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Abstract: This article addresses a stochastic model predictiveitriggoblem for linear parameter-
varying (LPV) systems described by affine parameter dep#rstate-space representations and
additive stochastic uncertainties. The reference trajgds considered as a piecewise constant
signal and assumed to be known at all time instants. To optaiiction equations, the scheduling
signal is usually assumed to be constant or its variatiosssimed to belong to a convex set. In
this article, the underlying scheduling signal is givenachkastic description during the prediction
horizon, which aims to overcome the shortcomings of the twaner characterizations, viz. re-
strictiveness and conservativeness. Hence, the overdlldyBtem dynamics consists of additive
and multiplicative noise terms up to second order. Due t@tksence of stochastic disturbances,
probabilistic state constraints are considered. Sincalisteirbances make the computation of
prediction dynamics difficult, augmented state predictgnamics are considered, by which, fea-
sibility of probabilistic constraints and closed-looplstiy are addressed. The overall approach is
illustrated using a tank system model.

1. Introduction

Linear parameter-varying (LPV) system representations have been studied extepsinel used

in variety of applications (see, e.g., [1-9] among many oteé&rences) to model and control
nonlinear or time/space dependent systems. Broadly spggakrnamics of LPV systems resemble
that of linear time-varying (LTV) systems, whose variation depends on not only a singte t
evolution, but on a measurable time-varying signal, alsledacheduling signal. By considering
all possible realizations or valid trajectories of the stiliing signal, a single LPV system describes
a family of LTV systems, from which the current measureménihis variable selects the one that
describes the continuation of the signal trajectorie lilputs and outputs. Such a concept also
allows to embed the dynamics of a nonlinear system into theiso set of a linear representation
[10]. The key advantage of adopting LPV systems framewottkasit preserves the advantageous
properties ofinear time-invariant (LTI) systems, enabling convex control synthesis and tieeofis
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industrial experience in LTI control tuning to regulate hoear or time-varying systems.

Driven by the control objectives in the process industngdel predictive control (MPC) has
been established as an effective control algorithm thatvalito cope with constraints. To join the
attractive properties of this framework, various MPC apgtes have been introduced for LPV
systems described by state-space representations, mod#dya deterministic setting, see [11-14].
However, the main difficulty encountered in MPC design foML$ystems is that the scheduling
signal in many applications is measurable only at the ctiiere instant, but unknown during
the prediction horizon. Under this setting, obtaining tmediction equations for LPV systems
becomes intractable. To handle this issue, usually, whilaputing the predicted state and/or
control inputs during the prediction horizon, either theestuling signal is assumed to be constant
[15] or by applying the robust control concept, its variatis assumed to belong to a convex set
[11-14]. While the former characterization is quite unisad, the latter situation, that falls under
robust setting, is often too conservative because a dektge oontrol law is based on all variations
of the scheduling signal in the convex set during the presidtorizon. In practice, especially for
slowly-varying systems, like process control applicasiaituring the prediction horizon, variations
of the scheduling signal may be limited to a much smaller lsah the convex set. Hence, we
assume that during the prediction horizon, the scheduligigas varies stochastically in a tube,
where the probability of future trajectories of the scheuyvariable describes the likely variations
of the dynamics, rather than a worst case approach stemmoimgiie robust setting where unlikely
extremes of the variations are equally possible. Thus,epnesentation aims at striking a balance
between the previous two situations: being realistic anth@tsame time less conservative. In
this article, we intend to use the framework of stochasticQyW®hich is suitable to address MPC
problems with stochastic objective function and/or staticaonstraints, see [16] for more details.
Related to our approach, the authors in [17] consideredchastic description for the scheduling
signal, where a scenario-based approach or an on-line sapggiproach has been used to address
stability and feasibility of constraints for stochastic @Bf LPV systems in a probabilistic sense.
The key advantage of this method in the current context isdinsideration of randomly extracted
scenarios of the scheduling signal in the prediction horiz@hough this approach is able to
cope with arbitrary disturbances, the on-line computaihagneases considerably as the scenarios
increase. Further, even the soft constraints, with givabgloility of satisfaction, can only be
satisfied with a confidence level.

We further assume the presence of additive stochastiabd&taes in the LPV system dynam-
ics, and address stochastic MPC tracking of a referencectaay. We consider that the reference
trajectory is a piecewise constant signal and assumed tobwrkin advance. For simplicity,
system matrices are assumed to depend affinely on the saigdignal. Due to stochastic dis-
turbances, we consider probabilistic constraints, whielams that occasional constraint violations
are allowed, depending on the probability of constrainis&attion. Due to the above consider-
ations, the overall LPV system consists of additive and iplidative stochastic disturbances up
to second order. To the best of our knowledge, stochastic MRAGV systems with the above
considerations has not been addressed before.

By using the techniques of stabilizing stochastic MPC oédinsystems with multiplicative
and/or additive noise terms [18, 19], we address stochBHIC tracking of LPV systems in the
current setting. The crux of the approach lies in formingagraented state of prediction dynamics
and transferring the constraints over the prediction loorib the augmented state at the beginning
of the prediction horizon and make use of probabilistic frarace to address probabilistic con-
straints. This approach alleviates the propagation of miaicgies during the prediction horizon,



which is difficult to handle in general.

The remainder of this article is organized as follows. Secf introduces the problem set-
up. In Section 3, we provide an augmented representatioheof PV system. In Section 4,
we address constraint handling problem via probabilistatiance. Section 5 presents an MPC
algorithm along with the investigation of closed-loop pedjes. In Section 6, the entire approach
is illustrated using a tank system example, and Section ¢ledas the paper. Finally, we give
majority of the proofs in the Appendices to improve readbdf the article.

