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Abstract: Similarity state transformations between equivalent State-Space (SS) representations
of discrete-time Linear Parameter-Varying (LPV) systems are investigated. Based on previous
results, it is known that to characterize all equivalent LPV-SS representations, the state-
transformation matrix must depend dynamically on the scheduling variable. However, preserving
static dependence of a LPV-SS representation, i.e. characterizing all equivalent SS representation
with static dependence, has primary importance both in control and identification. Therefore,
first, the state transformation problem is investigated from an algebraic (behavior) point of view,
then conditions are developed to guarantee preservation of the static dependence in similarity
state transformations. Additional geometric interpretation of the obtained results, together with
computational approach to synthesize state-transformations are also developed. An illustrative
example is provided to demonstrate the validity of the obtained results.
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1. INTRODUCTION

In linear parameter-varying (LPV) control, e.g. Scherer
(1996); Apkarian and Gahinet (1995) and in state-space
(SS) identification e.g. Lee and Poolla (1996); Felici et al.
(2006), discrete-time LPV systems are often described in
terms of LPV-SS representations, commonly defined in the
following form:

x(k + 1) = A(p(k))x(k) +B(p(k))u(k), (1a)

y(k) = C(p(k))x(k) +D(p(k))u(k), (1b)

where u : Z→ Rnu , y : Z→ Rny and x : Z→ Rnx are the
input, output and state signals of the system respectively.
The system matrices A,B,C,D are rational functions of
the scheduling signal p : Z → P and are bounded on P,
where the conected set P ⊆ Rnp is the so called scheduling
‘space’. p is considered as an external, i.e. independent
signal of the system. However in applications, p might be
also function of inputs, outputs or states of (1a-b). In the
latter case the corresponding system is referred to as quasi -
LPV. The matrix functions in (1a-b), defined as[

A(p) B(p)
C(p) D(p)

]
: P→

[
Rnx×nx Rnx×nu

Rny×nx Rny×nu

]
, (2)

are dependent on the instantaneous value of p, i.e. pk =
p(k), which is called static dependence. Often to simplify
(1a-b), it is assumed that A,B,C,D have affine linear
static dependence, i.e. they are linear functions of p =
[ p(1) . . . p(np) ]: ?(p) = ?0 +

∑np

i=1 ?ip
(i) where ? =

A,B,C,D and ?i is a constant matrix.

Despite the rich history and advances of LPV con-
trol synthesis, the system theoretic aspects of state-
transformations between LPV-SS representations has not
been investigated. Due to this gap in the system theory,

researchers have been often led to believe that state-
transformations obey the same “rules” as in the LTI case.
For example in LPV modeling and identification based on
SS models (see Wassink et al. (2004); Lovera and Mercère
(2007)), p-dependent state transformations are applied on
(1a-b) such as the resulting “equivalent” LPV-SS repre-
sentation is given by,[

T−1(pk)A(pk)T (pk) T−1(pk)B(pk)
C(pk)T (pk) D(pk)

]
. (3)

where T : P → Rnx×nx is a matrix rational function of p
invertible for all pk ∈ P.

However in Tóth (2010) it has been pointed out that this
intuitive use of the LTI system theory in the LPV setting
can introduce arbitrary large error in the resulting SS form
even for slowly varying p. As it will be described in Sec. 2,
the correct p-dependent transformation will lead to related
matrices of the form Â(pk, pk+1) = T−1(pk+1)A(pk)T (pk).
This means that the resulting equivalent LPV-SS form
contains matrices which not only depend on pk but on its
time-shifted version as well. This dynamic-dependence has
been encountered and analyzed in LPV control synthesis
(Lee and Dullerud (2006)), system theory (Tóth (2010))
and identification (Tóth et al. (2009)). Using state trans-
formation with dynamic dependence has also been proved
to characterize all equivalent LPV-SS representations of a
given LPV system (Tóth et al. (2011)). However, many
control and identification methods in the LPV literature
implicitly build on the assumption of the static depen-
dence. Consequently, there is a need to characterize all
equivalent LPV-SS representation with static dependence.

