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Abstract: A novel estimator for the identification of Continuous-time Linear Time-Varying

systems is presented in this paper. The estimator uses kernel based regression to identify the

time-varying coefficients of a linear ordinary differential equation, based on noisy samples

of the input and output signals. The estimator adopts a mixed time- and frequency domain

formulation, which allows it to be formulated as the solution of a set of algebraic equations,

without relying on finite differences to approximate the time derivatives. Since a kernel based

approach is used, the model complexity selection of the time-varying parameters is formulated

as an optimization problem with continuous variables. Variance and bias expressions of the

estimate are derived and validated on a simulation example. Also, it is shown that, in highly

noisy environments, the proposed kernel based estimator provides more reliable results than

an ‘Oracle’ based estimator which is deprived of regularisation.

Keywords – System Identification, Time-Varying systems, Kernel Based Regression, Fre-

quency domain, Continuous-time

1. Introduction

This article considers the identification of Single-Input Single-Output (SISO) continuous-time

Linear Time-varying (LTV) systems through a black-box approach. As a model structure,

linear ordinary differential equations are considered, with coefficients which vary smoothly

with time. These model structures accurately describe the behavior of many real-world

systems, like electrical impedances in electrochemical processes [3], biological systems [18],

or mechanical systems with time-varying set-points [21].

Different options for modelling the time variation of a system have been explored in the lit-

erature. In the introduction of [13], estimators of time-varying systems have been categorised

based on whether the dynamics and the time variation are estimated parametrically or non-

parametrically. The method proposed in the current paper can be categorised as parametric

in the dynamics and non-parametric in the time variation. Specifically, the system behaviour

is described by a continuous-time differential equation (i.e., parametric in the dynamics),

where the coefficients are time-varying. These coefficients are estimated non-parametrically

in the time. In essence, this means that the number of parameters to be estimated grows with

the number of measured data points. Other examples of estimators which fall into the same

category are i) the estimation of a finite impulse response model via recursive least squares in
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[10], or via kernel based methods [5] ii) the estimation of a state-space model with a different

state transition matrix at each time instant in [9], and iii) a time-varying state-space model

where the system matrices depend on a non-parametrically estimated function [11].

In [7] an estimator has been proposed which is parametric in both the dynamics and the

time variation. Namely, the system is described by an ordinary differential equation, the

coefficients of which are written as expansions of basis functions that depend on the time. The

estimator in the present article is inspired by [7]. The essential difference is that the time-

varying coefficients will be estimated via kernel based regression, which is a non-parametric

technique. A specific distinction between basis function expansion and kernel based regression

is that, for the former, the selection of the number of basis functions is a discrete problem,

of potentially combinatorial complexity, typically handled as the optimisation of Akaike’s

criterium [2] or cross-validation techniques. On the other hand, model complexity selection

is a continuous optimisation problem for the kernel based method. Criteria to determine the

optimal model complexity include the maximisation of the Marginal Likelihood [16, Chapter

5], and Leave-One-Out Cross-Validation (LOO-CV)[23]. The latter will be applied in this article

to tune the level of smoothness of the time-varying coefficients of continuous-time dynamical

systems. The other complexity measure that must be determined is the dynamical order of the

system. This is assumed to be a priori fixed by the user in this paper. To tune it, regularisation

methods have been proposed in [17].

Kernel based methods have been used in the context of system identification in the recent

literature. In [4] and [12], the identification of linear time invariant (LTI) impulse responses

has been discussed. Discrete-time linear parameter varying (LPV) systems have been estimated

in [5]. In [11] and [8] continuous-time models are estimated in the time domain, respectively

in LTV state-space form, and in LPV input-output form. The drawback of these continuous-

time methods is that, either a matrix differential equation must be solved at each iteration

step of the algorithm, or the derivatives must be approximated numerically.

One challenge of identifying continuous-time systems from sampled data is the correct

handling of the derivatives of the signals in the differential equation. From [14], accurately

computing the derivatives in the time domain involves the careful design of high order digital

pre-filters, or requires oversampling the data. In this paper, the approach presented in [7]

will be adopted, which uses a combined time- and frequency-domain formulation of the

system equation. This circumvents the approximation of time derivatives by finite differences,

and formulates the identification of a differential equation as the problem of solving a set of

algebraic equations.

Both the input and the output signals will be assumed to be disturbed by additive Gaussian

noise. Bias and variance expressions of the estimated parameters will be derived. The bias

is due to the fact that i) the regressors are noisy and ii) the use of kernel based regression

implies a regularisation in the cost function. However, a bias is not necessarily detrimental to

the quality of the estimate. Namely, regularisation has been shown to balance the bias and the

variance which often results in a lower Mean-Squared-Error, see [12] for the LTI case. We will

demonstrate on a simulation example that, in highly noisy cases, the kernel based estimator

provides more reliable estimates than an ‘Oracle’ estimator (i.e. which uses the true model

structure) deprived of regularisation.