Notation: N denotes the set of positive integers includind-et E,, [z] denote the expectation
of a random variable conditional on the information up to time At a given timek € N, for
i > 0, the predicted value of at k+1 is denoted by (k+i|k), which is shortly denoted agi|k).
Fori,j € N, I] denote the numbeisi+1,- - -, j. Multiple sumsy_; >, ---%", are denoted as
Z“ o For real vectorsX andY, X < Y (X > YY) denote elementwise mequalltles Given
real matrlcesL andM,(L > M)L =~ M and (L < M) L < M denote that the matrik — M
is positive (semi) definite and negative (semi) definite eetipely. Letl and0 be identity and zero
matrices of appropriate dimensions respectively, acogrth the context. Symmetric terms in a
matrix are denoted by a symbal For given matricesA and P of suitable dimensionsAPA" is
shortly denoted byA P~ if required. The acronym cdf stands famulative distribution function.

2. Problem set-up

Consider a discrete-time LPV system described by the fatigwffine parameter dependent state-
space representation:

@ (k1) = A(p() (k) + B(p(k)u(k) + 8(h) (1a)
Ap(k)=A0+Y " pi(k)A;, (1b)
B(p(k)=Boty_ " p,(k)B; (1)
Cp(k)=CotY " p(k)C, (1)

wherek € N, x(k) € R™ is the state variabley(k) € R™ is the control inputp(k) :=
[p1(k) - -p,, (k)]T € R™ is the scheduling signal, ari{k) € R"= is an independent and identi-
cally distributed (i.i.d.) additive noise process with@erean and covariance matd € R"*"=,
Let A;, B, andC; for j € I;” be the matrices of appropriate dimensions. As we would fke t
address control of (1) in a state-feedback sense, we astatgt) is perfectly available at each
time instant: € N. Let us consider the following assumptions.

Assumption 1. Let the scheduling signal(k) be measurable and belong to a hyper rectaigte
R™ at each time instakcN; i.e.,p(k) variesin a hyper—rectanglé—{ P, P2l s [Ping, Pony) }
for some finite scalarg;; andp,; such thap,; < p,; for j € I,”.

Assumption 2. Let the reference signals to be tracked by system (1) bewiseeonstant signals.
Furthermore, in line with the anticipative concept of MPGsame that the reference signals are
known before hand. This means that various targeted set pairs (zs, pg, ug) are known in
advance, wheres denotes the set point of the state variable to be traghkgdienotes the corre-
sponding scheduling signal and te¢ denotes the corresponding control input at each time ifstan
which “realizes” the set point .



Remark 1. In Assumption 2, giverxs andpg, the correspondings can be obtained as follows.
Due to the presence of stochastic disturbances ingdlgan also be viewed as the expected steady
state. Similarlyus can be understood as the expected value of the input regoirede steady
state. However, one needs a constant, i.e., expected vathe scheduling signal, sayg, to
computeug from (1) viaxzs = A(pg)xs + B(pg)us. It often happens in practical situations
that there exists a possibly nonlinear relatipp=1.(xs, ug), where the scheduling variable also
expresses operating points or non-linearities in the mystelence, such an assumption is well
grounded from the practical point of view. Thus, we consitiat the values op4 are assumed to
be known to computes. Also, the values ops andugs need to be admissible, i.e., we assume
thatp, € P andus €4 C R™, which, based on our previous motivation, again naturadiygens

in practical applications. Finally, observe that the sehppairs (zs, pg, ug) can be computed
off-line by the above method. Alternatively, one may alsdfyeor obtain the steady state values
(xs,pg, us) experimentally also.

In the sequel, we give a characterization of predicted watfi¢he scheduling signal, that enable
us to obtain prediction equations for (1) to be employed iM&C setting. Givemp(k), we assume
that the valuep(i|k), for ¢ > 0, are not known a priori, but are allowed to vary iriube as the
convex polytopic seR = {¢ cR™ |G (¢ — p(k)) < H}, with Q C P, probabilistically:

Pr{G (p(ilk) —p(k)) <H | p(k)} =, >0, (2)

whereG eR* *"», H €¢R*, while { € (0, 1) denotes the probability level of the evolution of future
scheduling signals if2. Here we consider that the tubeis centered ap(k). Notice that, we
preferred the representationBfas a hyper rectangle whife is a polytope.

Remark 2. One can also consider the predicted dynamics of the scimgdiiinal as the rectangu-
lar constraints on individual elements of the scheduliggail or the hyper-rectangular constraint of
the scheduling signal vector given probabilistically,dfubtaining the predicted dynamics equiva-
lently or by an approximation. However, note that, (2) dedts much more complex constraints
(which includes rectangular constraints also).

The scheduling variablgs(i|k), satisfying the probabilistic constraint (2), are chaedeed as:
p(ilk)=p(k)+Bw(k+i), >0, 3)

where, for the simplicity of the exposition, we consiggto be a diagonal matrix belonging to
R™>m (.)€ R™ are i.i.d. normal random vectors. A method to comp@iter both scalar and
vector valued cases @f k) is given in Section 9.

In the context of (3), while representing the predicted dyita of p(i|k), one would expect
p(0|k) to be equal tg(k). By using this natural assumpti@iO|k) =p(k) in the scheduling signal
representation (3), the entire approach of this articlevgrsignificantly in complexity, because,
this would result in two state prediction equations: one:fer 0, and another one for > 1;
this is apparent from the dynamics of state prediction givethe next section. On the other
hand, measurements pfk) may not be accurate in practice. For instance, in LPV modedin
high purity distillation columns, the scheduling signalkisosen as the bottom and top product
composition, where measurement errorgi) exist [20]. Thus, additional observers would be
required to estimate the scheduling signal. So, while dgadiith MPC design for such systems,
one possible strategy would be to consigér) to be uncertain &k, for instance as in (3). This can
be viewed as a way to approach the entire problem, but notigation, as including(0|k) =p(k)
would only increase the technical clutter of the paper. Isetansider the following assumption.
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Assumption 3. We assume that the elements of the veetdk) are independent of the elements
of (k) for everyk € N. If this assumption is relaxed, then one can obtain the testithis article
by moderate extensions if the probability distributiord¢k) is assumed to be known.