In LPV control synthesis, to avoid the use of dynamic
dependence, state-transformation matrices are often re-
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stricted to be constants, i.e. not dependent on p. However,
as one of the new results of this paper, it is shown in Sec.
3.1 that constant state-transformations are not sufficient
to characterize all the classes of equivalent and affine
LPV-SS representations. Unlike with parameter indepen-
dent T , there exists a large class of p-dependent state-
transformations, which by satisfying certain conditions,
provide equivalence relation between LPV-SS representa-
tions with affine-static dependence. This observation has a
primary importance w.r.t. control, filtering, identification
or diagnosis of LPV systems, as it provides an additional
degree of freedom for synthesis which can be exploited to
improve performance.

In this paper we aim to give a detailed analysis of the LPV
state-transformation problem. In particular, we investigate
the generic structure of the state transformation which
characterizes all equivalent LPV-SS representations and
investigate when such a transformation preserves static-
dependence. The case of affine static dependence and the
relating equivalence classes are analyzed in detail and
exact conditions with geometric interpretation are given.
Furthermore, we also aim to investigate how such state-
transformations can be synthesized in practice and what
practical relevance they have in terms of identification or
control synthesis.

2. GENERIC STATE TRANSFORMATIONS FOR LPV
REPRESENTATIONS

Consider (1a-b) and introduce a p-dependent state-
transformation T (p), where T : P → Rnx×nx is a rational
matrix function with det(T (pk)) 6= 0 and T (pk) bounded
for all pk ∈ P. Define the new state variable x̂(k) as

x(k) = T (pk)x̂(k), (4)

for an arbitrary time-sample k ∈ Z. Note that due to
the boundedness and full-rank property of T (pk) for any
pk ∈ P and k ∈ Z, T (p) corresponds to a bijective mapping.
Substituting (4) into (1a-b), gives

q
(
T (pk)x̂(k)

)
= A(pk)T (pk)x̂(k) +B(pk)u(k), (5)

where q is the forward time-shift operator, i.e. qx(k) =
x(k + 1). As qT (pk) = T (pk+1), i.e. multiplication by q
is not commutative over a p-dependent coefficient, (5) is
equivalent with

x̂(k + 1) = T−1(pk+1)A(pk)T (pk)x̂(k)

+ T−1(pk+1)B(pk)u(k). (6)

As (6) is a first-order difference equation with x̂ being
in equivalence relation with x, thus (6) qualifies as an
equivalent SS representation in the form:[

T−1(pk+1)A(pk)T (pk) T−1(pk+1)B(pk)
C(pk)T (pk) D(pk)

]
. (7)

The resulting state-space matrices depend on the future
value of the scheduling variable p, which is a particular
non-causal dynamic dependence. Such a dynamic depen-
dence is not only an “artifact” of the state transformation
but can also be encountered in the state-space realization
problem of LPV-IO representations (Tóth et al. (2011))
and in modeling of general nonlinear systems in an LPV
form (Tóth (2010)) or in the case of unknown input recon-
struction (Kulcsár et al. (2009)). Next, we investigate how
we can reformulate the concept of SS representations to
handle dynamic dependence in a well-founded sense and

how we can characterize equivalent representations. For
this purpose the algebraic framework of the LPV behav-
ioral approach (Tóth et al. (2011)) is briefly introduced.

2.1 Equivalent state-space representation with dynamic
scheduling dependence

A general form of LPV-SS representations can be formu-
lated as a first-order parameter-varying difference equation
system interpreted as a first-order polynomial in the time-
operator q. This allows to characterize equivalent differ-
ential equations and specify when solution sets are equal
by an algebraic approach. To define the possibly dynamic
functional dependence of a single coefficient, i.e. element
of a matrix, in such a representation, we employ functions
belonging to the field R = ∪n∈NRn, where Rn is the
set of real-meromorphic functions r : Rn → R where
r(x1, · · · , xn) does depend on xn. Then the general LPV-
SS representation is defined as

x(k + 1) = (A � p)(k)x(k) + (B � p)(k)u(k), (8a)

y(k) = (C � p)(k)x(k) + (D � p)(k)u(k), (8b)

with [
A B
C D

]
∈
[
Rnx×nx Rnx×nu

Rny×nx Rny×nu

]
. (9)

Here the operator � : (R,PZ) → RZ is defined by r �
p = r

(
p, qp, q−1p, . . .

