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Abstract: A Least-Squares Support Vector Machine (LS-SVM) estimator, formulated in the
frequency domain is proposed to identify linear time-varying dynamic systems. The LS-SVM
aims at learning the structure of the time variation in a data driven way. The frequency domain
is chosen for its superior robustness w.r.t. correlated errors for the calibration of the hyper
parameters of the model.
The time-domain and the frequency-domain implementations are compared on a simulation
example to show the effectiveness of the proposed approach. It is demonstrated that the time-
domain formulation is mislead during the calibration due to the fact that the noise on the
estimation and calibration data sets are correlated. This is not the case for the frequency-domain
implementation.

1. INTRODUCTION

In engineering applications and, more specifically, in the
systems and control field, a lot of effort has been spent
to extend the comfortable framework of Linear Time-
Invariant (LTI) systems to the more hazardous Linear
Time-Varying (LTV) systems, Linear Parameter-Varying
(LPV) systems and, more generally, to nonlinear systems.
The major reason is the need to achieve better perfor-
mance in modeling and controlling systems with nonlinear
and time-varying dynamics, than can be provided by the
LTI framework.

The present paper focuses on the data-driven identification
of LTV systems. Practical applications of LTV systems
include:

• the dynamics of the wing of a plane, which vary with
the flight speed and altitude [Fujimori and Ljung,
2006],
• the electrical impedance of a metal, subject to (pit-

ting) corrosion [Tourwé et al., 2010],
• the mechanical impedance of a human muscle, under

varying spinal signals [Groenewegen et al., 2012].

From a black-box identification point of view, it is im-
portant to determine the structure of the time variation
directly from the data, without limiting ourselves to re-
strictive assumptions. The above mentioned applications
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involve seriously complex dependencies on time, which can
not be determined explicitly in advance. An acceptable
assumption made in this paper is that the variation is
smooth, to some extent. Still, the “level of smoothness”
must be determined. To do that in a convenient fashion, a
Least-Squares Support Vector Machines (LS-SVM) based
approach is proposed in this paper to model the time-
varying system parameters.

LS-SVMs are versatile estimators, with a continuously
tunable smoothness. This tuning is performed by opti-
mizing a calibration criterion (cross-validation), which as-
sesses that the model is able to predict the system behavior
on a data set which was not used for estimation. The
fact that the calibration criterion is continuous w.r.t. the
parameter to be tuned prevents the complexity of the
problem to be combinatorial.

Two specific difficulties pop up w.r.t. the identification of
time-varying, dynamic systems:

(1) It is difficult, and sometimes impossible, to repeat
experiments since the system varies from one experi-
ment to the other.

(2) The equation-error in the system equation is prone to
be correlated, because of the dynamic nature of the
system.

As a consequence, it is impossible to split the available
data into an estimation data set and a calibration data
set, affected by different noise realizations. The estimation
data and the calibration data will have to be interleaved,
such that the errors on the one will be correlated with
those on the other data set. This limiting problem will
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be overcome by formulating the problem in the frequency
domain.

A frequency-domain formulation of system identification
problems has proven advantages, one of which is that the
spectrum of stationary, colored noise is not correlated. In
other words:

correlated, stationary noise in the time domain

not correlated noise spectrum

⬍

This gives the motivation to develop the calibration of
the model in the frequency domain. This paper aims at
demonstrating that the frequency-domain formulation of
the LS-SVM to identify dynamic time-varying systems can
yield an impressive improvement w.r.t. the time-domain
formulation if cross-validation based calibration of the
hyper parameters is applied.

1.1 State of the art

The state of the art which is in direct relevance with the
current paper is summarized as follows.

• Exhaustive and very detailed authorities providing
frequency domain techniques for system identification
is Pintelon and Schoukens [2012], and discussing LS-
SVM is Suykens et al. [2002].
• Frequency domain techniques dealing with correlated

noise in an elegant way are discussed in Pintelon et al.
[2006].
• A time-domain formulation to deal with correlated

errors in the LS-SVM setting is discussed in De Bra-
banter et al. [2011] and Laurain et al. [2011]. More
precisely, advanced tools are used in De Brabanter
et al. [2011] to adapt the kernel function to the cor-
relation of the errors, while an instrumental-variable
based approach is introduced in Laurain et al. [2011].
• A frequency domain formulation of the LS-SVM

to solve the regression problem of a static time
function in the presence of correlated errors has been
introduced in Lataire et al. [2012]. This has been done
without making assumptions on the specific nature of
the correlation.