From the above discussion, one can observe that only thentumeasured scheduling function
p(k) is assumed to belong 1, while the future scheduling variables during the predictiorizon
are given a stochastic description. In the literature of IRRC, while computing the predicted
state and/or control inputs during the prediction horizgither the scheduling signal is assumed
to be constant [15] or its variations belong7o[11-13], where the latter refers to a robust but
conservative approach to handle future variations of tséesy dynamics. As explained in Section
1, our representation (3) offers a balance between thessituations: being realistic and at the
same time less conservative.

Consider the probabilistic state constraint of the form:

Pr{|lz(k) —zs |< h} >a, «a€(0,1), (4)

whereh € R" andh; > 0 for i € [}*, anda is the level of constraint satisfaction. It means that
the difference between state variable and the set poinblsailistically constrained at each time
instantk. From (4) and Assumption 2, it is implicit that the updatedsant x5 is also reflected
in (4) at eacl.

Letx(i|k) andu(i|k) be the predicted state and the predicted control input ct(tinek+, re-
spectively, which are to be computed at time instanthen, for a given set point paics, pg, us)
at timek, the objective of the current MPC strategy is:

m|n JR_ZER (ilk) — xs5) " Q x+(u(ilk) — us)" Rx]

|k }’L>0

subject to(l),( ), (4),

where@ > 0 and R > 0 are the given weighting matrices amd0|k) = x(k). The expectation
operator inJ is due to the stochastic uncertainties present in (1). lhaswve in the subsequent
sections, that the cosk, becomes unbounded due to the additive uncertainties inrddigied
dynamics, accordingly, the cost will be modified to make wibded.

To address the above problem in the presence of probabiististraint (4) in a tractable way,
we apply the so called closed-loop dual mode paradigm [2wRR a parameter-dependent state-
feedback. In this case, the control input is considered as

i) {?W'k” (w(ilk) ) tus-te(ilk), ificly™ )
(p(i|k)) (xz(i|k) —xs)+us, if i>N

where N is a finite control horizong(i|k) € R™ are optimization variables and the parameter-
dependent state-feedback gains are given by

K (p(ilk)) = Ko+ij(ilk)K

with K, € R™>"= for [ € I3*, andp;(i|k) is given by (3). Thoughu(i|k) is given in the state-
feedback form (5), we assume that it belongs to a compati.detpractice, the séf denotes the
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limitations of the actuator equipment. For instance, ircess control applications, input denotes
the opening of a valve which is inherently bounded and alsalte in a bounded flow rate of
substance (inputs or outputs). We further assume that the tonstraints are always satisfied,
in other-words, input constraints are feasible at all tim€ke similar kind of probabilistic state
and hard input constraints for the MPC of LTI systems in pssceontrol applications has been
addressed in [23].

3. Augmented representation

In this section, first, we consider the overall LPV systenre@spntation (1) with the scheduling
signal characterization (3) and the state-feedback cdatko(5). Then, we provide an augmented
representation [18] to address the closed-loop systeniligtand constraint satisfaction in the
later sections.

Overall, the state evolution of the LPV state-space reptasien (1) under (3), (5) and Remark
1 can be given by

x(i+1k) —xs = <<I>k +nzp @ jw;(k+1) +i Bfonwj(k:—i—i)wm(k—i—i)) (x(i|k) — xg)

j=1 Jm=1

+ <Bk+zp Bfwj(kﬂ')) c(ilk)+ (6(k+i) +Zp(pkj +pwi(k+1)) (Ajzs+Bjug) ) , (6)

J=1 J=1

Where<I>k = Ak—i-BkKk, ‘i’kj = 53 (A +Bij+BkK ) Ak = AO+E] 1]93( )AJ, Bk =
BO"‘E] 1 pi(k )Bka—KO"‘E] 1 p;(k )Kijgﬁzﬁj j» Prj =p;(k)—Ps; andK =5, K

It is important to observe that the state prediction (6) delpe)nly on the value ab(k ) the |nput

the noise processes(.), 4(.) andx(k) at k, which is possible due to the characterization (3) of
the scheduling function.

Remark 3. Notice that, based on the previous definitions, and corsiides taken, we have a
dynamical system with multiplicative noise (6), which nedees the system givenin [18, 19] for a
case of stabilizing MPC controller. But our consideredisgthas additional multiplicative noise
terms of second order. Due to this resemblance, we will examow the techniques presented in
[18, 19] can be extended and used in the sequel to addresgrteatdtMPC problem.

In MPC, the terminal constraints are usually enforced atetie of the prediction horizon to
ensure feasibility of constraints and closed-loop stahji#l4]. However, in the presence of uncer-
tainties, the same may be difficult due to the propagatiomoéttainties. Alternatively, computa-
tionally efficient method has been addressed in [18, 25]ravtiee augmented formulation of the
prediction dynamics has been employed to handle feagihititl stability at the beginning of the
prediction horizon via one-step ahead invariance conastio

Let

2(ilk) = [((lk) —~zs)" £ GiIb)]
wheref (i|k)=[c" (ilk) - --c" (i+N—1|k)]". Then, the augmented representation for (6) is given
by
2(i+1|k) = Wi (w)z(ilk) +v(k+1), (7)
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with

‘i’i\k(w):‘I’k+Z W w; (k+i)+ Z W w; (k+)wn, (k+1),
7j=1 jym=1
where
| @ BT, = Py, B}?F@TL
‘I,k’_|: 0 M :|7‘I’k’]_|: 0 0 >
I 01 O 0
K o 0 00 I 0
R 7 m — — . . :
‘I’jm |: 0 0 :| 7]-_‘u 7M : )
0 0o0 (VI
00 -0
y(k+i)= [ 5(k+i)+Z?21(ij+5ﬂgj(k+i)) (Ajzs+Bjus)

