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Abstract: This article addresses a stochastic model predictive tracking problem for linear parameter-
varying (LPV) systems described by affine parameter dependent state-space representations and
additive stochastic uncertainties. The reference trajectory is considered as a piecewise constant
signal and assumed to be known at all time instants. To obtainprediction equations, the scheduling
signal is usually assumed to be constant or its variation is assumed to belong to a convex set. In
this article, the underlying scheduling signal is given a stochastic description during the prediction
horizon, which aims to overcome the shortcomings of the two former characterizations, viz. re-
strictiveness and conservativeness. Hence, the overall LPV system dynamics consists of additive
and multiplicative noise terms up to second order. Due to thepresence of stochastic disturbances,
probabilistic state constraints are considered. Since thedisturbances make the computation of
prediction dynamics difficult, augmented state predictiondynamics are considered, by which, fea-
sibility of probabilistic constraints and closed-loop stability are addressed. The overall approach is
illustrated using a tank system model.

1. Introduction

Linear parameter-varying (LPV) system representations have been studied extensively and used
in variety of applications (see, e.g., [1–9] among many other references) to model and control
nonlinear or time/space dependent systems. Broadly speaking, dynamics of LPV systems resemble
that of linear time-varying (LTV) systems, whose variation depends on not only a single time
evolution, but on a measurable time-varying signal, also called scheduling signal. By considering
all possible realizations or valid trajectories of the scheduling signal, a single LPV system describes
a family of LTV systems, from which the current measurement of this variable selects the one that
describes the continuation of the signal trajectories, like inputs and outputs. Such a concept also
allows to embed the dynamics of a nonlinear system into the solution set of a linear representation
[10]. The key advantage of adopting LPV systems framework isthat it preserves the advantageous
properties oflinear time-invariant (LTI) systems, enabling convex control synthesis and the use of
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industrial experience in LTI control tuning to regulate nonlinear or time-varying systems.
Driven by the control objectives in the process industry,model predictive control (MPC) has

been established as an effective control algorithm that allows to cope with constraints. To join the
attractive properties of this framework, various MPC approaches have been introduced for LPV
systems described by state-space representations, mostlyunder a deterministic setting, see [11–14].
However, the main difficulty encountered in MPC design for LPV systems is that the scheduling
signal in many applications is measurable only at the current time instant, but unknown during
the prediction horizon. Under this setting, obtaining the prediction equations for LPV systems
becomes intractable. To handle this issue, usually, while computing the predicted state and/or
control inputs during the prediction horizon, either the scheduling signal is assumed to be constant
[15] or by applying the robust control concept, its variation is assumed to belong to a convex set
[11–14]. While the former characterization is quite unrealistic, the latter situation, that falls under
robust setting, is often too conservative because a design of the control law is based on all variations
of the scheduling signal in the convex set during the prediction horizon. In practice, especially for
slowly-varying systems, like process control applications, during the prediction horizon, variations
of the scheduling signal may be limited to a much smaller set than the convex set. Hence, we
assume that during the prediction horizon, the scheduling signal varies stochastically in a tube,
where the probability of future trajectories of the scheduling variable describes the likely variations
of the dynamics, rather than a worst case approach stemming from the robust setting where unlikely
extremes of the variations are equally possible. Thus, our representation aims at striking a balance
between the previous two situations: being realistic and atthe same time less conservative. In
this article, we intend to use the framework of stochastic MPC, which is suitable to address MPC
problems with stochastic objective function and/or stochastic constraints, see [16] for more details.
Related to our approach, the authors in [17] considered a stochastic description for the scheduling
signal, where a scenario-based approach or an on-line sampling approach has been used to address
stability and feasibility of constraints for stochastic MPC of LPV systems in a probabilistic sense.
The key advantage of this method in the current context is theconsideration of randomly extracted
scenarios of the scheduling signal in the prediction horizon. Though this approach is able to
cope with arbitrary disturbances, the on-line computationincreases considerably as the scenarios
increase. Further, even the soft constraints, with given probability of satisfaction, can only be
satisfied with a confidence level.

We further assume the presence of additive stochastic disturbances in the LPV system dynam-
ics, and address stochastic MPC tracking of a reference trajectory. We consider that the reference
trajectory is a piecewise constant signal and assumed to be known in advance. For simplicity,
system matrices are assumed to depend affinely on the scheduling signal. Due to stochastic dis-
turbances, we consider probabilistic constraints, which means that occasional constraint violations
are allowed, depending on the probability of constraint satisfaction. Due to the above consider-
ations, the overall LPV system consists of additive and multiplicative stochastic disturbances up
to second order. To the best of our knowledge, stochastic MPCof LPV systems with the above
considerations has not been addressed before.

By using the techniques of stabilizing stochastic MPC of linear systems with multiplicative
and/or additive noise terms [18, 19], we address stochasticMPC tracking of LPV systems in the
current setting. The crux of the approach lies in forming an augmented state of prediction dynamics
and transferring the constraints over the prediction horizon to the augmented state at the beginning
of the prediction horizon and make use of probabilistic invariance to address probabilistic con-
straints. This approach alleviates the propagation of uncertainties during the prediction horizon,
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which is difficult to handle in general.
The remainder of this article is organized as follows. Section 2 introduces the problem set-

up. In Section 3, we provide an augmented representation of the LPV system. In Section 4,
we address constraint handling problem via probabilistic invariance. Section 5 presents an MPC
algorithm along with the investigation of closed-loop properties. In Section 6, the entire approach
is illustrated using a tank system example, and Section 7 concludes the paper. Finally, we give
majority of the proofs in the Appendices to improve readability of the article.

Notation: N denotes the set of positive integers including0. Let Ek [z] denote the expectation
of a random variablez conditional on the information up to timek. At a given timek ∈ N, for
i ≥ 0, the predicted value ofy atk+i is denoted byy(k+i|k), which is shortly denoted asy(i|k).
For i, j ∈ N, Iji denote the numbersi, i+1, · · · , j. Multiple sums

∑

i1

∑

i2
· · ·∑in

are denoted as
∑

i1,i2,··· ,in
. For real vectorsX andY , X ≤ Y (X ≥ Y ) denote elementwise inequalities. Given

real matricesL andM , (L �M )L ≻M and (L �M )L ≺M denote that the matrixL−M
is positive (semi) definite and negative (semi) definite respectively. LetI and0 be identity and zero
matrices of appropriate dimensions respectively, according to the context. Symmetric terms in a
matrix are denoted by a symbol∗. For given matricesA andP of suitable dimensions,APA⊤ is
shortly denoted byAP ⋆ if required. The acronym cdf stands forcumulative distribution function.