1.2 Novel contributions

The novel contribution of this paper is that the LS-SVM
is formulated in the frequency domain for dynamic time-
varying systems, and implemented for a time-varying AR-
MAX structure. As explained in the paper, the frequency
domain formulation intrinsically yields a different pattern
for splitting the available data into estimation and vali-
dation data sets. It is more involved than simply taking
the DFT of the signals. It is then demonstrated that the
frequency domain formulation is a highly valuable alterna-
tive to its time domain counterpart, and is especially more
robust in the presence of correlated errors.

2. PROBLEM FORMULATION

Consider a linear time-varying system described by the
ordinary difference equation:

y(t) = −
Na∑
n=1

an(t)y(t− n) +

Nb∑
n=0

bn(t)u(t− n) + v(t) (1)

where u(t) and y(t) denote the input/output signals re-
spectively, and an(t) and bn(t) are the time-varying sys-
tem coefficients. The equation error v(t) is discrete-time
colored stationary noise, viz.:

Assumption 1. [Colored stationary noise] For any t ∈ Z
E {v(t)} = 0,

E {v(t)v(t+ τ)} ≡ Cv(τ). �

The fact that Cv only depends on τ makes it stationary.
The fact that Cv(τ) 6= 0 for τ 6= 0 makes the noise
correlated. Denote T = {0, 1, . . . , N − 1} the considered
measurement window, inside which a data set is available.

Assumption 2. (Available data set). A single contiguous
input/output data set DN = {(y(t), u(t))}t∈T is available.

The problem is formulated as follows. Determine the time-
varying coefficients an(t) and bn(t) for t ∈ T without a
priori knowledge on their shape. In other words, write the
system coefficients as function expansions:

an(t) = ρ>anφ(t), bn(t) = ρ>bnφ(t), for t ∈ T (2)

where ρan , ρbn , φ(t) ∈ RnH . φ(t) are potentially infinite
(nH → ∞) dimensional basis functions. ρan and ρbn are
called the primal parameters, φ(t) is a (potentially infinite)
vector of basis functions. The fact that nH → ∞ will
require a regularization on the primal parameter vectors.

3. SOLUTION FORMULATION

3.1 Reasoning

The following reasoning is made:

(1) To avoid overfitting, this model must be tuned based
on a calibration criterion.

(2) Since one single data set is available, the calibration
data set will have to be interleaved with the data set
used for the estimation.

(3) The fact that v(t) is correlated over time (Assump-
tion 1) yields a correlation between the noise on the
calibration and the estimation data sets. This will
mislead the calibration of the model.

(4) Since the Discrete Fourier Transform (DFT) of sta-
tionary noise is not correlated, the calibration of the
model in the frequency domain formulation will not
be mislead by the time correlated noise.

3.2 Time domain estimation: implementation

Introduce the following notations:

ρn ≡ ρbn , xn(t) ≡ u(t− n), n = 0, . . . , Nb
ρn+Nb ≡ ρan , xn+Nb(t) ≡ −y(t− n), n = 1, . . . , Na

(3)

with u(t) = y(t) = 0 for t < 0. In combination with (2),
rewrite (1) for t ∈ T as

y(t) =

Na+Nb∑
n=0

ρ>n φ(t)xn(t) + I(t) + v(t), t ∈ T (4)

where I(t) =
∑Ntr

n=0 δ(t − n)trn takes into account the
initial conditions (δ(•) is the Kronecker delta; Ntr =
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max(Na, Nb)− 1) [Lataire and Pintelon, 2011]. Note that
the coefficients trn must also be estimated. The estimation
problem is formulated as follows in the time domain:

ρ̂n = argmin
ρn,e,θtr

1

2
ρ>ρ+

γ

2

∑
t∈Te

e2(t), (5a)

s.t. e(t) = y(t)−
Na+Nb∑
n=0

ρ>n φ(t)xn(t)− I(t), (5b)

where Te is the set of time samples used for estimation,
θtr is a column vector stacking trn, for n = 0, 1, . . . , Ntr,
and γ is a regularization parameter tuned by the user to
balance the bias/variance trade-off in the final estimate of
the time-varying parameters an(t) and bn(t).