4. Constraints handling

In this section, first, the probabilistic constraint (4) &lled using the technique of one-step ahead
probabilistic invariance [18, 26]. Then, sufficient comalits for the satisfaction of constraint is
given in terms ofinear matrix inequalities (LMIs). According to this methodology, the constraint
(4), for =0 (beginning of the prediction horizon), is rewritten as

Pr {|z(0k) — | < h} > a <= Pr {QTZ(O\/C) < ﬁ} > a, (8)
where -
T . [ h
gT:[_IﬁEI},FI:[I 0],andh:{h] 9)

Remark 4. In the constraint (8), the augmented state at the beginditigegrediction horizon is
forced to belong to an ellipsoidal set that leads to satigfaof the constraint (8) via the machinery
of probabilistic invariance. Our objective is to constraét, c R+« such that

2(0[k) € & = Pr {QTz(1|k:) < ﬁ} > a, (10)
then the constraint (8) will be ensured at edcHt is intuitively clear from (10) that, to achieve

such a property, sét. needs to be invariant in a probabilistic sense.

Definition 1. (Probabilistic invariance [18, 26]) For the augmented representation (7), afses
said to be invariant with probability, if for every z(0|k) € £., the next state:(1|k) belongs tcf,
with probability .

Let&, = {z c2"P,z < 1}, whereP, is a symmetric matrix and®, > 0. It is apparent that,
for every&., there exists an ellipsoid

E:E:{w—ws C(x— ) Py(x—x5) < 1} C R,
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with P, = (I‘IPz‘ll“m)_l, wherel, is given in (9),P, is a symmetric matrix and, > 0. Here,
the relation betwee#®, and P, is provided in terms of their inverses, which is only for tizse of
computingP,, via an optimization problem, given in Section 5.

Assumption 4. Forw;(k), | € T;” andéd(k), it is possible to have confidence regio@s andQ,
with probability« for all k. This means that, fdre 177, for k € N,

Pr{w;(k) € Q,} > aandPr{d(k) € Q,} > a. (11)

For eachl € I}”, w;(k) is a scalar, and thus without loss of generality,dgt be a symmetric
interval around the origin with extremes denoted€y for v; = 1,2. Observe thad (k) is a
vector, and hence we &, be a convex polytope with vertices denoted &% for v, € 179"
Also, let s for v3 = 1,2, denote an interval vertex representation with extremes- 0 and
x*=F"(a), whereF'(.) is the inverse cdf of a Chi-square distribution with 1 degrifeeedom.

Let pk’ = Z;’Lil Pk (A]£BS+BJUS) and

I = [ 0"+ Py+3250 éAjws+BjuS>wvl } 7 (12a)
(™ X =T+ Tyu + > Wy (12b)
j=1 7,m=1

In (12b), the variable** can be understood as a vertex representation of the secdedrwise
terms of ¥, (w) in (7), that have Chi-square distribution. We give the faiflog proposition for
the feasibility of the probabilistic constraint (4).

Proposition 1. The probabilistic constraint (4) can be satisfied by thercbitdw (5), if there exist
a scalan\ € [0, 1] and a symmetric matri®, ~* » 0 such that

- 13, T -
—AP,TN 0 PN (w0 x™)

% A—1 (w2’ =0, (13a)
* * _Pz_
(oTHY2 ~TeTp -1
e/ e Bl <o, (13b)

forv,=1,2, v, € [}%, andvs =1, 2, wherev,""* and ¥, (v, x**) are given by (12a) and (12b),
respectivelyG " is given by (9), ane; denotes thg’ column ofI5,,, «2,,,

Proof: Given in Section 9.

Remark 5. Observe that, the computation 6 in Proposition 1 depends on the set point pair
(s, pg, us) . Hence, to avoid the computational burden of solving thisaten on-line, for given
set point pairgxs, pg, us) corresponding to a sufficiently dense grid of the operataggme, each
P, can be computed off-line by solving the optimization probl®72 given in Section 5, and
stored in a lookup table.

5. MPC Algorithm
In this section, we present an MPC design algorithm alondp W& closed-loop properties. As

a first step, we rewritd, in terms of the augmented state variable. Then, an MPC #hgotiis
provided, which ensures the closed-loop system stability.
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5.1. Reformulation of the cost function

The cost functionJ;, in Section 2 is rewritten as

Ji=>_ Si, (14a)
=0
Sie=Bx | (@(ilk) - @s)” Qx-+(ulilk) — us)  Rx|. (14b)

whereu(ilk) = K, (x(i|k) — -’Es)—Fzyil Biw;(k+i) K ; (x(ilk) — xs)+us+c(ilk) andS;;, can
be described as a stage cost. It can be observed from (14khéhminimum value of the stage
cost can never be made zero, due to the presence of noiseéacmeamatrices. Since(i|k) is
independent ofv;(k+1), it follows that

Ey, | (w(ilk) — ug)T R*] —E, [ (@(ilk) — zs)" (K[RKHi 82K RK )

i=1

+(a(ilk) — )" K, Relilk)+c' (i|k)RK; (2(i|k) ms)+cT(z’|k)R*)] .

Thus, the cos¥,, (14a) is given by

Jk:ZEk |:ZT(Z|]€)QI<:*} , (15)
where - f:O _
O, —| @+ K.RK+Y}" /K RK; K, RT, |
K * I'.Rx
In the sequel, under the assumption of mean square stadifil{§) without additive noise (which
is implied by (18) in Proposition 2 in the sequel), we obsehat the stage cos§;, reaches a
non-zero value asymptotically as— oo. This non-zero asymptotical stage cost is due to the
additive noise terms present in the state evolution (6),s&l@variance matrix is non-zero at all

time instants. The cosf, in (15) can be modified by subtracting the asymptotical stagefrom
each of the term$;;, for i > 0 [19]. Before proceeding, we introduce an operalpf.) as

(16)

(M) 2 0] MW+ S 0] MY (wiMmi,;) S e M,

j=1 7=1 j=1

np T ) Np T . np T R
+3( SO MY+ > U MY+ > \Ifij\I/mj), (17)
g l=1 Jym=1 Jm=1

whereM is a matrix of appropriate dimensions and the remainingioesgiare as in (7). Now, we
give a proposition to compute the asymptotical stage cost.