)
, where XZ stands for all maps from

Z to X. Thus the value of a (p-dependent) coefficient r in
an LPV system representation at time k is given by (r �
p)(k). Furthermore, the latent variable x in (8a) naturally
fulfills the property of a state variable.

Now we can consider the state transformation (5) in this
setting. Let T ∈ Rnx×nx be invertible (in Rnx×nx), then
x = (T � p)x̂ implies that

q(T � p)x̂ = (A � p)(T � p)x̂+ (B � p)u. (10)

Due to the fact that (10) is a first-order parameter varying
difference equation w.r.t. x̂ and T ∈ Rnx×nx is invertible,
x̂ qualifies as a new state variable which yields an equiv-
alent LPV-SS representation of (8a-b). This implies the
following definition:

Definition 1. (Equivalence). Consider two LPV-SS repre-

sentations, with SS matrices (A,B,C,D) and (Â, B̂, Ĉ, D̂)

in R·×· where A ∈ Rn1×n1 and Â ∈ Rn2×n2 and n1 ≥ n2.
For a given scheduling dimension np, these representations
are called equivalent,[

A B
C D

]
np∼
[

Â B̂

Ĉ D̂

]
, (11)

if there exists an invertible T ∈ Rn1×n1 such that:
−→
T AT−1 =

[
Â 0
∗ ∗

]
,
−→
T B =

[
B̂
∗

]
,
l n2
l n1 − n2

CT−1 =
[
Ĉ 0

]
, D1 = D2,

(12)

where
−→
T � p = T � (qp). In case n2 > n1 definition of (12)

follows respectively.

Similar to the LTI case it can be proved that two LPV
state-space representations have the same IO behavior
(projected solution set of (8a-b) w.r.t. (u, y)) in an almost-
everywhere sense if and only if their state variables are
related via a state-transformation:

(T � p)(k)x̂(k) =

[
x(k)
∗

]
,
l n2
l n1 − n2 ∀k ∈ Z. (13)
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For a proof see Tóth (2010). Note that the IO behaviors are
almost-everywhere equal due to the fact that T is mero-
morphich, hence it is bounded only almost everywhere
w.r.t. PZ. Using the concept of SS equivalence relation the
definition of LPV-SS state-minimality, equivalence classes
and canonical forms follows naturally (see Tóth (2010)).

2.2 Computation of generic state transformations

The generic state-transformation, proposed in the previous
section, provides an equivalence transformation between a
large class of LPV-SS representations with dynamic de-
pendence. However it becomes a question how to compute
such a state-transformation if two LPV-SS representations
are given. Or in other words, how can we verify that they
belong to the same equivalence-class or not?

Consider two LPV-SS representations with SS matrices
(A1, B1, C1, D1) and (A2, B2, C2, D2) in R·×· where A1 ∈
Rn1×n1 and A2 ∈ Rn2×n2 and n1 > n2. In terms of Def.
(1), these representations are equivalent if there exist a
M1 ∈ Rn1×n2 and a M2 ∈ Rn2×n1 such that

A1 � p = (M1A2M2) � p, B1 � p = (M1B) � p, (14a)

C1 � p = (C2M2) � p, In2×n2 = (M2
←−
M1) � p, (14b)

where ←−· means backward time-shift in the coefficient
dependence:

←−
M1 � p = M1 � (q−1p). The conditions (14a-

b) imply the existence of a state-transformation T =
[M>2 ∗ ]> such that the two SS representation are equiv-
alent. Furthermore, (14a-b) corresponds to a system of
bi-linear equations meaning that it is an algebraic prob-
lem to find the state transformation matrix between two
given representations. If no solution exist it means that
the two representations are not equivalent. However, the
coefficients in this algebraic problem are not constant
values but functions, which means that a solution can
be computed only via a symbolic solver. In general, the
symbolic solution of the state transformation problem is a
computationally demanding operation with exponentially
increasing memory load. Therefore, in terms of practical
use, computing the state transformation via (14a) is lim-
ited to small scale problems and can not be used to assist
the existing control synthesis schemes.