Problem (5) is derived from the standard ‘primal formula-
tion’ of Least Squares Support Vector Machines (LS-SVM)
[Suykens et al., 2002]. In order to compute the parameters
an(t) and bn(t), the Lagrangian L(ρn, e, θtr, α) associated
with (5) is constructed:

L(ρn, e, θtr, α) =
1

2
ρ>ρ+

γ

2

∑
t∈Te

e2(t)+ (6)

+
∑
t∈Te

α(t)

(
y(t)−

Na+Nb∑
n=0

ρ>n φ(t)xn(t)− I(t)− e(t)

)
,

where α(t) are the so-called Lagrangian multipliers and
they are stacked in the vector α = {α(t) : t ∈ Te}. From
the Karush-Kuhn-Tucker (KKT) optimality conditions,
the Lagrangian multipliers α and the parameters θtr can
be computed by solving the set of linear equations:[

y
0Ntr×1

]
=

[
Λ + 1/γ ψ
ψ> 0Ntr

] [
α
θtr

]
, (7)

where the vector y stacks y(t) for t ∈ Te, and ψ is
the identity matrix, truncated to the first Ntr columns.
Eq. (7) is known as the ‘dual formulation’. The matrix Λ
is obtained by stacking Λ(t, t′) for t, t′ ∈ Te, with

Λ(t, t′) =

Na+Nb∑
n=0

xn(t)φ>(t)φ(t′)︸ ︷︷ ︸
≡K(t,t′)

xn(t′), (8)

In (8), K(t, t′) is a positive definite Kernel function K :
R×R→ R satisfying the Mercer’s condition [Mercer, 1909]
and defining the inner product φ>(t)φ(t′). The choice
of the kernel K(t, t′) is discussed further on. From the
KKT conditions and (2), the system coefficients can be
computed in terms of the kernel function K(t, t′) and α:

b̂n(t) =
∑
t′∈Te

K(t, t′)xn(t′)α(t′), n = 0, 1, . . . , Nb (9)

ân(t) =
∑
t′∈Te

K(t, t′)xn+Nb(t
′)α(t′), n = 1, . . . , Na (10)

The reader is referred to Suykens et al. [2002] for further
details on the LS-SVM approach.

3.3 Time domain: discussion

• The parameters ρn have been eliminated from the
problem and, thus, are not computed explicitly. The

resulting ân and b̂n in (9) and (10) are non-parametric
estimates of the system coefficients.

• As is clear from (8), φ(t) is not required explicitly
to solve (7). Only the scalar product φ>(t)φ(t′) ≡
K(t, t′) is needed. K(t, t′) is known as the kernel. It
implicitly defines the basis functions used. Specifica-
tion of the kernel K(t, t′) instead of the maps φ(t) is
called the kernel trick [Vapnik, 1998], and allows the
use of infinite dimensional bases.

• A commonly used kernel to model arbitrary signals is
the Radial Basis Function (RBF), given by

K(t, t′) = exp

(
−‖t− t

′‖22
σ2

)
. (11)

Although other kernels can be used with the pre-
sented methods, the RBF will be used throughout
this paper.

• The RBF depends on the tunable parameter σ, which
determines the smoothness of the estimated time-
varying coefficients. The tunable parameter γ in (5a)
defines a trade-off between a bias error and the
variance of the estimated parameters. σ and γ will
be calibrated as explained further on.

• As indicated in (5a), the estimation is done using
only a subset Te ⊂ T of the available data set. The
complement of that data set, Tc = T\Te, will be used
for tuning the hyper-parameters γ and σ via cross-
validation. The choice of Te and Tc will be discussed
later.

3.4 Frequency domain estimation: implementation

Denote Ft {x(t)} the Discrete Fourier Transform (DFT)
of x(t) w.r.t. t at frequency bin k:

X(k) = Ft {x(t)}k =
1√
N

N−1∑
t=0

x(t)e−
j2πkt
N , k ∈ K, (12)

with K = {0, 1, . . . , N − 1} denoting the set of frequency
bins. By following the reasoning in Lataire and Pintelon
[2011] and Lataire [2011], and by using (3), the model
equation (1) can be written in the spectral domain as

Y (k) =

Na+Nb∑
n=0

ρ>nFt {φ(t)xn(t)}k + I(zk) + V (k), (13)

where I(zk) =
∑Ntr

n=0 trnz
−n
k takes into account the initial

conditions, zk = exp (j2πk/N), and k ∈ K. Analogously
to the time domain formulation (5), the frequency do-
main estimation problem is formulated as the following
constrained optimization