Proposition 2. If there exists a symmetric matri® - 0, such that
Ly(P) < P, (18)

then for anyk € N, lim;_, Ej [2(i|k)] = 0 andlim;_,o By, [2(i|k)z T (i[k)] = Q4, where,, is
given by the solution of the matrix equation

L1 () +35 =, (19)
9



with .
~ . ~ ~ T P
Egzdlag{z(s + PP+ 52 (Ajms+Bjus) (Ajzs+Bjus) | o}.

j=1
Proof: Given in Section 9.

Remark 6. Note that, in Proposition 2, the expected value of the augmaestatez(i|k) reaches

0 asymptotically as — oo, which also implies tha&(i|k), that is to be obtained by solving the
MPC design problem in the sequel, reachessymptotically. This is to be expected, since the
constraints are satisfied in the steady state.

These observations allow to modiff. (see (15)) as

i (Ek [J(ﬂk)@k*] - lim E, {J(ﬂk)@,ﬂ):i (Ek [J(ﬂk)@k*] oty (ngk)) = J,

(20)
which shows that the modified cody, is now finite valued. From Proposition 2, it is clear that
Ep[z7(ilk)Q,2(i|k)] — tr(Q, Q) asi — oo, which makesJ,, finite.

The cost function/, can be computed in a tractable way at each time instantN by the
following proposition.

Proposition 3. The costJ}, in (20) is given by

sz[z((i'k‘)} O, 21)
where
| Bulk) Op(k)
9’“_[%( k) Ok >] (22)
:[Ek(@n(k))JFQk ‘1’2912(@@2%{})5%@12(]{;)
* —tr(®n k

Proof: Given in Section 9.

5.2. Design of the stochastic LPV MPC law

In this section, using the reformulated cost in the previsestion, the proposed MPC law is
given by Algorithm 1. The objective of the MPC algorithm isrmnimize J, in (20) at each
k € N as provided in Step-7 and Step-9 of the algorithm, gix¥¢h) — x5 € &,. Sincez(0)

is the initial state of the system (1), we consider th@t) can be suitably initialized to belong
to &. In Algorithm 1, z*(k — 1) denotes|z " (k — 1) —x§ f* (k- 1)}T, where f*(k — 1)

is the optimum control input obtained at tilke— 1. It ensures that(0|k) € &£,, which makes
z(1|k) satisfy the probabilistic constraints (4) via (10).adfk) — x5 ¢ &,, then the state must
be steered t&, by drivingE;, [z(1|k) — x5 towardsE,, i.e; by minimizing the objective function
Ey, [(x(1|k) — zs) " P,x| (Step-11). This means, whenever infeasibility occurs ateso € N, the
objective shifts to ensuring feasibility instead of minanig J:. Let the scalar real number< oo
and sufficiently large such that the right hand terms of (24ig) (25) are positive.

10



Algorithm 1 Stochastic LPV MPC Algorithm

1: Data: The set point pairrs, pg, us), Ko - -- K, ando.
2. Initialize: k <« 0.

3 while £ > 0 do

4. Obtain the current set point pdits, pg, us).

5. For(xzs,pg,us), calculateP, by OP2.

6. if k=0withx(0) —xs € &, then
-

.
£ (k)=arg min [z“ﬂ"‘;)} @)% (23)

s.t.z"(0]k)Px < 1.

8. elseifx(k) —xs € &, then

o . [z01k)]"
f (k)—arg}r%'l]})[ 1 } O * (24a)
2" (0|k)Px <1,

[2T(0[k) 1T]@x<[2*T(k—1) 1T] @1 x—2""(k—1)Q;_, *+o.  (24b)

10 else
11:

(k)= arg;ﬁ)lﬂ( (‘I’k+Z\IJ”> 0|k> P, x
st [2T(0k) 17T] @ < [z (k —1) 1701 x—2""(k—1)Qu_; x+o.  (25)
122 endif

13 Apply u(k) =K (p(0|k)) (x(k) — s) +us+T, f<(k). Letk « k+1.
14: end while

By following similar arguments as in [19, Thoeorem 5], it das shown that, under an MPC
controller defined by Algorithm 1, specifically, by the opiaation in (23), (24a) and constraints
(24b), (25), the closed-loop system (1) is stable in thefeihg sense

.
Jim 7 ZEO RG] e

Furthermore, iz(0|k) € £, at eachk € N, thenz(1|k) satisfies the probabilistic constraint in (4).

5.3. Selection of the tuning parameters in Algorithm 1

In Algorithm 1, at eaclt € N, one requires the values &, - - - K, , ©y, P.. Before proceeding,
we present a lemma that is useful in performing off-line catagons in the sequel.
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Lemma 1. Consider that the scheduling sign#lk) =[ pi(k) --- pa, (k) |" varies in a hyper-
rectangle{[ pi1, P21 |-+ . [ Pin,s Pon, |} Let

M 5(k) = (XoJripj(k)Xj) (YoJripj(k)Yj) +Zo+ipj(k)zj-

Then, for suitable matriced? ,;, My, Xo,--- X,,, Yy,--- Y, andZ,,---Z, ,

Mll M12<k)
* M22

} <0, (26)

is implied by
Fij A H—I%Mn 1M12
e * n—%Mm

whereM 1, =3 (XoY o+ Zo)+ 2 (X oY j+ X ;Y 0+ Z;) + Do XY 5, form=1,2,n=1,2,
i eI”andj € I}”.