An alternative way of computation of the state-transforma-
tion matrix follows through the so called n-step observabil-
ity reachability matrices:

Definition 2. (based on Gohberg et al. (1992)). In discrete
time, the n-step state-observability matrix function On ∈
R(nny)×nx and state-reachability matrix function Rn ∈
Rnx×(nnu) of a given LPV-SS representation with SS ma-
trices (A,B,C,D) and state, input and output dimensions
nx, nu and ny respectively is defined as

On =
[
o>1 o>2 . . . o>n

]>
, Rn = [ r1 r2 . . . rn ] ,

where
o1 = C, oi+1 = −→oiA, ∀i > 1, (15a)

r1 = B, ri+1 = A←−ri , ∀i > 1. (15b)

It can be shown that boundedness and full rank of Onx

(or Rnx
) for every PZ are sufficient, but not necessary con-

ditions for the complete state observability (reachability)
of a given LPV-SS representation with state dimension
nx (Silverman and Meadows (1967)). Full rank property
(in R·×·) of Onx

(or Rnx
) guarantees state observability

(reachability) in a weaker sense which is called structural
state-observability. Nevertheless the following theorem ex-
plicitly states the effect of a state-transformation on these
matrices:

Theorem 1. (based on Silverman and Meadows (1965)). If
the matrices of two LPV-SS representations, with state
dimensions nx and with a common np dimensional schedul-
ing space, fulfill the equivalence relation in terms of Def.
1 via the state-transformation T ∈ Rnx×nx , then for all
n ∈ N:

Ôn = OnT and R̂n =
−→
T −1Rn (16)

hold, where On and Ôn, respectively Rn and R̂n, are
the corresponding n-step state-observability/reachability
matrices of the representations.

The proof of this theorem similarly follows as in Silver-
man and Meadows (1965). Now we can use this theorem
to provide a new and simple computation of the state
transformation between two given LPV-SS representations
if it holds true that their corresponding nx-step state-
observability or state-reachability matrices are full rank.
Using (16) and by choosing n = nx it follows that

T = O−`nx
· Ônx

and
−→
T −1 = R̂nx

· R−rnx
, (17)

under the condition that Onx
, Ônx

, Rnx
and R̂nx

are
all full rank, moreover ?−`,−r denote the pseudo left
and right inverse. Note that each of these formulas can
be used to compute T however the observability matrix
based solution has far less computational need than the
reachability matrix based solution. These formulas can be
easily implemented and do not need any symbolic solver
as in the previous case.

3. PRESERVING STATIC DEPENDENCE VIA
SIMILARITY STATE TRANSFORMATIONS

Previously we have seen that with the proposed generic
state transformation (13) we can establish equivalence
relation for the class of LPV-SS representations with dy-
namic dependence. However, most of the available control
synthesis approaches and state-space identification meth-
ods in the LPV setting implicitly build upon SS repre-
sentation forms including only static dependence. In the
static case, is it enough to consider only constant state
transformations to characterize LPV-SS equivalence?

Consider the set of static LPV-SS representations, where
the scheduling dependence can be written as a static affine
linear dependence, i.e. the parameter varying matrices can
be described as a linear combination of coefficient matrices
weighted by component-wise scheduling parameters:

x(k + 1) =

np∑
i=0

p
(i)
k

(
A(i)x(k) +B(i)u(k)

)
, (18a)

y(k) =

np∑
i=0

p
(i)
k

(
C(i)x(k) +D(i)u(k)