ρ̂n = argmin
ρn,E,trn

1

2
ρ>ρ+

γ

2

∑
k∈Ke

|E(k)|2, (14)

s.t. E(k) = Y (k)−
Na+Nb∑
n=0

ρ>nFt {φ(t)xn(t)}k − I(zk),

where Ke is the subset of frequency bins Ke ⊂ K at which
the estimation is performed. The selection of Ke will be
discussed later. The additional difficulty compared with
solving (5) is that (14) is a complex equation. Nevertheless,
it can be rewritten as a real-valued optimization problem
by decomposing (14) into its real and imaginary parts.
Through considerations similar to the ones discussed in the
time-domain case Section 3.2, the Lagrangian associated
with the primal problem (14) can be constructed and the
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solution of the dual problem of (14) can be computed by
solving the set of linear equations:[

Y
0Ntr×1

]
=

[
ΛF + 1/γ Ψ

Ψ> 0Ntr

] [
αF

θtr

]
, (15)

for αF and θtr, where Y and αF stack the output spectrum
Y (k) and the frequency domain Lagrangian multipliers
αF(k) for k ∈ Ke, respectively. The proofs for deriving (15)
are outside the scope of this paper. In Lataire et al. [2012],
the proofs are provided for static systems. The complex
valued matrix ΛF is obtained by stacking ΛF(k, k′) for
k, k′ ∈ Ke, with

ΛF(k, k′) ≡
Na+Nb∑
n=0

F>t {φ(t)xn(t)}k Ft {φ(t)xn(t)}k′

=

Na+Nb∑
n=0

Ft
{
Ft′ {xn(t)K(t, t′)xn(t′)}k′ ,

}
k

(16)

(an overline denotes a complex conjugation). The esti-
mated system coefficients are then given by:

b̂n(t) =
∑
k∈Ke

Ft′ {K(t, t′)xn(t′)}kαF(k), n = 0, 1, . . . , Nb

ân(t) =
∑
k∈Ke

Ft′ {K(t, t′)xn+Nb(t
′)}kαF(k), n = 1, . . . , Na.

3.5 Frequency domain: discussion

Similarities and differences with the time domain imple-
mentation (see Section 3.3) are listed.

Similarities with the time-domain implementation:

• In this frequency-domain implementation, the time-
domain kernel K(t, t′) appears explicitly. Using the
same kernel as in the time-domain case allows for a
fair comparison between the two implementations.
• The hyper parameters γ and σ should also be tuned.
• By Parceval’s theorem, for the same values of σ and
γ, and if the estimation data sets consist of the whole
available data set (i.e. Te = T and Ke = K), the time
domain and frequency domain formulations (5) and
(14) are exactly equivalent and, thus, they have the
same solution.

Difference with the time domain implementation

• The available total data set (k ∈ K) is subdivided
into an estimation (Ke) and a calibration data set
(Kc = K \ Ke). This subdivision is done in the fre-
quency domain. That is, instead of the available time
samples, the available frequency bins are subdivided.
This implies that the estimated parameters from the
time domain estimation data set are different from
the estimated parameters from the frequency domain
estimation data set. This will be important in the
next section.

4. CALIBRATION BASED ON CROSS-VALIDATION

The following reasoning is made:

• For both the time- and frequency-domain implemen-
tations, the data sets must be split into estimation
(Te and Ke) and calibration data sets (Tc and Kc).

• The hyper parameters γ and σ must be tuned, based
on the capability of the estimated model to predict
the output signal/spectrum at the calibration sam-
ples/bins.

• The optimization of this prediction capability is for-
mulated as the minimization of the following calibra-
tion objective functions (time and frequency domain
respectively)

γT, σT = argmin
γ,σ

∑
t∈Tc

(y(t)− ŷ(t, γ, σ))
2

(17a)

γF, σF = argmin
γ,σ

∑
k∈Kc

∣∣∣Y (k)− Ŷ (k, γ, σ)
∣∣∣2 (17b)

where ŷ and Ŷ were estimated from, respectively, the
time domain and frequency domain estimation data
sets.