=0

—_ Y

Proof: Briefly, the proof is given as follows. Let; (k) =c1;(k)p1;+¢£2;(k)p2j, whereey; (k) > 0,
£9j(k) > 0 andey;(k)+eqo;(k)=1for all j € I* and for eactk € N. Then, one can readily obtain
the result by noting that

Np 2
S>> emilk)enlk)Fil, <0,

i,j=1m,n=1

which implies (26). U

Now, we address the computation Afy, - - - K, ,, which is performed off-line. A possible
choice forKy, - - - K, is by solving the unconstrained problem of minimiziigsincef (i|k) =0
fori > N. Thus, an LPV state-feedback synthesis problem is posealaw$. Find a symmetric
matrix W > 0 that

OP1: max tr(W 1)

W150,Y 0, Yy

SEL(W) < W, (27)

whereY ;= K, W ! and

np np T np B B
LuW)=@[ W +Y & WBIKI+Y («b,IWBfo) +3° 8, Wk, +E,(W),
j=1 j=1 j=1

= (W) = 3[ 3 (Bfo)T W (B K?)+ nz (BngL>T w (Bfon)

Jm=1 J,ym=
np -
B B B8 B
+ Y (Bij> W(Bij”,
j7m:1

for i € I;”. The constraint (27) iWP1 is obtained by the mean square stabilizing condition (18)
in the absence of additive disturbances with|k) = 0.
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Since computingKy, - - - K,,, depends on the scheduling signdk), it leads to an infinite
dimensional problem due to the need for verifying the LMI)(&t all possible values op(k).
However, Lemma 1 can be used to tractably comiite- - - K,,, for p(k) € P by solving a finite
set of LMIs.

OnceKy,--- K, have been compute@®; can be obtained from Proposition 3. Finally,
can be selected to maximize the volumepfas follows

OP2: max logdet(T, P.”'T,)

P, \€0,1]

s.t. (13a) and(13b).

Note that the computation dP, in OP2 depends on the set point paii8s, pg, us) andp(k).
Similar to the above reasoning, by using Lemma 1, for settpmiirs (xs, pg, us), the corre-
spondingP, can be computed off-line and stored in a lookup table. Thiglies that Step-5 in
Algorithm 1 should be implemented off-line.

Remark 7. In Algorithm 1, one requires the off-line values of the stiedback gain¥y, - - - K,
and the ellipsoid invariance matri,. The computational complexity of LMIs in obtaining
Ky, -- K,, are of orderO(nn?), thus independent of the prediction horizdh However, in
computingP;,, the LMIs in OP1 are of ordeiO((n,+ N)?). This means that the number of com-
putations for ensuring feasibility of constraints via obtag P, increases a8/ increases, which
is to be expected. For the optimizations in Step-7, StepelbSiap-11, theoretically each of them
need roughhyO((n,+N)?) iterations.

6. Example

Consider a laboratory setup of a tank system with its schiergiaen in Figure 1. A first principle

Fig. 1: Schematic of a single tank in the three tank system

laws based dynamical model of the process is given by

. A, 1
h(t) = —azz\/ 29h<t)+in(t)+5(t)a (28)
t t
whereh is the liquid level,Q; is the liquid input flow rate@,( = /2gh(t)) is the output flow

rate,A; and A, are the surface areas of the tank and the connecting pipeatagely, and:. is the
fluid constant for the valves. Heb¢t) denotes the disturbances in the process, which are modeled
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as a Gaussian white noise with zero mean and variance 0.2.sduree of these disturbances
are irregularities in the input flow and evaporation/corsdgion effects inside the tank itself. The
parameter values for the setup (TTS20 Three-Tank-SysteBubski-Schramm) are given in Table
1. An LPV representation of (28) can be found as

Parameter Value Unit

A, 149 cm?
A, 0.5 cm?
a, 0.785

g 980.66 cm/sec?

Table 1 Parameter values of the tank system

. 1
h(t) = Alp(H)R()+ Q) +0(0), (29)
wherep(t) = \/ﬁ, A(p(t)) = —azg}—:\/@p(t). From the specifications of the tank system,

the height of the tank is #h. Let the initial liquid level of the tank be 3&, and hence the
scheduling variable(t) lie in P := [0.1195,0.1667]. The corresponding limits on the flow rate
are given by{104.2, 145] cm?/sec. By Euler’s forward method, the discrete-time dynamics2®)(
with a sampling period” = 5 sec is given by

B(k+1) = <1+TA<p<k>>>h<k>+A5t@i<k>+5<k>, (30)

where A(p(k)) = —azﬁ—:\/%p(k) andd(k) is a white noise process with{(k) ~ N(0,1). Let
the liquid level track a step reference that varies slowlgereh, is the reference level at each
time instant. We choose a large sampling period, which isaomin process control applica-
tions; otherwise small sampling periods require largedjeteon horizons for an effective MPC
performance, which increases the computational burden.

For each reference levk};, the corresponding flow rate is denotedias. Due to the presence
of disturbances, the liquid level is probabilistically strained as

Pr {|h(k) — hg| < 2} > 0.85. (31)

Regarding the prediction of the scheduling signal, congtue probabilistic constraint (2) with
G=[1 —-1]",H=1[002 0.02]" and¢ = 0.9, which results in the value gf as0.0122
from (34) in the Appendix. Thus, using thisin (3), one can observe a tractable prediction via
(3) of the scheduling variations defined by (2). Also the dasttion J, in (14a) is given with
x(i|k) = h(ilk) — hq andu(ilk) = Q;(i|k) — Q4. The state-feedback control law is

Qi(ilk) = (Ko+ Kip(ilk)) (h(i|k) —ha) + Qia + c(ik). (32)

By OP1 and Lemma 1, the state-feedback gains are calculatedneffds X, = —29.88 and
K, = 17.62. By OP2 and Lemma 1,P,~' and P! can be obtained for each reference pair
(ha, Qiq) and stored in a lookup table. L&f = 5,¢Q = 1 and R = 1. For a given reference
profile, by solving Algorithm 1 via computer simulationsg semple realizations of the flow rate,
the corresponding liquid levels and the scheduling fum&tiare given in Figures 2-4.
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150

Flow rate Qi(k)

100

Six sample
realizations
of flowrate

Liquid level h(k)
8

Six sample
realizations
of liquid level

Fig. 3: The corresponding liquid levela).