2. Problem set-up

Consider a discrete-time LPV system described by the following affine parameter dependent state-
space representation:

x(k+1)=A(p(k))x(k)+B(p(k))u(k)+δ(k), (1a)

A(p(k))=A0+
∑np

j=1
pj(k)Aj , (1b)

B(p(k))=B0+
∑np

j=1
pj(k)Bj , (1c)

C(p(k))=C0+
∑np

j=1
pj(k)Cj , (1d)

wherek ∈ N, x(k) ∈ R
nx is the state variable,u(k) ∈ R

nu is the control input,p(k) :=
[p1(k) · · · pnp

(k)]⊤ ∈ R
np is the scheduling signal, andδ(k) ∈ R

nx is an independent and identi-
cally distributed (i.i.d.) additive noise process with zero mean and covariance matrixΣδ ∈ R

nx×nx.
Let Aj ,Bj andCj for j ∈ I

np

0 be the matrices of appropriate dimensions. As we would like to
address control of (1) in a state-feedback sense, we assume thatx(k) is perfectly available at each
time instantk ∈ N. Let us consider the following assumptions.

Assumption 1. Let the scheduling signalp(k) be measurable and belong to a hyper rectangleP ⊂
R

np at each time instantk∈N; i.e.,p(k) varies in a hyper-rectangleP,
{

[p11, p21], · · · , [p1np
, p2np

]
}

for some finite scalarsp1j andp2j such thatp1j < p2j for j ∈ I
np

1 .

Assumption 2. Let the reference signals to be tracked by system (1) be piecewise constant signals.
Furthermore, in line with the anticipative concept of MPC, assume that the reference signals are
known before hand. This means that various targeted set point pairs(xS,pS,uS) are known in
advance, wherexS denotes the set point of the state variable to be tracked,pS denotes the corre-
sponding scheduling signal and letuS denotes the corresponding control input at each time instant,
which “realizes” the set pointxS.
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Remark 1. In Assumption 2, givenxS andpS, the correspondinguS can be obtained as follows.
Due to the presence of stochastic disturbances in (1),xS can also be viewed as the expected steady
state. Similarly,uS can be understood as the expected value of the input requiredfor the steady
state. However, one needs a constant, i.e., expected value of the scheduling signal, saypS, to
computeuS from (1) via xS =A(pS)xS +B(pS)uS. It often happens in practical situations
that there exists a possibly nonlinear relationpS=µ(xS,uS), where the scheduling variable also
expresses operating points or non-linearities in the system. Hence, such an assumption is well
grounded from the practical point of view. Thus, we considerthat the values ofpS are assumed to
be known to computeuS. Also, the values ofpS anduS need to be admissible, i.e., we assume
thatpS ∈P anduS ∈U ⊂R

nu, which, based on our previous motivation, again naturally happens
in practical applications. Finally, observe that the set point pairs(xS,pS,uS) can be computed
off-line by the above method. Alternatively, one may also verify or obtain the steady state values
(xS,pS,uS) experimentally also.

In the sequel, we give a characterization of predicted values of the scheduling signal, that enable
us to obtain prediction equations for (1) to be employed in anMPC setting. Givenp(k), we assume
that the valuesp(i|k), for i ≥ 0, are not known a priori, but are allowed to vary in atube as the
convex polytopic setΩ,{ζ∈Rnp |G (ζ − p(k))≤H}, with Ω ⊂ P, probabilistically:

Pr {G (p(i|k)− p(k))≤H | p(k)}≥ξ, i≥0, (2)

whereG∈R·×np, H ∈R·, while ξ∈(0, 1) denotes the probability level of the evolution of future
scheduling signals inΩ. Here we consider that the tubeΩ is centered atp(k). Notice that, we
preferred the representation ofP as a hyper rectangle whileΩ is a polytope.

Remark 2. One can also consider the predicted dynamics of the scheduling signal as the rectangu-
lar constraints on individual elements of the scheduling signal or the hyper-rectangular constraint of
the scheduling signal vector given probabilistically, thus obtaining the predicted dynamics equiva-
lently or by an approximation. However, note that, (2) dealswith much more complex constraints
(which includes rectangular constraints also).

The scheduling variablesp(i|k), satisfying the probabilistic constraint (2), are characterized as:

p(i|k)=p(k)+βw(k+i), i≥0, (3)

where, for the simplicity of the exposition, we considerβ to be a diagonal matrix belonging to
R

np×np, w(.)∈Rnp are i.i.d. normal random vectors. A method to computeβ for both scalar and
vector valued cases ofp(k) is given in Section 9.

In the context of (3), while representing the predicted dynamics ofp(i|k), one would expect
p(0|k) to be equal top(k). By using this natural assumptionp(0|k)=p(k) in the scheduling signal
representation (3), the entire approach of this article grows significantly in complexity, because,
this would result in two state prediction equations: one fori = 0, and another one fori ≥ 1;
this is apparent from the dynamics of state prediction givenin the next section. On the other
hand, measurements ofp(k) may not be accurate in practice. For instance, in LPV modeling of
high purity distillation columns, the scheduling signal ischosen as the bottom and top product
composition, where measurement errors inp(k) exist [20]. Thus, additional observers would be
required to estimate the scheduling signal. So, while dealing with MPC design for such systems,
one possible strategy would be to considerp(k) to be uncertain atk, for instance as in (3). This can
be viewed as a way to approach the entire problem, but not a limitation, as includingp(0|k)=p(k)
would only increase the technical clutter of the paper. Let us consider the following assumption.
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Assumption 3. We assume that the elements of the vectorw(k) are independent of the elements
of δ(k) for everyk ∈ N. If this assumption is relaxed, then one can obtain the results of this article
by moderate extensions if the probability distribution ofδ(k) is assumed to be known.

From the above discussion, one can observe that only the current measured scheduling function
p(k) is assumed to belong toP, while the future scheduling variables during the prediction horizon
are given a stochastic description. In the literature of LPVMPC, while computing the predicted
state and/or control inputs during the prediction horizon,either the scheduling signal is assumed
to be constant [15] or its variations belong toP [11–13], where the latter refers to a robust but
conservative approach to handle future variations of the system dynamics. As explained in Section
1, our representation (3) offers a balance between these twosituations: being realistic and at the
same time less conservative.

Consider the probabilistic state constraint of the form:

Pr{|x(k)− xS |≤ h} ≥ α, α∈(0, 1), (4)

whereh ∈ R
nx andhi > 0 for i ∈ I

nx

1 , andα is the level of constraint satisfaction. It means that
the difference between state variable and the set point is probabilistically constrained at each time
instantk. From (4) and Assumption 2, it is implicit that the updated setpointxS is also reflected
in (4) at eachk.

Letx(i|k) andu(i|k) be the predicted state and the predicted control input of (1)at timek+i, re-
spectively, which are to be computed at time instantk. Then, for a given set point pair(xS,pS,uS)
at timek, the objective of the current MPC strategy is:

min
{u(i|k)}i≥0

Jk ,

∞
∑

i=0

Ek

[

(x(i|k)− xS)
⊤
Q ⋆+(u(i|k)− uS)

⊤
R ⋆

]

subject to(1), (2), (4),

whereQ ≻ 0 andR ≻ 0 are the given weighting matrices andx(0|k) = x(k). The expectation
operator inJk is due to the stochastic uncertainties present in (1). It is shown in the subsequent
sections, that the costJk becomes unbounded due to the additive uncertainties in the predicted
dynamics, accordingly, the cost will be modified to make it bounded.