• For the considered model class, and since only one
data set is available, it wouldn’t make sense to use,
for instance, the first half of the samples/bins for the
estimation and the second half for the calibration,
since no structure is imposed on the time-varying co-
efficients an(t) and bn(t). This is because the system
behavior cannot be extrapolated from the first half to
the second half. For that reason, the estimation and
calibration data sets must be interleaved, assuming
the smoothness of an(t) and bn(t).

• The choice of the interleaved estimation and calibra-
tion samples/bins is done as depicted below

· · · ◦ • • • ◦ • • • ◦ • • • ◦ • • • ◦ . . .
with • an estimation sample/bin

◦ a calibration sample/bin

This can straightforwardly be extended to an n-fold
cross-validation scheme (with n = 4 in this case) by
constructing multiple shifted versions of the above
estimation and calibration sets.

• In the calibration objective functions (17), terms will
appear containing the following products (as shown
in the Appendix of De Brabanter et al. [2011]):

Time domain: v(t)v(t′), t ∈ Te, t
′ ∈ Tc

Frequency domain: V (k)V (k′), k ∈ Ke, k
′ ∈ Kc

By Assumption 1, the product of two noise samples in
the time domain is non-zero in expected value. Also
by Assumption 1, and since the DFT of stationary
noise is not correlated over the frequency [Pintelon
et al., 2006], the expected value of the noise spectrum
at different bins is zero. Summarized:

E {v(t)v(t′)} = Cv(t− t′) 6= 0 (18a)

E {V (k)V (k′)} = 0 (18b)

The reasoning above leads to the conclusion summarized
as the following theorem.

Theorem 1. The time-domain calibration objective func-
tion in (17a) contains non-zero terms which are purely
due to the noise, and also depend on γ and σ. These terms
are prone to shift the global minimum of the calibration
objective function, yielding suboptimal results. Similar
terms don’t appear in the frequency-domain calibration
objective function (17b).

As such, the frequency domain formulation of the LS-
SVM provides a more efficient way of calibrating the hyper
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parameters. The effects of Theorem 1 will be demonstrated
on a simulation example.

5. GENERAL DISCUSSION

5.1 Advantages

• LS-SVMs have the versatility to model any smooth
function. Translated to the identification of LTV
systems, any type of time-variation can be captured.
• To avoid under/overfitting, the hyper parameters γ

and σ must be tuned. Unlike the model order selec-
tion of conventional basis functions (like polynomials,
splines), the calibration of the kernel (RBF, σ) and
the bias variance trade-off (γ) is continuous in the
hyper parameters.

• The presented frequency domain implementation of
the LS-SVM is robust to correlated errors in the
equation error.

• The presented LS-SVM estimator and its calibration
is meant to be applicable, even if only a single data
set is available.

5.2 Limitations and future improvements

• The model structure in (1) is fairly artificial. A more
realistic model structure, in particular w.r.t. the noise
structure, would allow v(t) to be non-stationary, in
addition to be colored. This extension would make the
spectrum V (k) correlated as well, thus compromising
the effect of Theorem 1, since (18b) would not be
valid. However, for a slow variation of an(t) and
bn(t), the correlation in time is expected to exceed
the non-stationarity, thus still favoring the frequency
domain implementation. This will be the case in the
simulation example.

Note that the adverse is equally possible: if v(t) is
an uncorrelated sequence, but highly non-stationary,
the time domain implementation will outperform the
frequency domain one.

• Solving (7) and (15) requires the inversion of square
matrices, with dimensions as large as the estimation
data set. This is computationally very demanding. In
addition, for the calibration of the hyperparameter,
this inversion must be performed for every evaluation
of the calibration objective function.

• In (13), the spectrum of the noise V (k) is not iden-
tically distributed over k (that is, the noise is col-
ored). This means that a further refinement of (14)
can be performed by including a k-dependent weight
to the terms |E(k)|2. In other words, the residuals
are to be whitened, thus decreasing the variance of
the estimated parameters, analogously to the Markov
estimator (e.g. Section 4.3 in Söderström and Stoica
[1989]).

6. SIMULATION EXAMPLE

6.1 Simulated system

Unlike the system model in this paper, the system is in an
output error framework (which is an extension of (1) and,
as discussed in Section 5.2, the spectrum of the equation
error might be slightly correlated). Still the improvement

of the frequency-domain implementation over the time-
domain one will be clearly visible. This is probably thanks
to the slow variation of the system coefficients, w.r.t. the
typical time constants of the system dynamics.