It can be roughly observed from Figure 2 that the flow ratey @aound110 cm?/sec and
123 cm?/sec, which correspond to the set point liquid levelscm and50 cm (see Figure 3), re-
spectively. Also, one can qualitatively observe the oaraai constraint violations from Figure 3,
where the red colored line indicates a reference profileHerliquid level and the dashed green
colored lines indicate the allowed limits by the probahiti€onstraint (31). Due to fluctuations
in the liquid level, one can also apparently observe thedltains in the scheduling function in
Figure 4. Forl00 different noise realizations, we perform the same experimath the same
initial condition and obtain the average (over 100 reairet) constraint violation points as
with minimum74 and maximund6 (on a time scale of 500 points). To examine the probabilistic
invariance (10), we considen00 different realizations of the noise and the initial state) that
belongs tof,, and observe that(1) belongs tof, 876 times (giving a sample estimate of the
probability0.876 which is close td).85).
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=

Scheduling signal p(k)

<
N}

500
400

Six sample 300
realizations
of scheduling
signal 100 k

200

0

Fig. 4: The realizations of the scheduling signals corradpt to Figures 2 and 3 .

7. Conclusion

In this article, we addressed stochastic model predictaeking of piecewise constant reference
signals for linear parameter-varying systems subject thbti@d stochastic uncertainties. Due to
the assumed affine, parameter dependent state-spaceerdgptiesy and stochastic formulation of
the scheduling signal, the overall system consists of agdiind multiplicative noises up to sec-
ond order. Probabilistic constraints are addressed vibgtidstic invariance by solving a set of
linear matrix inequalities. The control law is consideredhaive an affine state-feedback formula-
tion, where the state feedback gains, computed off-lingyenclosed-loop system stability while
the affine terms, computed on-line, solve the given MPC @mobl We showed that, under the
given control law, closed-loop system stability and fegisybare satisfied while solving the MPC
problem.
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9. Appendices
Computation of 3in (3)
Notice that, in (3), the elements Bfare unknown variables, which needs to be computed such that

the probabilistic constraint (2) is satisfied. To proceea, tases are considered.

Case 1: Scalar valued p(k)
Since we consider the tul§e centered ap(k), the constraint (2) can be interpreted for= 1 as

Pr{—w < (p(ilk) — p(k)) <@ | p(k)} >, (33)

whereG =[1 —1]"TandH =[ @ w ]' for some knownz > 0. Thus

Pr{—w < (p(ilk) — p(k)) < @ | p(k)} > € == Pr{—w < fulk+i) < w} > ¢
— m%)z%l =2 m (50, @9

whereF,(.) andF ;! (.) are the cdf and the inverse cdf of the normal random variaképectively.
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Case 2: Vector valued p(k)
In this case, by the arguments given in [27], we obtain thiefohg sufficient condition to satisfy

2)
e]*GPB G e, < (e] H)' = Pr{G(p(k+i)—p(k)) < H [p(k)} > € (35)

J

wheree; denotes thg™ column of I. .. andd is |/ F, '¢,(€), whereF, ' ;(.) is the inverse

Chi-square cdf witn, degrees of freedom.

Thus, 3 can be computed from (34) or (35) subsequently. Observeguwaence and sulffi-
ciency in (34) and (35), respectively; the sufficiency in)(3Z=due to the type of joint probabilistic
constraint (2).

Proof of Proposition 1

First, we address the probabilistic invariancefof which means that we would like to obtain a
condition for

z(0|k) € &, = Pr{z(1k) € £.} > a,
z(0|k) " Pox < 1= Pr{z(1]k) " P.x} > a. (36)

From (11), the probabilistic constraiRt { z(1|k) " P,x} > « can be ensured if
(W (w"™, ") 2(0]k)+vp™) | Pox < 1, (37)
forv, = 1,2, v, € I}*" andvs = 1,2. To guarantee thaf, is invariant with probability, it is

sufficient to ensure that " (0|k) P, < 1 implies (37). By applying theS—procedure with the
parameten > 0, we get

((\ifk(wvl, )2 (0[k)+2) | P, + —1) — X (2T (0]k) P % —1) <0, (38)

LetPll = \i’;—(wvl,xw’)Pz*—)\Pz, Plg = li’;—(wvl,xvg)Pszl’UQ andpgg = (I/ZlmQ)T P, x+\—
1. Now (38) can be rewritten as

1 * 1522 -
which holds iff
Pll P12
- < 0.
{ ; Pm]_o (39)

As P, > 0, by Schur complement, (39) is equivalent to

£ A=1  (up)!
* * —p!

< 0. (40)

—\P, 0 \il,I(wvl, X"3) ]
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Multiplying both sides of (40) withliag {Pz‘l, 1,1 } (congruence transformation) gives (13a). To
guarantee the probabilistic constraint (4), it is suffiti@nensure

(2(1]k) : 2T (1)k) Pox < 1} C {z(1|k) .G 2(1)k) < ﬁ}.
The above constraint of bounding an ellipsoid inside a copatytope can be readily implied by
e/G' P, 'Ge; < (ejTﬁ)z.