To address the above problem in the presence of probabilistic constraint (4) in a tractable way,
we apply the so called closed-loop dual mode paradigm [21, 22] with a parameter-dependent state-
feedback. In this case, the control input is considered as

u(i|k)=
{

K(p(i|k)) (x(i|k)−xS)+uS+c(i|k), if i∈IN−1
0

K(p(i|k)) (x(i|k)−xS)+uS, if i≥N
(5)

whereN is a finite control horizon,c(i|k)∈Rnu are optimization variables and the parameter-
dependent state-feedback gains are given by

K(p(i|k)) = K0+

np
∑

j=1

pj(i|k)Kj ,

with Kl ∈ R
nu×nx for l ∈ I

np

0 , andpj(i|k) is given by (3). Thoughu(i|k) is given in the state-
feedback form (5), we assume that it belongs to a compact setU . In practice, the setU denotes the
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limitations of the actuator equipment. For instance, in process control applications, input denotes
the opening of a valve which is inherently bounded and also results in a bounded flow rate of
substance (inputs or outputs). We further assume that the input constraints are always satisfied,
in other-words, input constraints are feasible at all times. The similar kind of probabilistic state
and hard input constraints for the MPC of LTI systems in process control applications has been
addressed in [23].

3. Augmented representation

In this section, first, we consider the overall LPV system representation (1) with the scheduling
signal characterization (3) and the state-feedback control law (5). Then, we provide an augmented
representation [18] to address the closed-loop system stability and constraint satisfaction in the
later sections.

Overall, the state evolution of the LPV state-space representation (1) under (3), (5) and Remark
1 can be given by

x(i+1|k)− xS =
(

Φk +

np
∑

j=1

Φ̃kjwj(k+i) +

np
∑

j,m=1

B
β
jK

β
mwj(k+i)wm(k+i)

)

(x(i|k)− xS)

+
(

B̄k+

np
∑

j=1

B
β
jwj(k+i)

)

c(i|k)+
(

δ(k+i) +

np
∑

j=1

(pkj+βjwj(k+i)) (AjxS+BjuS)
)

, (6)

whereΦk = Āk+ B̄kK̄k, Φ̃kj = βj

(

Aj+BjK̄k+B̄kKj

)

, Āk = A0+
∑np

j=1 pj(k)Aj, B̄k =

B0+
∑np

j=1 pj(k)Bj, K̄k=K0+
∑np

j=1 pj(k)Kj,B
β
j =βjBj, pkj=pj(k)−PSj andKβ

m=βmKm.
It is important to observe that the state prediction (6) depends only on the value ofp(k), the input,
the noise processesw(.), δ(.) andx(k) at k, which is possible due to the characterization (3) of
the scheduling function.

Remark 3. Notice that, based on the previous definitions, and considerations taken, we have a
dynamical system with multiplicative noise (6), which resembles the system given in [18, 19] for a
case of stabilizing MPC controller. But our considered setting has additional multiplicative noise
terms of second order. Due to this resemblance, we will examine how the techniques presented in
[18, 19] can be extended and used in the sequel to address the current MPC problem.

In MPC, the terminal constraints are usually enforced at theend of the prediction horizon to
ensure feasibility of constraints and closed-loop stability [24]. However, in the presence of uncer-
tainties, the same may be difficult due to the propagation of uncertainties. Alternatively, computa-
tionally efficient method has been addressed in [18, 25], where the augmented formulation of the
prediction dynamics has been employed to handle feasibility and stability at the beginning of the
prediction horizon via one-step ahead invariance conditions.

Let

z(i|k)=
[

(x(i|k)−xS)
⊤
f⊤(i|k)

]⊤

,

wheref (i|k)=[c⊤(i|k) · · ·c⊤(i+N−1|k)]⊤. Then, the augmented representation for (6) is given
by

z(i+1|k)=Ψ̄i|k(w)z(i|k)+ν(k+i), (7)
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with

Ψ̄i|k(w)=Ψk+

np
∑

j=1

Ψ̃kjwj(k+i)+

np
∑

j,m=1

Ψ̂jmwj(k+i)wm(k+i),

where

Ψk=

[

Φk B̄kΓ
⊤
u

0 M

]

, Ψ̃kj=

[

Φ̃kj B
β
jΓ

⊤
u

0 0

]

,

Ψ̂jm=

[

B
β
jK

β
m 0

0 0

]

,Γu=









I
0

...
0









,M=













0 I 0 · · · 0

0 0 I · · · 0

...
...

. . . . . .
...

0 0 · · · 0 I

0 0 · · · · · · 0













,

ν(k+i)=

[

δ(k+i)+
∑np

j=1(pkj+βjwj(k+i)) (AjxS+BjuS)
0

]

.

4. Constraints handling

In this section, first, the probabilistic constraint (4) is handled using the technique of one-step ahead
probabilistic invariance [18, 26]. Then, sufficient conditions for the satisfaction of constraint is
given in terms oflinear matrix inequalities (LMIs). According to this methodology, the constraint
(4), for i=0 (beginning of the prediction horizon), is rewritten as

Pr {|x(0|k)− xS| ≤ h} ≥ α⇐⇒ Pr
{

G
⊤z(0|k) ≤ ĥ

}

≥ α, (8)

where

G
⊤=

[

Γ
⊤
x

−Γ⊤
x

]

, Γ⊤
x =

[

I 0
]

, andĥ=

[

h

h

]

. (9)

Remark 4. In the constraint (8), the augmented state at the beginning of the prediction horizon is
forced to belong to an ellipsoidal set that leads to satisfaction of the constraint (8) via the machinery
of probabilistic invariance. Our objective is to constructaEz ⊂ R

nx+Nnu, such that

z(0|k) ∈ Ez =⇒ Pr
{

G
⊤z(1|k) ≤ ĥ

}

≥ α, (10)

then the constraint (8) will be ensured at eachk. It is intuitively clear from (10) that, to achieve
such a property, setEz needs to be invariant in a probabilistic sense.

Definition 1. (Probabilistic invariance [18, 26]) For the augmented representation (7), a setEz is
said to be invariant with probabilityα, if for everyz(0|k) ∈ Ez, the next statez(1|k) belongs toEz
with probabilityα.

Let Ez =
{

z : z⊤Pzz ≤ 1
}

, wherePz is a symmetric matrix andPz ≻ 0. It is apparent that,
for everyEz, there exists an ellipsoid

Ex=
{

x− xS : (x− xS)
⊤
Px (x− xS) ≤ 1

}

⊂ R
nx ,
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with Px=
(

Γ
⊤
xPz

−1
Γx

)−1
, whereΓx is given in (9),Px is a symmetric matrix andPx ≻ 0. Here,

the relation betweenPx andPz is provided in terms of their inverses, which is only for the ease of
computingPz, via an optimization problem, given in Section 5.