The true system is described by an output-error structure:

y◦(t) = −
Na∑
n=1

an(t)y◦(t− n) +

Nb∑
n=0

bn(t)u(t− n), (19a)

y(t) = y◦(t) + v(t), (19b)

with v(t) a colored, stationary noise sequence, described
by

v(t) = 1.6578v(t− 1)− 0.8464v(t− 2) + e(t), (20)

(e(t) is white gaussian noise) and normalized such as
to yield a Signal to Noise Ratio (SNR) of 20 dB of
the measured output signal. One data set was acquired,
counting N = 2048 input/output samples. The system
coefficients an(t) and bn(t) were cubic splines with 4
equidistant breakpoints (including the boundaries), with
Na = 3 and Nb = 2, yielding an evolution of the
instantaneous poles and zeros 1 as depicted in Figure 1,
left.
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Fig. 1. Left: Evolution of the true instantaneous poles and
zeros of the simulated system. The crosses denote the
poles at the beginning and the end of the considered
time window. The zeros are analogously given by
the circles. Middle and right: Estimated pole zero
evolution for σ = 3 (middle) and σ = 1000 (right),
for γ = 105.

6.2 Estimation and calibration of the hyper parameters

The system is estimated by solving (7) for the time domain
formulation and (15) for the frequency domain formula-
tion. The hyper parameters γ and σ are obtained as the
minimizers in (17).
The distinction of the time domain and frequency domain
estimators is observed in the calibration objective function
w.r.t. σ, as depicted in Figure 2. The following observa-
tions are made:

• An ideal calibration objective function is introduced
(ideal TD/FD), given by the RMS of the true error
on the estimated parameters. Ideally, the minimum
of that objective function should be sought. In this
case, that minimum lies at σ = 5700. That function
is, of course, not known in practice, since the true
system parameters are unknown.

1 The instantaneous poles and zeros at a time instant t∗ are defined
as the poles and zeros of the LTI systems G(t∗) that one obtains by
freezing the system coefficients at that time instant

G(t∗) : y◦(t) = −
∑Na

n=1
an(t∗)y◦(t− n) +

∑Nb
n=0

bn(t∗)u(t− n).
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Fig. 2. Calibration objective functions, for the time-
domain (TD) and frequency-domain (FD) formula-
tions as a function of σ, with γ = 105.

• The calibration objective function of the time domain
formulation (TD) has a global minimum at σT = 3.
This shifted minimum, w.r.t. the ideal one is caused
by the cross-correlation of the errors in the estimation
and calibration data sets.
• The global minimizer σF = 1000 of the frequency do-

main calibration function (FD) is clearly much closer
to the global minimum of the ideal one. The pro-
nounced local optimum around σ = 3 is not present
here. This reveals its robustness w.r.t. correlated er-
rors.

6.3 Comparison of the resulting estimated models

Based on the global minimizers of the calibration objective
functions in Figure 2, σT = 3 and σF = 1000 were
selected, and the corresponding models were estimated.
The calibration objective functions were observed to be
very insensitive to the values of γ. This is, therefore, not
further discussed. The values γT = γF = 105 were used.

Figure 1, middle and right, shows the evolution of the
instantaneous poles and zeros of the estimated models,
and are to be compared with the true ones, in Figure 1,
left.

• Figure 1, middle, σ = 3, from time domain calibration
it is clear that σ is too small, yielding a very roughly
varying model. The instantaneous poles and zeros are
scattered in a large area.
• Figure 1, right, σ = 1000, from frequency domain

calibration. A very good agreement is obtained for
the resonating poles, a discrepancy exists for the real
pole and complex pair of zeros, probably due to the
high noise level. Still, a tremendous improvement is
observed w.r.t. the time domain calibration.

7. CONCLUSIONS

A new LS-SVM based estimator with auto-tuning has
been introduced to identify linear, time-varying systems.
Considering the fact that one single data set is present, and
that the model can not be reliably used for extrapolation
outside the measured time interval, the calibration had
to be done via a validation data set which is interleaved
with the estimation data set. For that reason, a frequency
domain formulation has been chosen for its robustness
w.r.t. correlated errors between these two data sets.

A simulation example has demonstrated that the cali-
bration, when performed in the time domain, may be
mislead by correlated errors, leading to useless models.
The calibration in the frequency domain did not have that
problem, making it more suitable to estimate dynamic
systems.
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