)
, (18b)

where pk = [ p
(1)
k . . . p

(np)
k

] ∈ Rnp is the scheduling vector

and p
(0)
k ≡ 1. In the above discrete-time, affine LPV de-

scription, ?(i) with ? = A,B,C,D denote real valued coef-
ficient matrices with appropriate dimensions based on the
signal spaces nx, nu and ny respectively. Note that (18a-b)
can be also considered in the form where the state-space

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

4157



matrices are linear combinations of linearly independent
functions of p. As we will see the upcoming results also
trivially hold in that case. Furthermore, to simplify the
discussion we consider equivalence relations only between
equidimensional LPV-SS representations (nx = nx̂). The
following theorem characterizes the conditions the that
state transformation (T � p) must fulfill to preserve static
affine dependence in this case.

Theorem 2. Given a set of equivalent discrete time, equidi-
mensional LPV-SS representations with affine linear static
p-dependence. All representations of this set are character-
ized via parameter-dependent state transformations (T �p)
satisfying conditions in (20), (21) and (25).

Proof 1. Consider a LPV-SS representation in the form
of (18a-b) and a generic parameter-varying similarity
transformation x(k) = (T � p)(k)x̂(k) implying (10). Then
in terms of (12):

((T � p)(k + 1))−1
np∑
i=0

p
(i)
k A(i)(T � p)(k)=

np∑
i=0

p
(i)
k Â(i), (19a)

((T � p)(k + 1))−1
np∑
i=0

p
(i)
k B(i) =

np∑
i=0

p
(i)
k B̂(i), (19b)

np∑
i=0

p
(i)
k C(i)(T � p)(k) =

np∑
i=0

p
(i)
k Ĉ(i). (19c)

Assume that (T �p)(k) is invertible for all possible schedul-
ing trajectories of the system at anytime, i.e. for all p ∈ PZ

and k ∈ Z. The left-hand side of (19b) implies that pre-

multiplication of
∑np

i=0 p
(i)
k B(i) by ((T �p)(k+ 1))−1 needs

to result in only static affine dependence. Therefore

(T � p)(k + 1)B̂(i)p
(i)
k = (Ẑ � p)(i)(k, k + 1) +

np∑
j=0

p
(j)
k Z(i,j)

where
np∑
i=0

(Ẑ � p)(i)(k, k + 1) = 0. (20)

Similarly, (19c) can be written as

p
(i)
k C(i)(T � p)(k) = (Ŵ � p)(i)(k) +

np∑
j=0

p
(j)
k W (i,j)

where
np∑
i=0

(Ŵ � p)(i)(k) = 0. (21)

On the other hand, pre-multiplying both sides of eq. (19a)
by (T � p)(k + 1) leads to,

np∑
i=0

p
(i)
k A(i)(T � p)(k) = (T � p)(k + 1)

np∑
i=0

p
(i)
k Â(i). (22)

The right-hand side can be rewritten as (T � p)(k +

1)Â(i)p
(i)
k = (X̂�p)(i)(k, k+1)+

∑np

j=0 p
(j)
k X(i,j). Therefore,

np∑
i=0

p
(i)
k A(i)(T � p)(k) =

np∑
i=0

(
(X̂ � p)(i)(k, k + 1) +

np∑
j=0

p
(j)
k X(i,j)

)
. (23)

On the other hand,

p
(i)
k A(i)(T � p)(k) =

np∑
j=0

p
(j)
k Y (i,j) + (Ŷ � p)(i)(k) (24)

np∑
i=0

p
(i)
k A(i)(T � p)(k) =

np∑
i=0

(
np∑
j=0

p
(j)
k Y (i,j)+(Ŷ � p)(i)(k)

)
which imply that the following condition has to be fulfilled

np∑
i=0

(
(Ŷ � p)(i)(k)− (X̂ � p)(i)(k, k + 1)

)
= 0. (25)

Consequently, a dynamic parameter dependent similarity
state transformation can be used to connect equivalent
affine, discrete-time LPV-SS state space representations if
conditions (20), (21) and (25) are met. �

The conditions in Th. 2 clearly show that characterization
of all equivalent LPV-SS classes, even with linear affine
and static dependence, require similarity state transfor-
mation with dynamic scheduling parameter dependence,
which is a major conclusion.