Assumption 4. Forwl(k), l ∈ I
np

1 andδ(k), it is possible to have confidence regionsQw andQv

with probabilityα for all k. This means that, forl ∈ I
np

1 , for k ∈ N,

Pr {wl(k) ∈ Qw} ≥ α andPr {δ(k) ∈ Qv} ≥ α. (11)

For eachl ∈ I
np

1 , wl(k) is a scalar, and thus without loss of generality, letQw be a symmetric
interval around the origin with extremes denoted bywv1 for v1 = 1, 2. Observe thatδ(k) is a
vector, and hence we letQv be a convex polytope with vertices denoted byδv2 for v2 ∈ I

nQv

1 .
Also, let χv3 for v3 = 1, 2, denote an interval vertex representation with extremesχ1 = 0 and
χ2=F−1

χ (α),whereF−1
χ (.) is the inverse cdf of a Chi-square distribution with 1 degreeof freedom.

Let P̃ k ,
∑np

j=1 pkj (AjxS+BjuS) and

ν
v1,v2
k =

[

δv2+P̃ k+
∑np

j=1 βj (AjxS+BjuS)w
v1

0

]

, (12a)

Ψ̄k(w
v1 , χv3)=Ψk+

np
∑

j=1

Ψ̃kjw
v1+

np
∑

j,m=1

Ψ̂jmχ
v3 . (12b)

In (12b), the variableχv3 can be understood as a vertex representation of the second order noise
terms ofΨ̄i|k(w) in (7), that have Chi-square distribution. We give the following proposition for
the feasibility of the probabilistic constraint (4).

Proposition 1. The probabilistic constraint (4) can be satisfied by the control law (5), if there exist
a scalarλ ∈ [0, 1] and a symmetric matrixPz

−1 ≻ 0 such that




−λPz
−1

0 Pz
−1
Ψ̄

⊤
k (w

v1, χv3)

∗ λ− 1 (νv1,v2
k )

⊤

∗ ∗ −Pz
−1



 � 0, (13a)

[

−(e⊤
j ĥ)

2 e⊤
j G

⊤Pz
−1

∗ −Pz
−1

]

� 0, (13b)

for v1=1, 2, v2 ∈ I
nQv

1 , andv3=1, 2, whereνv1,v2
k andΨ̄k(w

v1 , χv3) are given by (12a) and (12b),
respectively,G⊤ is given by (9), andej denotes thejth column ofI2nu×2nu

.

Proof: Given in Section 9.

Remark 5. Observe that, the computation ofPz in Proposition 1 depends on the set point pair
(xS,pS,uS) . Hence, to avoid the computational burden of solving this operation on-line, for given
set point pairs(xS,pS,uS) corresponding to a sufficiently dense grid of the operating regime, each
Pz can be computed off-line by solving the optimization problem OP2 given in Section 5, and
stored in a lookup table.

5. MPC Algorithm

In this section, we present an MPC design algorithm along with its closed-loop properties. As
a first step, we rewriteJk in terms of the augmented state variable. Then, an MPC algorithm is
provided, which ensures the closed-loop system stability.
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5.1. Reformulation of the cost function

The cost functionJk in Section 2 is rewritten as

Jk=

∞
∑

i=0

Si|k, (14a)

Si|k=Ek

[

(x(i|k)− xS)
⊤
Q ⋆+(u(i|k)− uS)

⊤
R ⋆

]

, (14b)

whereu(i|k)=K̄k (x(i|k)− xS)+
∑np

j=1 βjwj(k+i)Kj (x(i|k)− xS)+uS+c(i|k) andSi|k can
be described as a stage cost. It can be observed from (14b) that the minimum value of the stage
cost can never be made zero, due to the presence of noise covariance matrices. Sincex(i|k) is
independent ofwj(k+i), it follows that

Ek

[

(u(i|k)− uS)
⊤
R⋆

]

=Ek

[

(x(i|k)− xS)
⊤ (

K̄
⊤
k RK̄k+

np
∑

j=1

β2
jK

⊤
j RKj

)

⋆

+(x(i|k)− xS)
⊤
K̄

⊤
k Rc(i|k)+c⊤(i|k)RK̄k (x(i|k)− xS)+c⊤(i|k)R⋆)

]

.

Thus, the costJk (14a) is given by

Jk=
∞
∑

i=0

Ek

[

z⊤(i|k)Q̃k⋆
]

, (15)

where

Q̃k=

[

Q+K̄
⊤
kRK̄k+

∑np

j=1β
2
jK

⊤
jRKj K̄

⊤
k RΓ

⊤
u

∗ ΓuR⋆

]

. (16)

In the sequel, under the assumption of mean square stabilityof (7) without additive noise (which
is implied by (18) in Proposition 2 in the sequel), we observethat the stage costSi|k reaches a
non-zero value asymptotically asi → ∞. This non-zero asymptotical stage cost is due to the
additive noise terms present in the state evolution (6), whose covariance matrix is non-zero at all
time instants. The costJk in (15) can be modified by subtracting the asymptotical stagecost from
each of the termsSi|k for i ≥ 0 [19]. Before proceeding, we introduce an operatorLk(.) as

Lk(M) , Ψ
⊤
k MΨk+

np
∑

j=1

Ψ
⊤
k MΨ̂jj+

np
∑

j=1

(

Ψ
⊤
k MΨ̂jj

)⊤

+

np
∑

j=1

Ψ̃
⊤

kjMΨ̃kj

+3
(

np
∑

j,l=1

Ψ̂
⊤

jjMΨ̂ll+

np
∑

j,m=1

Ψ̂
⊤

jmMΨ̂jm+

np
∑

j,m=1

Ψ̂
⊤

jmMΨ̂mj

)

, (17)

whereM is a matrix of appropriate dimensions and the remaining matrices are as in (7). Now, we
give a proposition to compute the asymptotical stage cost.

Proposition 2. If there exists a symmetric matrixP ≻ 0, such that

Lk(P ) ≺ P , (18)

then for anyk ∈ N, limi→∞ Ek [z(i|k)] = 0 and limi→∞ Ek

[

z(i|k)z⊤(i|k)
]

= Ωk, whereΩk is
given by the solution of the matrix equation

Lk(Ωk)+Σ̃δ=Ωk, (19)
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with

Σ̃δ=diag
{

Σδ +P̃ kP̃
⊤

k +

np
∑

j=1

β2
j (AjxS+BjuS)(AjxS+BjuS)

⊤, 0
}

.

Proof: Given in Section 9.

Remark 6. Note that, in Proposition 2, the expected value of the augmented statez(i|k) reaches
0 asymptotically asi → ∞, which also implies thatc(i|k), that is to be obtained by solving the
MPC design problem in the sequel, reaches0 asymptotically. This is to be expected, since the
constraints are satisfied in the steady state.

