, ∃y ∈ Cmy(T,R),

dl

dtl
y ∈ Yl, for 0≤ l<µ, s.t. (y, u) ∈ B

}

,

mu < my ≤ n and the sets {Yν}my

ν=0 and {Uµ}mu

µ=0 are
recursively constructed and chosen to be compact. Note
that

[z1 z2 . . . zn]
⊤
=

[

y
d

dt
y . . .

dn−1

dtn−1
y

]⊤

. (9)

How to perform the factorization step given by (7) will be
discussed later.

The notion of relative degree, r, of NL systems, see [Isidori,
1995] for its definition, has an important role in finding the
appropriate coordinate transformation. In the sequel, the
conversion problem is considered for two cases: when the
relative degree of the NL system is equal to its order and
when it is less.

3.1 Case 1: Relative degree equals system order

Consider the NL system given by (4). Assume that its
relative degree is well defined at the point x0 and equals
its order, i.e., r = n. Then, computing y and its derivatives
dk

dtk
y, for k = 1, . . . , n gives

y = h(x),
d

dt
y = Lfh(x),

d2

dt2
y = L2

fh(x),

. . .
dn

dtn
y = Ln

fh(x) + LgL
n−1
f h(x)u.

(10)

where Li
XV (·) stands for the ith Lie derivative of V

w.r.t. X (see [Isidori, 1995]). Then, a local coordinate
transformation around x0 can be defined by

Φ(x) =
[
h(x) Lfh(x) . . . L

n−1
f h(x)

]⊤
. (11)

The following results are important:

Lemma 1. (Isidori [1995]). If the relative degree r of the
system (4) is n at a point x0, then the gradients ∇h(x0),
∇Lfh(x0), . . . ,∇Ln−1

f h(x0) are linearly independent.

Proposition 2. (Isidori [1995]). If Φ(x) is a smooth func-
tion defined on some open subset X of Rn and its Jacobian
matrix ∇Φ(x) is nonsingular at a point x = x0, then, on
a suitable open set X0 of X, containing x0, Φ(x) defines a
local diffeomorphism.

Lemma 1 shows that ∇Φ(x0) is nonsingular; then, based
on Proposition 2, Φ(x) in (11) defines a local diffeomor-
phism on X0, and hence, it qualifies as a local transfor-
mation. Thus, representation (4) in the new coordinates
zi = φi(x), i = 1, . . . , n can be obtained as
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d

dt
z1 =

∂

∂x
φ1
dx

dt
= Lfh(x) = φ2(x) = z2,

...
d

dt
zn−1 =

∂

∂x
φn−1

dx

dt
= Ln−1

f h(x) = φn(x) = zn,

d

dt
zn = Ln

fh(x) + LgL
n−1
f h(x)u.

This is in the form (6) with ᾱ given by

ᾱ(z, u) = Ln
fh(Φ

−1(z)) + LgL
n−1
f h(Φ−1(z))u. (12)

Note that all nonlinearities in (4) are absorbed in the
term ᾱ. Then, factorization of ᾱ, as shown in (7), results
in the simplified LPV observable representation, where p
includes elements of u and, due to (9), elements of y and
its derivatives. Thus, the scheduling set can be defined as
shown in (8) with mu = 0.

Remark 3. Several NL to LPV conversion approaches in
the literature provide LPV models in which the scheduling
variable p includes all or part of the original states of the
NL representation. These states are are often difficult or
expensive (or even not possible) to be accurately measured
or estimated (like in several systems in process control).
In the proposed conversion method, p includes elements of
u, and all or part of the new coordinates z1, . . . , zn, which
can be measured and estimated directly as they represent
the system output and its derivatives. Alternatively, they
can also be computed from the original states x1, . . . , xn
of the NL system if they are available as shown in (10).
This means that a good compromise can be found w.r.t.
the implementability and utilization of the resulting LPV
form, which is unique among the conversion techniques.

Remark 4. It is also important to highlight that the re-
sulting LPV description will only give a representation of
the original NL system around X0. On one hand, this gives
system theoretic guarantees where the LPV representation
is valid, which has paramount importance for control and
identification. On the other hand, this condition can be
relaxed by exploiting the meromorphic nature of the co-
efficient functions and establishing representation of the
behavior in an almost everywhere sense. Due to space
restrictions, this relaxation is not discussed here.