In the past it has been been assumed that similarity
state transformations between LPV-SS representations
with linear affine and static dependence are completely
characterized by a constant state transformation matrix,
T (0), resulting in the following transformation rules

(T (0))−1A(i)T (0) = Â(i) (T (0))−1B(i) = B̂(i) (26a)

C(i)T (0) = Ĉ(i) D(i) = D̂(i) (26b)

with i = 0, . . . np. This constant T (0) projects the ap-
propriate affine term onto its equivalent component. Ac-
cordingly, no cross-terms are present in between affine
coefficient components. One can observe in (23) and (24)
that terms X(i,j) and Y (i,j) for all i, j = 0 . . . np precisely
characterize cross term relations in between affine SS ma-
trices. Comparing therefore the results of Th. 2 with the
’time invariant” relation in (26a-b), conservativeness of
the latter is salient. In addition to, results in Th. 2 shows
how, by using parameter dependent state transformation
matrix, the information in coefficients A(i) with i fixed
can be dispersed to Â(j) ∀j = 0, . . . np which indeed
is not possible in (26a-b). It is important to note that
even if symbolic or observability/reachability matrix based
calculation of T to characterize similarity transformation
between LPV-SS representations is possible, in the current
synthesis tools affine static dependence of the matrices and
also the transformations is a core assumption. Hence it is
important to investigate how the conditions on the equiv-
alnce transformation changes if we restrict T to have static

linear affine dependence on p, i.e. T (pk) =
∑np

i=0 p
(i)
k T (i).

3.1 Affine parameter dependent state transformation with
static dependence

In the sequel we will investigate how an affine state
transformation matrix can be used to connect affine LPV-
SS representations by using static parameter dependence.

Theorem 3. Given two equivalent discrete time, equidi-
mensional LPV-SS representations with affine linear static
p-dependence. Let x(k) = T (pk)x̂(k) be an invertible
state-transformation for all pk ∈ P where T (pk) =∑np

i=0 T
(i)p

(i)
k . The two representations are equivalent in

terms of Def. 1 if there exists a transformation matrix
satisfying conditions (27b), (27c) and (29).
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Proof 2. Using T (pk+1) =
∑np

i=0 T
(i)p

(i)
k+1, (19a-c) read as

np∑
i=0

T (i)p
(i)
k+1

np∑
j=0

Â(j)p
(j)
k =

np∑
j=0

A(j)p
(j)
k

np∑
i=0

T (i)p
(i)
k (27a)

np∑
i=0

T (i)p
(i)
k+1

np∑
j=0

B̂(j)p
(j)
k =

np∑
j=0

B(j)p
(i)
k (27b)

np∑
j=0

C(j)p
(j)
k

np∑
i=0

T (i)p
(i)
k =

np∑
j=0

Ĉ(j)p
(i)
k . (27c)

Evaluating separately both sides of (27a) gives
np∑
i=0

T (i)p
(i)
k+1

np∑
j=0

Â(j)p
(j)
k =

np∑
i=0

X(i)p
(i)
k + X̂(pk, pk+1)

np∑
j=0

A(j)p
(j)
k

np∑
i=0

T (i)p
(i)
k =

np∑
i=0

Y (i)p
(i)
k + Ŷ (pk), (28)

where the condition of existence for an affine state-
transformation is

Ŷ (pk)− X̂(pk, pk+1) = 0. (29)

Condition (29) is a (polynomial) matrix difference equa-
tion. �

4. COMPUTATIONAL ISSUES

Next we demonstrate on a simple example the importance
of p-dependent state-transformation and through of this
example we also give alternative interpretations for condi-
tions (27a-c) and (29).