These observations allow to modifyJk (see (15)) as

∞
∑

i=0

(

Ek

[

z⊤(i|k)Q̃k⋆
]

− lim
j→∞

Ek

[

z⊤(j|k)Q̃k⋆
])

=

∞
∑

i=0

(

Ek

[

z⊤(i|k)Q̃k⋆
]

− tr
(

Q̃kΩk

))

:= Ĵk,

(20)

which shows that the modified costĴk is now finite valued. From Proposition 2, it is clear that
Ek[z

⊤(i|k)Q̃kz(i|k)]→ tr(Q̃kΩk) asi→∞, which makeŝJk finite.
The cost function̂Jk can be computed in a tractable way at each time instantk ∈ N by the

following proposition.

Proposition 3. The costĴk in (20) is given by

Ĵk=

[

z(0|k)
1

]⊤

Θk⋆, (21)

where

Θk=

[

Θ11(k) Θ12(k)
Θ

⊤
12(k) Θ22(k)

]

(22)

=

[

Lk(Θ11(k))+Q̃k Ψ
⊤
k Θ12(k)+

∑np

j=1 Ψ̂
⊤

jjΘ12(k)
∗ −tr(Θ11(k)Ωk)

]

.

Proof: Given in Section 9.

5.2. Design of the stochastic LPV MPC law

In this section, using the reformulated cost in the previoussection, the proposed MPC law is
given by Algorithm 1. The objective of the MPC algorithm is tominimize Ĵk in (20) at each
k ∈ N as provided in Step-7 and Step-9 of the algorithm, givenx(k) − xS ∈ Ex. Sincex(0)
is the initial state of the system (1), we consider thatx(0) can be suitably initialized to belong

to Ex. In Algorithm 1, z∗(k − 1) denotes
[

x⊤(k − 1)− x⊤
S f ∗⊤(k − 1)

]⊤
, wheref ∗(k − 1)

is the optimum control input obtained at timek − 1. It ensures thatz(0|k) ∈ Ez, which makes
z(1|k) satisfy the probabilistic constraints (4) via (10). Ifx(k) − xS /∈ Ex, then the state must
be steered toEx by drivingEk [x(1|k)− xS] towardsEx, i.e; by minimizing the objective function
Ek

[

(x(1|k)− xS)
⊤Px⋆

]

(Step-11). This means, whenever infeasibility occurs at somek ∈ N, the
objective shifts to ensuring feasibility instead of minimizingĴk. Let the scalar real number̺ <∞
and sufficiently large such that the right hand terms of (24b)and (25) are positive.
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Algorithm 1 Stochastic LPV MPC Algorithm

1: Data: The set point pairs(xS,pS,uS), K0 · · ·Knp
and̺.

2: Initialize: k ← 0.
3: while k ≥ 0 do
4: Obtain the current set point pair(xS,pS,uS).
5: For (xS,pS,uS) , calculatePz byOP2.
6: if k=0 with x(0)− xS ∈ Ex then
7:

f∗(k)=arg min
f(0|k)

[

z(0|k)
1

]⊤

Θk⋆ (23)

s.t.z⊤(0|k)Pz⋆ ≤ 1.

8: else ifx(k)− xS ∈ Ex then
9:

f∗(k)=arg min
f(0|k)

[

z(0|k)
1

]⊤

Θk⋆ (24a)

z⊤(0|k)Pz⋆ ≤ 1,
[

z⊤(0|k) 1⊤
]

Θk⋆ ≤
[

z∗⊤(k − 1) 1⊤
]

Θk−1 ⋆−z∗⊤(k − 1)Q̃k−1 ⋆+̺ . (24b)

10: else
11:

f∗(k)=arg min
f(0|k)

(

Γ
⊤
x

(

Ψk+

np
∑

j=1

Ψ̂jj

)

z(0|k)
)⊤

Px⋆

s.t.
[

z⊤(0|k) 1⊤
]

Θk⋆ ≤
[

z∗⊤(k − 1) 1⊤
]

Θk−1 ⋆−z∗⊤(k − 1)Q̃k−1 ⋆+̺ . (25)

12: end if
13: Apply u(k)=K(p(0|k)) (x(k)− xS)+uS+Γ

⊤
u f

∗(k). Let k ← k+1.
14: end while

By following similar arguments as in [19, Thoeorem 5], it canbe shown that, under an MPC
controller defined by Algorithm 1, specifically, by the optimization in (23), (24a) and constraints
(24b), (25), the closed-loop system (1) is stable in the following sense

lim
T→∞

1

T

T
∑

k=0

E0

[

[

x(k)− xS

f ∗(k)

]⊤

Q̃k⋆

]

≤ ̺.

Furthermore, ifz(0|k) ∈ Ez at eachk ∈ N, thenz(1|k) satisfies the probabilistic constraint in (4).

5.3. Selection of the tuning parameters in Algorithm 1

In Algorithm 1, at eachk ∈ N, one requires the values ofK0, · · ·Knp
,Θk,Pz. Before proceeding,

we present a lemma that is useful in performing off-line computations in the sequel.
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Lemma 1. Consider that the scheduling signalp(k) = [ p1(k) · · · pnp
(k) ]⊤ varies in a hyper-

rectangle
{

[ p11, p21 ], · · · , [ p1np
, p2np ]

}

. Let

M 12(k)=
(

X0+

np
∑

j=1

pj(k)Xj

)(

Y 0+

np
∑

j=1

pj(k)Y j

)

+Z0+

np
∑

j=1

pj(k)Zj .

Then, for suitable matricesM 11, M 22, X0, · · ·Xnp
, Y 0, · · ·Y np

andZ0, · · ·Znp
,

[

M 11 M 12(k)
∗ M 22

]

� 0, (26)

is implied by

F
i,j
m,n ,

[

1
n2
p
M 11 M̃ 12

∗ 1
n2
p
M 22

]

� 0,

whereM̃ 12=
1
n2
p
(X0Y 0+Z0)+

pmj

np
(X0Y j+XjY 0+Zj)+pmjpniX iY j , for m=1, 2, n=1, 2,

i ∈ I
np

1 andj ∈ I
np

1 .

Proof: Briefly, the proof is given as follows. Letpj(k)=ε1j(k)p1j+ε2j(k)p2j , whereε1j(k) ≥ 0,
ε2j(k) ≥ 0 andε1j(k)+ε2j(k)=1 for all j ∈ I

np

1 and for eachk ∈ N. Then, one can readily obtain
the result by noting that

np
∑

i,j=1

2
∑

m,n=1

εmj(k)εni(k)F
i,j
m,n � 0,

which implies (26). �

Now, we address the computation ofK0, · · ·Knp
, which is performed off-line. A possible

choice forK0, · · ·Knp
is by solving the unconstrained problem of minimizingJk sincef (i|k)=0

for i ≥ N . Thus, an LPV state-feedback synthesis problem is posed as follows. Find a symmetric
matrixW ≻ 0 that

OP1 : max
W−1≻0,Y 0,··· ,Y np

tr(W−1)

s.t. L̄k(W ) ≺W , (27)

whereY i=K iW
−1 and

L̄k(W )=Φ
⊤
k WΦk+

np
∑

j=1

Φ
⊤
k WB

β
jK

β
j +

np
∑

j=1

(

Φ
⊤
k WB

β
jK

β
j

)⊤

+

np
∑

j=1

Φ̃
⊤

jkW Φ̃jk+Ξk(W ),

Ξk(W ) = 3
[

np
∑

j,m=1

(

B
β
jK

β
j

)⊤

W
(

Bβ
mK

β
m

)

+

np
∑

j,m=1

(

B
β
jK

β
m

)⊤

W
(

B
β
jK

β
m

)

+

np
∑

j,m=1

(

B
β
jK

β
m

)⊤

W
(

Bβ
mK

β
j

) ]

,

for i ∈ I
np

0 . The constraint (27) inOP1 is obtained by the mean square stabilizing condition (18)
in the absence of additive disturbances withc(i|k) = 0.
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Since computingK0, · · ·Knp
depends on the scheduling signalp(k), it leads to an infinite

dimensional problem due to the need for verifying the LMI (27) for all possible values ofp(k).
However, Lemma 1 can be used to tractably computeK0, · · ·Knp

for p(k) ∈ P by solving a finite
set of LMIs.