3.2 Case 2: Relative degree less than system order

In this section, the local coordinate transformation is
introduced when r < n to convert the NL representation
(4) into a simplified LPV observable form. Assume that
the relative degree of (4) is well defined at a point x0
and less than its order, i.e., r < n. Then, computing

y, d
dt
y, . . . , dr−1

dtr−1 y in a similar way as shown in (10) can
provide part of the new state coordinates such that

[z1 z2 . . . zr−1]
⊤
=

[

y
d

dt
y . . .

dr−1

dtr−1
y

]⊤

=
[
h(x) Lfh(x) . . . L

r−1
f h(x)

]⊤
(13)

and
d

dt
zr =

dr

dtr
y = Lr

fh(x) + LgL
r−1
f h(x)u. (14)

To complete the new coordinates, let

d

dt
zr = zr+1.

Then, compute

d

dt
zr+1 = Lf (zr+1) + Lg(zr+1)u +

∂

∂u
(zr+1)

d

dt
u. (15)

Next, define zr+2 as the r.h.s. of (15), and then compute
d
dt
zr+2. Repeating this operation till zn transforms (4) to

the the normal form (6). Note that again, all nonlinearities
of (4) are absorbed in the function ᾱ. This suggests a
coordinate transformation given by (5), which is a smooth
function of not only x but also of u, and its derivatives till
the (n − r)-th derivative. Therefore, to be qualified as a
local diffeomorphism on X0, the Jacobian of Φ at the point
x0, ∇Φ|x0

, should be nonsingular for specified ranges of

u, d
dt
u, . . . , dn−r

dtn−ru. In this case, ∇Φ|x0
is a matrix valued

function of u, d
dt
u, . . . , dn−r

dtn−r u and the ranges of the latter
variables for which ∇Φ|x0

is nonsingular should be speci-
fied. This can be tackled by using the approach proposed
by [Cerone et al., 2012] to evaluate non-singularity of ma-
trices with uncertain entries by formulating this problem
as a non-convex polynomial optimization problem, whose
approximate solution is efficiently computed by means
of sum-of-square convex-relaxation techniques. Therefore,
one can check that ∇Φ|x0

is nonsingular and obtain the

corresponding ranges of u, d
dt
u, . . . , dn−r

dtn−r u, which needs to
be considered for the scheduling set of the resulting LPV
model (see (8)).

Finally, the simplified LPV observable form can be con-
structed by factorizing ᾱ as shown in (7), which specifies
the functions {αi}n−1i=0 , and β0. The resulting scheduling
variable may include elements of (u, y) and their deriva-
tives according to the functions {αi}n−1i=0 and β0.

Compared to the previous case, this means that the price
to pay for a low relative degree of the system and excluding
the original states x1, x2, . . . , xn to be chosen as scheduling
variables, is that the derivatives of u up to the (n− r)-th
order might be needed to be chosen as scheduling variables
to guarantee the embedding.

3.3 Factorization Algorithm

In this section, a factorization algorithm is introduced to
perform the factorization step in (7).

Note that, in implementation of controllers on modern
hardware, the input signal, i.e., control output, is com-
puted by micro controllers, therefore, it can be consid-
ered as a noise-free signal, under the assumption that all
actuator nonlinearites have been incorporated in the NL
plant model already. Hence, for the sake of simplicity, the
factorization algorithm proposed in this section will not
restrict the inclusion of derivatives of u into p.

Recall again that, as specified in (9), the output and its
derivatives are the states of the obtained LPV represen-
tation. Then, to cope with the above defined objectives,
Algorithm 1 is introduced for the factorization step of (7).
The idea of this algorithm is to first explore the prior
nonlinear structure in terms of irreducible summands,
and then successively factorize out linear terms from the
summands where priority is given for the higher-order
derivatives of y. Note that Algorithm 1 is a simplified
version of the method introduced in [Kwiatkowski et al.,
2006] and its improved version in [Tóth, 2010], where the
factorization problem is considered for the whole nonlinear
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model whereas here it is dedicated only for the function ᾱ
with a particular prioritization of the signals.