Example 1. For the sake of simplicity consider np = 2.
Our aim is to develop conditions under which T (pk) exists
with linear affine static dependence to connect two SS
representations (A,B,C,D) and (Â, B̂, Ĉ, D̂) of an LPV
system, where each matrix has linear affine static p-
dependence, and compare the results with constant state-
transformation. Assume that here is an invertible (square)

transformation matrix T (pk) = T (0) + T (1)p
(1)
k for all

j ∈ Z such that (A,B,C,D) and (Â, B̂, Ĉ, D̂) satisfy the
equivalence relation. If condition

T (1)p
(1)
k+1(Â(0) + Â(1)p

(1)
k )−A(1)T (1)(p

(1)
k )2 = 0, (30)

is satisfied, we can write,

T (0)Â(0) + T (0)Â(1)p
(1)
k =

A(0)T (0) + p
(1)
k (A(0)T (1) +A(1)T (0)). (31)

This implies that

T (0)Â(0) = A(0)T (0), (32a)

Â(0) = (T (0))−1A(0)T (0), (32b)

where T (0) has to be invertible and

T (0)Â(1) = (A(0)T (1) +A(1)T (0)), (33a)

Â(1) = (T (0))−1(A(0)T (1) +A(1)T (0)). (33b)

Further conditions on the input and output map transfor-
mations are given by

C(1)T (1)(p
(1)
k )2 = 0, (34a)

T (1)p
(1)
k+1B̂

(0) + T (1)p
(1)
k+1B̂

(1)p
(1)
k = 0. (34b)

Transformation on the output map boils down to

Ĉ(0) = C(0)T (0), (35a)

Ĉ(1) = C(0)T (1) + C(1)T (0), (35b)

and finally the transformed input direction reads as

T (0)B̂(0) = B(0), (36a)

T (0)B̂(1) = B(1). (36b)

By only applying an invertible and constant similarity
transformation T , the transformed SS matrices read as,

Â
(0)
T = T−1A(0)T, Â

(1)
T = T−1A(1)T, (37a)

B̂
(0)
T = T−1B(0), B̂

(1)
T = T−1B(1), (37b)

Ĉ
(0)
T = C(0)T, Ĉ

(1)
T = C(1)T, (37c)

where subscript ?T refers to the constant transformation.
Structurally, A(0), C(0) and B(i) with i = 0, 1 can be
related in a similar way as in the constant transformation
case, however, A(1), C(1) are projected differently. This
clearly shows that a p-dependent state transformation rep-
resents an additional degree of freedom and hence constant
state transformations cannot characterize all equivalent SS
representations, with affine linear and static p-dependence,
of the same LPV system even in this simple case. Note
also, invertibility of T (0) is a necessary condition for the
existence of T (pk). �

Difference-algebraic interpretation. Eq. (30) and (34a)
are difference-algebraic conditions where time variation
is encapsulated into pk and pk+1. Consequently, if the
one-step-ahead scheduling variable together with the ac-
tual scheduling value satisfies the difference equality con-
straints for all k ∈ Z, the state-transformation preserves
affinity in transforming A(i) and C(i) to Â(i) and Ĉ(i),
i = 0, 1. Based on this, the scheduling variable has to
follow a (set of) trajectories described by (30)-(34b). From
differential-algebraic perspective, however, this might be
a clear limitation of the state-transformation since pk is
usually an arbitrary but time-varying exogenous or en-
dogenous (quasi LPV systems) signal. If the scheduling
parameters are originated from an exogenous source, then
we can only use a posteori test to check conditions (30)-
(34b). If scheduling vector is derived from endogenous
variables and we intend to use affine transformation matrix
structure, the above mentioned conditions become dy-
namic equality constraints to be respected. Henceforward,
the entire parameter trajectory has to be restricted and
the validity domain of the transformed SS model might
reduce intensively if it exist at all. Or conversely, these
conditions can also naturally be ensured by the system’s
dynamics itself.