OnceK0, · · ·Knp
have been computed,Θk can be obtained from Proposition 3. Finally,Pz

can be selected to maximize the volume ofEx as follows

OP2 : max
Pz

−1,λ∈[0,1]
logdet

(

Γ
⊤
xPz

−1
Γx

)

s.t. (13a) and(13b).

Note that the computation ofPz in OP2 depends on the set point pairs(xS,pS,uS) andp(k).
Similar to the above reasoning, by using Lemma 1, for set point pairs (xS,pS,uS), the corre-
spondingPz can be computed off-line and stored in a lookup table. This implies that Step-5 in
Algorithm 1 should be implemented off-line.

Remark 7. In Algorithm 1, one requires the off-line values of the state-feedback gainsK0, · · ·Knp

and the ellipsoid invariance matrixPz. The computational complexity of LMIs in obtaining
K0, · · ·Knp

are of orderO(n2
xn

2
p), thus independent of the prediction horizonN . However, in

computingPz, the LMIs inOP1 are of orderO((nx+N)2). This means that the number of com-
putations for ensuring feasibility of constraints via obtaining Pz increases asN increases, which
is to be expected. For the optimizations in Step-7, Step-9 and Step-11, theoretically each of them
need roughlyO((nx+N)3) iterations.

6. Example

Consider a laboratory setup of a tank system with its schematic given in Figure 1. A first principle

iQ

h

tA

vA

oQ

Fig. 1: Schematic of a single tank in the three tank system

laws based dynamical model of the process is given by

ḣ(t) = −az
Av

At

√

2gh(t)+
1

At

Qi(t)+δ(t), (28)

whereh is the liquid level,Qi is the liquid input flow rate,Qo

(

=
√

2gh(t)
)

is the output flow
rate,At andAv are the surface areas of the tank and the connecting pipe, respectively, andaz is the
fluid constant for the valves. Hereδ(t) denotes the disturbances in the process, which are modeled
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as a Gaussian white noise with zero mean and variance 0.2. Thesource of these disturbances
are irregularities in the input flow and evaporation/condensation effects inside the tank itself. The
parameter values for the setup (TTS20 Three-Tank-System byGurski-Schramm) are given in Table
1. An LPV representation of (28) can be found as

Parameter Value Unit
At 149 cm2

Av 0.5 cm2

az 0.785
g 980.66 cm/sec2

Table 1 Parameter values of the tank system

ḣ(t) = A(p(t))h(t)+
1

At

Qi(t)+δ(t), (29)

wherep(t) = 1√
h(t)

, A(p(t)) = −az Av

At

√
2gp(t). From the specifications of the tank system,

the height of the tank is 70cm. Let the initial liquid level of the tank be 36cm, and hence the
scheduling variablep(t) lie in P := [0.1195, 0.1667]. The corresponding limits on the flow rate
are given by[104.2, 145] cm3/sec. By Euler’s forward method, the discrete-time dynamics of (29)
with a sampling periodT = 5 sec is given by

h(k+1)= (1+TA(p(k)))h(k)+
T

At

Qi(k)+δ(k), (30)

whereA(p(k)) = −az Av

At

√
2gp(k) andδ(k) is a white noise process withδ(k) ∼ N (0, 1). Let

the liquid level track a step reference that varies slowly, wherehd is the reference level at each
time instant. We choose a large sampling period, which is common in process control applica-
tions; otherwise small sampling periods require larger prediction horizons for an effective MPC
performance, which increases the computational burden.

For each reference levelhd, the corresponding flow rate is denoted asQid. Due to the presence
of disturbances, the liquid level is probabilistically constrained as

Pr {|h(k)− hd| ≤ 2} ≥ 0.85. (31)

Regarding the prediction of the scheduling signal, consider the probabilistic constraint (2) with
G = [ 1 −1 ]⊤, H = [ 0.02 0.02 ]⊤ andξ = 0.9, which results in the value ofβ as0.0122
from (34) in the Appendix. Thus, using thisβ in (3), one can observe a tractable prediction via
(3) of the scheduling variations defined by (2). Also the costfunctionJk in (14a) is given with
x(i|k) = h(i|k)− hd andu(i|k) = Qi(i|k)−Qid. The state-feedback control law is

Qi(i|k)=(K0+K1p(i|k))(h(i|k)−hd)+Qid+ c(i|k). (32)

By OP1 and Lemma 1, the state-feedback gains are calculated off-line asK0 = −29.88 and
K1 = 17.62. By OP2 and Lemma 1,Pz

−1 andP−1
x can be obtained for each reference pair

(hd, Qid) and stored in a lookup table. LetN = 5, Q = 1 andR = 1. For a given reference
profile, by solving Algorithm 1 via computer simulations, six sample realizations of the flow rate,
the corresponding liquid levels and the scheduling functions are given in Figures 2-4.
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Fig. 2: Sample realizations of the flow rate (cm3/sec).

Fig. 3: The corresponding liquid levels (cm).

It can be roughly observed from Figure 2 that the flow rates vary around110 cm3/sec and
123 cm3/sec, which correspond to the set point liquid levels40 cm and50 cm (see Figure 3), re-
spectively. Also, one can qualitatively observe the occasional constraint violations from Figure 3,
where the red colored line indicates a reference profile for the liquid level and the dashed green
colored lines indicate the allowed limits by the probabilistic constraint (31). Due to fluctuations
in the liquid level, one can also apparently observe the fluctuations in the scheduling function in
Figure 4. For100 different noise realizations, we perform the same experiment with the same
initial condition and obtain the average (over 100 realizations) constraint violation points as81
with minimum74 and maximum96 (on a time scale of 500 points). To examine the probabilistic
invariance (10), we consider1000 different realizations of the noise and the initial statex(0) that
belongs toEx, and observe thatx(1) belongs toEx 876 times (giving a sample estimate of the
probability0.876 which is close to0.85).
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Fig. 4: The realizations of the scheduling signals corresponding to Figures 2 and 3 .