Algorithm 1 Factorization algorithm

Require: Write ᾱ as a combination of additive summands
∑nα̌

i=1 α̌i, where each term α̌i is in the form α̌i =
(čiu

τi
∏n

j=1 z
κj

j )/(ψi) with τi, κj ∈ Z+, či being a
non-factorizable term and ψi being co-prime with the
numerator.

1: ᾱres ← 0, αj←0:n−1 ← 0, β0 ← 0
2: for i← 1 : nα̌ do
3: if τi 6= 0 then
4: β0 ← β0 +

α̌i

u
5: else
6: for j ← n : 1 do
7: if κj 6= 0 & α̌i 6= 0 then

8: αi ← αi +
α̌i

xj

9: α̌i ← 0
10: end if
11: end for
12: if α̌i 6= 0 then
13: ᾱres ← ᾱres + α̌i

14: end if
15: end if
16: end for
17: return ᾱres, α0, . . . , αn−1, β0

The factorization algorithms presented here might return
ᾱres 6= 0. In that case, γ = ᾱres in (7). Next, we suggest
some approaches to deal with such term if the LPV model
is to be used for control design purposes. As the simplified
LPV observable form is considered here, (1a) of the LPV
model with a non-factorizable term can be seen as

d

dt







z1
...

zn−1
zn






=







0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
α0 α1 . . . αn−1













z1
...

zn−1
zn






+







0
...
0
β0







︸ ︷︷ ︸

B

u+







0
...
0
γ







︸︷︷︸

E

.

(16)
From (16), one can observe that the vector E is spanned
by the vector B, and consequently, the non-factorizable
term can be seen as an input disturbance to the system.
Therefore, it can be treated by one of the following ways.

(1) It can be completely ignored during the control design
phase, and hence its effect can be reduced by one of
the following methods:
(i) Input disturbance rejection can be considered as

one of the control design objectives.
(ii) The designed controller can be augmented with

a feedforward path to compensate this non-
factorizable term during control implementation,
see, e.g., [Hashemi et al., 2013].

(2) One can introduce a new input w to the system to
include the non-factorizable term as w = β0u + γ,
which leads to β0 = 1 in (16).

(3) It can be rewritten as γ
u
u or γ

zj
zj , hence it can be

assigned to u or to jth state, respectively, as a coef-
ficient which can be added to β0 or αj , respectively.
This assignment gives n + 1 possibilities depending
on which component of z is used. It should be taken
into consideration that u or the state zj should not

approach to zero during operation, see [Kwiatkowski
et al., 2006],[Tóth, 2010] for more details.

(4) One can approximate the non-factorizable term in
terms of its truncated series expansion in its argu-
ments to obtain a completely factorizable form.

4. CONVERSION TO THE FULL OBSERVABILITY
FORM

Based on the same idea presented above, next, a procedure
is presented to transform a control-affine NL systems (4)
to a full LPV observable form. This alternative is of
particular interest for systems with low relative degree.
The resulting LPV model is associated with scheduling
signals that do not include input derivatives; however
they depend on the availability of the original states of
the system (4), and here it is assumed that they can be
estimated or measured as in several mechanical systems.

Consider again the NL representation (4) with a well
defined relative degree r < n at a point x = x0. Based
upon the formulation given by (13) and (14), one can
compute the new coordinates as follows. Let zr+1 =
Lr
fh(x), then

d

dt
zr+1 = Lr+1

f h(x) + LgL
r
fh(x)u.

Next taking zr+2 = Lr+1
f h(x) provides

d

dt
zr+2 = Lr+2

f h(x) + LgL
r+1
f h(x)u.

Repeating this operation n− r + 2 times gives

d

dt
z1 = z2, (17a)

...d

dt
zr = zr+1 + LgL

r−1
f h(x)u, (17b)

...d

dt
zn = Ln

fh(x) + LgL
n−1
f h(x)u. (17c)