Geometric interpretation. Instead of satisfying equality
conditions in (30), (34a) and (34b) (or generally speak-
ing in (27b), (27c) and (29)), we can directly apply
component-wise matrix algebraic conditions. From this
point of view, geometrical concepts play an important role
to interpret the following results. As a direct consequence,
we can write,

T (1)B̂(0) = 0, T (1)B̂(1) = 0, (38a)

T (1)Â(0) = 0, T (1)Â(1) = 0, (38b)

A(1)T (1) = 0 C(1)T (1) = 0. (38c)
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In the above equations, it is claimed that T (1) has to be
a left zero divisor of B̂(i), Â(i), i = 0, 1 and right zero
divisor of A(1) and C(1). Based on this property, T (1) is
not invertible. Denote the affine output mapping by C(i),
i = 0, 1 and by T (i), i = 0, 1 the affine state transfor-
mation (mapping). Geometric conditions guaranteeing the
existence of the affine state-transformation matrix at the
plant output can now be given as,

Im(T (1)) ⊆ Ker(C(1)), (39)

where the image of state-to-state similarity mapping has to
be contained in the kernel of the output projection whose
matrix representation is C(1). In addition to, images of
the transformed input mapping B(0) and B(1) have to be
contained in the complementary image space of T (1) w.r.t
to the entire state-space, i.e.

Im(B(i)) ⊆ Im(T (1))⊥, for i = 0, 1. (40)

Finally, conditions on A, see (38b-c) (or (30)), can be also
characterized in the geometric framework. Accordingly,
images of the state-to-state mapping of the transformed
system denoted by A(i), i = 0, 1 has to live in Im(T (1))⊥.
Let us generalize conditions (38a)-(38c) to an np dimen-
sional LPV-SS representations. Define the set of equality
constraints, conditions by,

L = 0⇔ LB = 0, LA = 0, LC = 0, ∃(T (0))−1 (41)

where L? denotes the set of equality constraints derived
from (27b), (27c) and (29). This type of interpretations is
a component-wise matrix solution to satisfy the conditions
of existence for affine T (pk) regardless to the scheduling
trajectory.
Numerical example. Let us consider the following np =
nX = 2 SISO example by,

A(1) =

[
−.05 .05
.1 −.1

]
, A(2) =

[
0 .1
0 −.2

]
[
B(1) B(2)

]
=

[
−.05 .2

1 −.4

]
,
[
C(1)T C(2)T

]
=

[
1 .0
1 1

]
.

By applying the parameter varying similarity state trans-
formation as,

T (1) =

[
1 0
−1 1

]
, T (2) = α ·

[
1 1
0 0

]
,

where α is a finite scalar, componentwise conditions (38a-
c) are satisfied. Note, difference-algebraic conditions re-
quired for the existence of affine parameter dependent SS
transformation also hold. If α = 0, the state transforma-
tion problem results in a parameter independent solution.
Considering the case α = 0 as the constant transformation
problem and α 6= 0 as the affine p-dependent solution, we

can conclude the freedom in both Â
(2)
α6=0 and Ĉ

(2)
α6=0 since

all other coefficient matrices are identical (e.g. Â
(1)
α=0 =

Â
(1)
α6=0). In this specific case of example, one can exploit

the degree of freedom denoted by α in e.g. state observer
design.

5. CONCLUSION

In this paper, we have investigated the problem of generic
similarity state-transformations for LPV state-space rep-
resentations. As a major result it has been shown that
equivalnce classes of representations with static depen-
dence are not characterized by constant state transforma-
tions. Conditions on state-transformation with dynamic

dependence has been derived which ensure preservation of
static dependence of the original SS representation via the
state-transformation. In case of affine LPV representations
constructive conditions have been derived allowing nu-
merical computation of the transformation. The achieved
results opens up new possibilities in LPV-SS identifica-
tion, control or system diagnosis due to the additional
degree of freedom that can be exploited in terms of state-
transformations.
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Tóth, R., Willems, J.C., Heuberger, P.S.C., and Van den
Hof, P.M.J. (2011). The behavioral approach to linear
parameter-varying systems. in print, IEEE Trans. on
Automatic Control.

Wassink, M.G., van de Wal, M., Scherer, C.W., and
Bosgra, O. (2004). LPV control for a wafer stage:
Beyond the theoretical solution. Control Engineering
Practice, 13(2), 231–245.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

4160