7. Conclusion

In this article, we addressed stochastic model predictive tracking of piecewise constant reference
signals for linear parameter-varying systems subject to additive stochastic uncertainties. Due to
the assumed affine, parameter dependent state-space representation and stochastic formulation of
the scheduling signal, the overall system consists of additive and multiplicative noises up to sec-
ond order. Probabilistic constraints are addressed via probabilistic invariance by solving a set of
linear matrix inequalities. The control law is considered to have an affine state-feedback formula-
tion, where the state feedback gains, computed off-line, ensure closed-loop system stability while
the affine terms, computed on-line, solve the given MPC problem. We showed that, under the
given control law, closed-loop system stability and feasibility are satisfied while solving the MPC
problem.
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9. Appendices

Computation of β in (3)

Notice that, in (3), the elements ofβ are unknown variables, which needs to be computed such that
the probabilistic constraint (2) is satisfied. To proceed, two cases are considered.

Case 1: Scalar valued p(k)
Since we consider the tubeΩ centered atp(k), the constraint (2) can be interpreted fornp = 1 as

Pr{−̟ ≤ (p(i|k)− p(k)) ≤ ̟ | p(k)} ≥ ξ, (33)

whereG = [ 1 −1 ]⊤ andH = [ ̟ ̟ ]⊤ for some known̟ > 0. Thus

Pr{−̟ ≤ (p(i|k)− p(k)) ≤ ̟ | p(k)} ≥ ξ ⇐⇒ Pr{−̟ ≤ βw(k+i) ≤ ̟} ≥ ξ

⇐⇒ Fw(
̟

β
)≥ ξ+1

2
⇐⇒ ̟

β
≥ F−1

w

(ξ+1

2

)

, (34)

whereFw(.) andF−1
w (.) are the cdf and the inverse cdf of the normal random variable,respectively.
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Case 2: Vector valued p(k)
In this case, by the arguments given in [27], we obtain the following sufficient condition to satisfy
(2)

e⊤
j δ

2Gββ⊤G⊤ej ≤
(

e⊤
j H

)2
=⇒ Pr{G(p(k+i)− p(k)) ≤H | p(k)} ≥ ξ, (35)

whereej denotes thej th column ofI·×· andδ is
√

F−1
np,Chi(ξ), whereF−1

np,Chi(.) is the inverse

Chi-square cdf withnp degrees of freedom.
Thus,β can be computed from (34) or (35) subsequently. Observe the equivalence and suffi-

ciency in (34) and (35), respectively; the sufficiency in (35) is due to the type of joint probabilistic
constraint (2).

Proof of Proposition 1

First, we address the probabilistic invariance ofEz, which means that we would like to obtain a
condition for

z(0|k) ∈ Ez =⇒ Pr {z(1|k) ∈ Ez} ≥ α,

z(0|k)⊤Pz⋆ ≤ 1 =⇒ Pr
{

z(1|k)⊤Pz⋆
}

≥ α. (36)

From (11), the probabilistic constraintPr
{

z(1|k)⊤Pz⋆
}

≥ α can be ensured if

(

Ψ̄k(w
v1 , χv3)z(0|k)+ν

v1,v2
k

)⊤
Pz⋆ ≤ 1, (37)

for v1 = 1, 2, v2 ∈ I
nQv

1 andv3 = 1, 2. To guarantee thatEz is invariant with probabilityα, it is
sufficient to ensure thatz⊤(0|k)Pz⋆ ≤ 1 implies (37). By applying theS−procedure with the
parameterλ ≥ 0, we get

(

(

Ψ̄k(w
v1, χv3)z(0|k)+ν

v1,v2
k

)⊤
Pz ⋆−1

)

− λ
(

z⊤(0|k)Pz ⋆−1
)

≤ 0. (38)

Let P̃ 11 = Ψ̄
⊤
k (w

v1, χv3)Pz ⋆−λPz, P̃ 12 = Ψ̄
⊤
k (w

v1, χv3)Pzν
v1,v2 andP̃ 22 = (νv1,v2

k )
⊤
Pz ⋆+λ−

1. Now (38) can be rewritten as

[

z(0|k)
1

]⊤ [

P̃ 11 P̃ 12

∗ P̃ 22

]

⋆ ≤ 0,

which holds iff
[

P̃ 11 P̃ 12

∗ P̃ 22

]

� 0. (39)

As Pz ≻ 0, by Schur complement, (39) is equivalent to





−λPz 0 Ψ̄
⊤
k (w

v1 , χv3)

∗ λ− 1 (νv1,v2
k )⊤

∗ ∗ −Pz
−1



 � 0. (40)
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Multiplying both sides of (40) withdiag
{

Pz
−1, 1, I

}

(congruence transformation) gives (13a). To
guarantee the probabilistic constraint (4), it is sufficient to ensure

{

z(1|k) : z⊤(1|k)Pz⋆ ≤ 1
}

⊆
{

z(1|k) : G⊤z(1|k) ≤ ĥ
}

.

The above constraint of bounding an ellipsoid inside a convex polytope can be readily implied by

e⊤
j G

⊤Pz
−1
Gej ≤ (e⊤

j ĥ)
2.

Applying the Schur complement to the above inequality leadsto (13b), which completes the
proof. �

Proof of Proposition 2
Let z(i|k) = γ(i|k)+ϕ(i|k); then the dynamics of (7) can be represented by

γ(i+1|k) = Ψ̄i|k(w)γ(i|k),
ϕ(i+1|k) = Ψ̄i|k(w)ϕ(i|k)+ν(k+i),

with γ(0|k) = z(0|k) andϕ(0|k) = 0. First, we find the asymptotic value ofEk

[

γ(i|k)γ⊤(i|k)
]

asi→∞. Consider a stochastic Lyapunov function with a symmetric matrix P ≻ 0,

Ek

[

γ⊤(i+1|k)Pγ(i+1|k)
]

= Ek

[

γ⊤(i|k)Ψ̄⊤
i|k(w)P Ψ̄i|k(w)γ(i|k)

]

= Ek

[

γ⊤(i|k)∆̃kγ(i|k)
]

, (41)

where

∆̃k =Ψ
⊤
k PΨk+Ψ

⊤
k P

np
∑

j=1

Ψ̂jj+

np
∑

j=1

Ψ̂
⊤

jjPΨk+

np
∑

j=1

Ψ̃
⊤

kjP Ψ̃kj

+

np
∑

j,m,l,h=1

Ψ̂
⊤

jmP Ψ̂lh (δjmδlh+δjlδmh+δjhδml)E
[

w4
]

,

andw ∼ N (0, 1). SinceE [w4] = 3, after simplification,

Ek

[

γ⊤(i+1|k)Pγ(i+1|k)
]

= Ek

[

γ⊤(i|k)Lk(P )γ(i|k)
]

,

whereLk is defined by (17). By (18),

Ek

[

γ⊤(i+1|k)Pγ(i+1|k)
]

≺ Ek

[

γ⊤(i|k)Pγ(i|k)
]

.