Based on this reformulation, the local coordinate transfor-
mation Φ(x) that converts (4) into (17) is given in the form
of (11) again. Now it is required to show that Φ(x) is a local
diffeomorphism in order to prove that (17) is an equivalent
representation in the neighborhood x0. For that, it suffices
to show that ∇Φ(x)|x0

is invertible. Lemma 1 guarantees
that the gradients of the first r components of Φ(x) are lin-
early independent (if the relative degree of the system (4)
is r at x = x0). If the remaining n− r components are also
linearly independent, then based on Proposition 2, Φ(x)
defines a local diffeomorphism and the vector z qualifies as
a state variable. Therefore, we can define x = Φ−1(z) and
substitute this in (17) so that ᾱ(z, u) can be given by (12).
Now, the full LPV observable form can be constructed
similarly as before, except the extra terms {βj}n−rj=1 , which
are assigned as

βj = LgL
n−j−1
f h(Φ−1(z)). (18)

After factorization of the ᾱ term by Algorithm 1. The
scheduling variable of the resulting LPV representation
may depend on the elements of the new coordinates
z1, . . . , zn and possibly the system input. Note that the
first r − 1 terms of the the new coordinates are the
output and its 1, . . . , r−1-derivatives while the rest should
be computed from Lr

fh(x), . . . , L
n
fh(x) given the original

states x1, x2, . . . , xn of the NL system. In contrast with
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the procedure introduced in Section 3.2, the scheduling
signals here do not include the derivatives of the input
and the representation is not in the normal form.

5. NUMERICAL EXAMPLES

5.1 Example 1

Consider the NL system (4) with

f(x) =





0
x1 + x23
x2 + x2x3



 , g(x) =





x22 + x3
0
0



 , h(x) = x3.

(19)
Next, this NL representation is converted into the simpli-
fied LPV observable form. The system has a relative degree
3, i.e., r = n, at each point x0 ∈ V = {x ∈ R

3 | (x22 +
x3)(x3+1) 6= 0}. Therefore, we can provide a normal form
of the system for any open set X0 ⊂ V. According to (11),
the local coordinate transformation is

z = Φ(x) =
[
x3 x2 + x2x3 (x3 + 1)(x22 + x23 + x1)

]⊤
.

The Jacobian matrix of Φ(x) is singular at R
3 \ V. The

inverse transformation Φ−1(z) can be given by

x =

[(
z3 − (z1 + 1)3

(
z22 + z21(z1 + 1)2

))

(z1 + 1)

z2
z1 + 1

z1

]⊤

.

As Φ transforms the NL model to the normal form given by
(6), the function ᾱ is directly obtained. The next step is to
factorize ᾱ(z) to get the LPV model. This is accomplished
by Algorithm 1, which gives

α0 = 2z2(z1 + 1), α1 = − 2z22
(z1 + 1)2

, α2 =
3z2
z1 + 1

,

β0 = (z1 + 1)

(

z1 +
z22

(z1 + 1)2

)

.

It is worth to mention that for this system, the scheduling

signal is p = [z1 z2]
⊤
, where z1 = y and z2 = d

dt
y.

Due to V, the region P for p should be chosen such that
p1 6= −1 and if p1 < 0 then p2 6=

√−p1(1 + p1). Note that
the original system is neither controllable nor observable at
these points, i.e., at R3 \V. Several techniques introduced
in the literature to convert an NL model into an LPV form
ignore this restriction.

5.2 Example 2

In order to demonstrate the procedures presented in Sec-
tions 3.2 and 4 we now consider an NL system (4) with

f(x) =





x2 − 2x2x3 + x23
x3

sin(x1)



 , g(x) =

[
4x2x3
−2x3
0

]

, h(x) = x3.

(20)
The system has a relative degree r = 2 which is less than
its order n = 3. Therefore, the NL model can be converted
to both the full and the simplified LPV observability
forms (3). First, the former one is considered. In this case,
the new coordinate z and its inverse can be computed,
respectively, by

z =
[
x3 sin(x1) cos(x1)(x

2
3 − 2x2x3 + x2)

]⊤
,

x =

[

sin−1(z2)
−z3 + z21

√

1− z22
(2z1 − 1)

√

1− z22
z1

]⊤

.