Applying the Schur complement to the above inequality letad§13b), which completes the
proof. O

Proof of Proposition 2
Let z(i|k) = v(i|k)+(i|k); then the dynamics of (7) can be represented by

Y(i4+1|k) = ;. (w)y(ilk),
p(i+11k) = ¥ (w)p(ilk) +v(k+1),

with (0|k) = z(0|k) ande(0|k) = 0. First, we find the asymptotic value &, [v(i|k)~y " (i|k)]
asi — oo. Consider a stochastic Lyapunov function with a symmetrierma > 0,

B [y (i 110 PG+ 11R)] = Ei [y (15, (0) PR (w)y(1b)]

= B [y 7GR Ay (ilk)| (41)
where

R Tp R p T Tp B B
Av=9[ PO+ [ PY U+ & PU Y &, P,

j=1 j=1 Jj=1

np T A
-+ Z ‘I’ij‘Plh (5jm5m+5ﬂ§mh+5jh5ml) E [wﬂ ,

madah=1
andw ~ N(0,1). SinceE [w'] = 3, after simplification,
Ey, [y (i+1k) Py (i+1]k)] = By [y (ilk)Li(P)y(ilk)] ,
whereL,, is defined by (17). By (18),
Er [v' (i+1|k)Py(i+1|k)] < Ey [y (i|k)Py(i|k)] .

Since P - 0, it implies lim; .. By, [v(ilk)y " (i|k)] = 0, thuslim, .. E; [v(i|k)] = 0. Also
notice thatl, [¢(i|k)] = 0, which implies thatim; . Ex. [¢(i|k)] = 0. Thuslim; . Ex [2(i|k)]=
0. Next, we find the asymptotic value &, [¢(i|k)¢ " (i|k)] asi— co. Consider

Ex [+ 1) (1118)] = B [ @) plil1) 0 Tilk) @ () + u(a)pilkyw Tk +4)

+ u(kﬂ)goT(qk)\i:;k(w)+u<k+¢>,ﬂ<k+¢)] .
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Since®,,(w), ¢(i|k) andv(k+1i) are independent,

By [p(i+11k)e" (i-+118)] = B [ @p(w)e(ilk)e (1) T (w)|+55,  (42)
where
S5 = diag{Eg + PP+ 52 (Ajzs+ Byus) (Ayzs+ Bjus) . 0}.
By following a similar simplification asjin (41), equation2}can be expressed as
Ex [sp(i-+1[k)"(i+118)] = Lu(Bx [p(ilk) e (i1K)] ) + 5.
Now letQ;x £ Ey, [¢(ilk)e " (i|k)] — Q4, and thus
Qe = By [@(i+1]k)p" (i+1]k)] —

= L (Bx, [p(i[k)p " (i[k)]) +35 — @
= Lp(Qupp+ )+ 35 — Q.

Since the operatof(.) is linear, £, (. + ) = L4 (i) + Li (). Thus
Qi—i-l\k :ﬁk(ﬁﬂk)‘i‘ﬁk(ﬂk)—l-ig — Q.

From (19), we arrive a;,;;, = £;(£2;). From (18), it can be readily concluded tH&®,, } is a
decreasing sequenceiinThus,lim; ., £;, = 0. This implies thatim;_,« Ey, [¢(i|k)e " (i|k)] =
Qy,, and hencéim, .. B, [z(i|k)z" (i|k)] = Q4. O

Proof of Proposition 3
Let g(i|k) = 2" (i|k)©n (k) z(ilk) + 2 (i|k)O12(k) + O, (k) z(i| k) + O (k). This implies that
g(ilk) =27 (i|k)O®q (k) z(i|k) + 20, (k) z(i|k) + O (k). Consider,

Ey [9(i[k)] — Ex [g(i+1]k)] = By [27(i[k)©11 (k) 54205 (k) 2 (i[k) + ©aa (k)]
— B [27 (i+1]k) O (k) %420, (k) z(i+1|k) + O (k)] (43)

To simplify (43), consider the term
By [27 (1K) O (k4] = Bx | {@ip(w)2(ilk) +v (k+i)} O (k)|
= B | (T (w)2(i[R)) @11 (k) %40 (k-+0)Or, (k)]
By following a similar simplification as in (41),
Ei [27(i+1]k)@u1(k)x] = By [2(i|k) L4 (@11 (k) 2(i|k) | +tr(©11 (k) X5). (44)
Also, consider the term
Ex [©0,(k)z(i+1|k)] = Ey, [©,(k) { ¥ (w z(z'|k;)+u(k+¢)}]
= B[ (0L(k) W, +0], Z W) (ilk) | (45)
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Thus, by (44) and (45), we can simplify (43) as

Ey. [9(ilk)] — Ex [g(i+1|k)] = E [ T(ilk) (©11 (k) — Ek(@u( ) z(ilk)+2(© 1, (k)
—OL(W, — O (k) Z\I:” } )| = (@0 (k)Ss).

From (22), we obtaitE,, [g(i|k)] — Ey [g(i+1|k)] = Ex[2" (i|k)Q,2(i|k)] — tr(©11(k)X5). Now,
again from (22), multiplying (19) by, (k) on the right side and applying the trace operator, we
obtain

tr (L5,(2)011(k)) —I—tr(f)(s@n(k)) = tr (2,011 (k)),
tr(ﬂkﬁk(@ll(lﬁ))) —l—tr(i(s@n(lﬁ)) = tl"(ﬂk(')ll(k))a
tr(2s011(k)) = tr(2Q,,)- (46)

Thus, using (46), we have

Eilg(ilk)] — Eg(i+1[k)] =Ei[2 "(i|k) Q)2 (ilk)] — tr(2:Qy,).
By recursively adding the above equation for 0,

oo

g(0lk) — lim By [g(ilk)] = 3 (Bx[2" (10)Quz (k)] — tr(%Qy) ) = .

1=0

Now, consider

Tim By [gi18)] = T By [ 7(11) @ ()2 (il]) + 201, (1) 2(i[ )+ O (k)]
= tr(®11 (k‘)ﬂk) —F@gg(k‘)

From (22), we obtain thalim;_,. E [¢(i|k)] = 0. Thus, the cost/, equals tog(0|k), which
completes the proof. O
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