SinceP ≻ 0, it implies limi→∞ Ek

[

γ(i|k)γ⊤(i|k)
]

= 0, thus limi→∞ Ek [γ(i|k)] = 0. Also
notice thatEk [ϕ(i|k)]=0, which implies thatlimi→∞ Ek [ϕ(i|k)] = 0. Thuslimi→∞ Ek [z(i|k)]=
0. Next, we find the asymptotic value ofEk

[

ϕ(i|k)ϕ⊤(i|k)
]

asi→∞. Consider

Ek

[

ϕ(i+1|k)ϕ⊤(i+1|k)
]

= Ek

[

Ψ̄i|k(w)ϕ(i|k)ϕ⊤(i|k)Ψ̄⊤
i|k(w)+Ψ̄i|k(w)ϕ(i|k)ν⊤(k+i)

+ ν(k+i)ϕ⊤(i|k)Ψ̄⊤
i|k(w)+ν(k+i)ν⊤(k+i)

]

.
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SinceΨ̄i|k(w), ϕ(i|k) andν(k+i) are independent,

Ek

[

ϕ(i+1|k)ϕ⊤(i+1|k)
]

= Ek

[

Ψ̄i|k(w)ϕ(i|k)ϕ⊤(i|k)Ψ̄⊤
i|k(w)

]

+Σ̃δ, (42)

where
Σ̃δ =diag

{

Σδ +P̃ kP̃
⊤

k +
∑

j

β2
j (AjxS+BjuS)(AjxS+BjuS)

⊤, 0
}

.

By following a similar simplification as in (41), equation (42) can be expressed as

Ek

[

ϕ(i+1|k)ϕ⊤(i+1|k)
]

=Lk(Ek

[

ϕ(i|k)ϕ⊤(i|k)
]

)+Σ̃δ.

Now let Ω̄i|k , Ek

[

ϕ(i|k)ϕ⊤(i|k)
]

−Ωk, and thus

Ω̄i+1|k = Ek

[

ϕ(i+1|k)ϕ⊤(i+1|k)
]

−Ωk

= Lk

(

Ek

[

ϕ(i|k)ϕ⊤(i|k)
])

+Σ̃δ −Ωk

= Lk(Ω̄i|k+Ωk)+Σ̃δ −Ωk.

Since the operatorLk(.) is linear,Lk(Ω̄i|k+Ωk) = Lk(Ω̄i|k)+Lk(Ωk). Thus

Ω̄i+1|k =Lk(Ω̄i|k)+Lk(Ωk)+Σ̃δ −Ωk.

From (19), we arrive at̄Ωi+1|k = Lk(Ω̄i|k). From (18), it can be readily concluded that
{

Ω̄i|k

}

is a
decreasing sequence ini. Thus,limi→∞ Ω̄i|k = 0. This implies thatlimi→∞ Ek

[

ϕ(i|k)ϕ⊤(i|k)
]

=

Ωk, and hencelimi→∞ Ek

[

z(i|k)z⊤(i|k)
]

= Ωk. �

Proof of Proposition 3
Let g(i|k) = z⊤(i|k)Θ11(k)z(i|k)+z⊤(i|k)Θ12(k)+Θ

⊤
12(k)z(i|k)+Θ22(k). This implies that

g(i|k)=z⊤(i|k)Θ11(k)z(i|k)+2Θ⊤
12(k)z(i|k)+Θ22(k). Consider,

Ek [g(i|k)]− Ek [g(i+1|k)] = Ek

[

z⊤(i|k)Θ11(k) ⋆+2Θ
⊤
12(k)z(i|k)+Θ22(k)

]

− Ek

[

z⊤(i+1|k)Θ11(k) ⋆+2Θ
⊤
12(k)z(i+1|k)+Θ22(k)

]

. (43)

To simplify (43), consider the term

Ek

[

z⊤(i+1|k)Θ11(k)⋆
]

= Ek

[

{

Ψ̄i|k(w)z(i|k)+ν(k+i)
}⊤
Θ11(k)⋆

]

= Ek

[

(

Ψ̄i|k(w)z(i|k)
)⊤
Θ11(k) ⋆+ν

⊤(k+i)Θ11(k)⋆
]

.

By following a similar simplification as in (41),

Ek

[

z⊤(i+1|k)Θ11(k)⋆
]

= Ek

[

z⊤(i|k)Lk(Θ11(k))z(i|k)
]

+tr
(

Θ11(k)Σ̃δ

)

. (44)

Also, consider the term

Ek

[

Θ
⊤
12(k)z(i+1|k)

]

= Ek

[

Θ
⊤
12(k)

{

Ψ̄i|k(w)z(i|k)+ν(k+i)
}]

= Ek

[

(

Θ
⊤
12(k)Ψk+Θ

⊤
12(k)

np
∑

j=1

Ψ̂jj

)

z(i|k)
]

. (45)
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Thus, by (44) and (45), we can simplify (43) as

Ek [g(i|k)]− Ek [g(i+1|k)] = Ek

[

z⊤(i|k) (Θ11(k)− Lk(Θ11(k)))z(i|k)+2
(

Θ
⊤
12(k)

−Θ
⊤
12(k)Ψk −Θ

⊤
12(k)

np
∑

j=1

Ψ̂jj

)

z(i|k)
]

− tr
(

Θ11(k)Σ̃δ

)

.

From (22), we obtainEk

[

g(i|k)
]

−Ek

[

g(i+1|k)
]

= Ek

[

z⊤(i|k)Q̃kz(i|k)
]

− tr
(

Θ11(k)Σ̃δ

)

. Now,
again from (22), multiplying (19) byΘ11(k) on the right side and applying the trace operator, we
obtain

tr
(

Lk(Ωk)Θ11(k)
)

+tr
(

Σ̃δΘ11(k)
)

= tr
(

ΩkΘ11(k)
)

,

tr
(

ΩkLk(Θ11(k))
)

+tr
(

Σ̃δΘ11(k)
)

= tr
(

ΩkΘ11(k)
)

,

tr
(

Σ̃δΘ11(k)
)

= tr
(

ΩkQ̃k

)

. (46)

Thus, using (46), we have

Ek[g(i|k)]− Ek[g(i+1|k)]=Ek

[

z⊤(i|k)Q̃kz(i|k)
]

− tr
(

ΩkQ̃k

)

.

By recursively adding the above equation fori ≥ 0,

g(0|k)− lim
i→∞

Ek [g(i|k)] =
∞
∑

i=0

(

Ek

[

z⊤(i|k)Q̃kz(i|k)
]

− tr
(

ΩkQ̃k

)

)

= Ĵk.

Now, consider

lim
i→∞

Ek [g(i|k)] = lim
i→∞

Ek

[

z⊤(i|k)Θ11(k)z(i|k)+2Θ⊤
12(k)z(i|k)+Θ22(k)

]

= tr(Θ11(k)Ωk)+Θ22(k).

From (22), we obtain thatlimi→∞ Ek [g(i|k)] = 0. Thus, the cost̂Jk equals tog(0|k), which
completes the proof. �
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