The new coordinates can be used to transform the NL
model into the form (17) with r = 2, n = 3, then the
factorization step is performed for ᾱ to construct the full
LPV observable form as shown in (3), where

α0 =
2z2z

2
3 +

(
4z21 − 4z1 + 2z2 + 1− 2z1z2

)√

(1− z22)3
(2z1 − 1)(z22 − 1)

,

α1 =
−z3(2 + z3 − 2z22)

(2z1 − 1)(z22 − 1)
, α3(z) = 0,

β0 =
−2z1

(

2z2z
2
3 − 2z21z2z3

√

1− z22
)

(2z1 − 1)(z22 − 1)

− 2z1(4z
2
1 − 4z1 + 1)

√

(1− z22)3
(2z1 − 1)(z22 − 1)

,

β1 =
−4z1

(

z3 − z21
√

1− z22
)

2z1 − 1
.

The transformation is not valid for (2z1 − 1)(z22 − 1) = 0
which corresponds to (1 − 2x3) cos(x1) = 0; this should
be considered when the operating region of the intended
LPV model is defined via P. Note that the original system
is not controllable at theses points as well.

Now, we convert the NL model to the simplified LPV
observable form. Again, the new coordinate z and its
inverse are determined and given, respectively, by

z =
[
x3 sin(x1) cos(x1)(x

2
3 − 2x2x3 + x2 + 4x2x3u)

]⊤
,

x =

[

sin−1(z2)
−z3 + z21

√

1− z22
(2z1 − 4z1u− 1)

√

1− z22
z1

]⊤

.

Note that the new coordinate z and its inverse depend on
the input signal u. Then the NL model can be written in
the normal form (6) and the factorization step is performed
for ᾱ above to get the simplified LPV observable form:

α0 =
−2z2z23 + 4

(
d
dt
u
)
(z22z3 − z3)

(z22 − 1)(4uz1 − 2z1 + 1)
,

+
(−1 + 4z1 − 2z2 − 4z21 + 2z1z2 + 4

(
d
dt
u
)
z21)

√

(1− z22)3
(z22 − 1)(4uz1 − 2z1 + 1)

α1 =
z3(2 + z3 − 2z22)

(z22 − 1)(4uz1 − 2z1 + 1)
, α2 = 0,

β0 =
4z2z

2
3z1 + 4z2z3(z

2
2 − 1) + (2 + 24z21)z1

√

(1− z22)3
(z22 − 1)(4uz1 − 2z1 + 1)

+
(16uz1 − 4z1z2 − 16z1 − 48uz21 + 32u2z21)z1

√

(1− z22)3
(z22 − 1)(4uz1 − 2z1 + 1)

.

In this case, the transformation is not valid for (z22 −
1)(4uz1−2z1+1) = 0. Here, the scheduling signals include,
in addition to the new states z1, z2, z3 (which are the
output and its first and second derivatives) the system
input and its first derivative. This is the price to pay for
having the LPV representation completely independent
of the original NL states. Furthermore, the new LPV
representation can be easily and directly converted into
an LPV-IO form.

6. CONCLUSION

In this paper, a systematic approach has been proposed
to determine state-minimal LPV-SS representations in
observable canonical form for control-affine NL models.
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The concept of relative degree of NL systems has been
used to obtain coordinate transformations that transforms
the NL representation to the normal form that has only
one NL term,. This single term can be factorized to arrive
at a LPV representation of the NL model in a simplified
observable form. A practical algorithm is introduced to
perform the factorization step. The scheduling signals of
the resulting LPVmodel can be computed from the system
output, input and their derivatives. Moreover, a procedure
has been introduced that can convert a NL model with a
relative degree less than the order of the system to an LPV
representation in the full observable canonical form, where
the scheduling signals can be computed from the original
states of the NL representation. This procedure can be
used if these states can be measured or estimated.
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D. Petersson and J. Löfberg. Identification of LPV state-
space models using H2 minimisation. In A. Varga,
A. Hansson, and G. Puyou, editors, Optimization Based
Clearance of Flight Control Laws, chapter 6, pages 111–
128. 2012.

W. J. Rugh and J. S. Shamma. Research on gain schedul-
ing. Automatica, 36:1401–1425, 2000.

C. W. Scherer. Mixed H2/H∞ control for time-varying
and linear parametrically-varying systems. Int. Journal
of Robust and Nonlinear Control, 6(9-10):929–952, 1996.

J. Shamma and J. Cloutier. Gain-scheduling missile au-
topilot design using linear parameter varying transfor-
mations. Journ. of Guidance Control and Dyn., 16(2):
256–263, 1993.
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