As has been shown in [15] for LTI systems and in [7] for LTV systems, when the noise

appearing in the system equation is coloured (which is usually the case with dynamic systems),

the estimates can still be made consistent, by including an appropriate weighting. Although
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the Kernel Based Estimator presented here is not consistent, including such a weight will be

shown to decrease the Mean Squared Error of the estimate.

The estimator presented in this paper resembles the one in [6], which considers discrete-

time, time-varying systems and presents a limited discussion on its properties (no bias nor

variance analysis is given). The main novel contributions of the present article are i) the for-

mulation and rigorous derivation of a kernel based, frequency domain estimator of continuous-

time LTV systems , ii) the construction of associated covariance and bias expressions, and iii)

a comparison with a basis function expansion based ‘Oracle’ estimator.

The paper is organised as follows. Section 2 introduces the considered model class and

noise assumptions, and formulates the identification problem. In Section 3 the differential

equation describing the system is translated to the frequency domain and the kernel based

estimator is formulated. In Section 4, the covariance and the bias of the kernel based estimates

are computed, while Section 5 discusses the tuning of the kernel. In Section 6, the practical

implementation of the estimators is explained. In Section 7, the use of the kernel based

estimator is demonstrated and compared to the parametric basis-function-based estimator.

2. Model assumptions and problem formulation

Definition 1 (Noiseless Model class). The noiseless input and output signals, u◦(t) and y◦(t),
satisfy a linear ordinary differential equation with time-varying coefficients, given by

ψr(p)y◦(t) =−
Na
∑

n=0
n 6=r

an(t)ψn(p)y◦(t) +

Nb
∑

n=0

bn(t)ψn(p)u◦(t), (1a)

ψn(•) =
{

jPn(•Ts/(jπ)) for n odd,

Pn(•Ts/(jπ)) for n even,
(1b)

with an(t) and bn(t) smooth functions of t, Pn the n-th degree Legendre polynomial, see [1,

Section 22], j =
√
−1, pn the n-th derivative operator, and Ts the sample time.

Remark 2. The choice of Legendre polynomials in (1) is made without loss of generality, since

they form a complete basis for polynomials. Other choices of polynomial basis functions are

equally valid. However, Legendre polynomials in (1b) have been observed to usually yield a

better numerical conditioning than using simple derivatives in (1), see [7], and will therefore

be used in this article. Also, note that the polynomials ψn have real coefficients.

For notational convenience, the derivations will be done for r = 0 in (1). In this paper, the

model orders Na and Nb are assumed to be known. The sample time Ts is chosen such as

to satisfy the Shannon-Nyquist theorem on the input and output signals, i.e. the signals are

assumed to be band-limited. Sampled and windowed, noisy measurements of the input and

output signals, denoted u(t) and y(t), are acquired, for t ∈ T, with T = {0, Ts, · · · , (N−1)Ts},
and where N is the number of acquired samples. Denote u, y ∈ R

N the column vectors

stacking u(t) and y(t), for t ∈ T, and Y = Fy, U = Fu their DFTs, consistent with the

following definition.

Definition 3 (DFT). The Discrete Fourier Transform (DFT) of a vectorized sampled signal
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x ∈ R
N is given by X = Fx, where F ∈ C

N×N is the DFT matrix, which concatenates

F (k, t) = N− 1
2 e

−j2πkt

NTs , for k ∈ K, t ∈ T. (2)

where K is the ordered set of DFT bins:

K = {−⌊N/2⌋,−⌊N/2⌋+ 1, · · · , ⌈N/2⌉ − 1} . (3)

The notations ⌈.⌉ and ⌊.⌋ represent the ceiling and floor functions, respectively. Note that

F is a unitary transformation, such that FHF = I, where superscript H denotes the conjugate

transpose.

Assumption 4 (Noise assumptions). The measured signals y and u are disturbed by additive,

zero-mean, stationary noise, with DFTs VY and VU , such that

Y = Y◦ + VY , U = U◦ + VU . (4)

VY and VU are zero-mean and Gaussian distributed, and uncorrelated with Y◦ and U◦.

This corresponds for instance to the special case of the Errors-In-Variables noise assump-

tion where the system operates in open-loop and does not produce any noise itself, but the

measurement channels do. The noise covariance matrices are defined as

CY = E
{

VY V
H
Y

}

, CU = E
{

VUV
H
U

}

, CY U = E
{

VY V
H
U

}

(5)

Since the noise is stationary, we have that CY , CU and CY U are asymptotically (N → ∞)

diagonal matrices. This is because stationary noise can be modelled as filtered white noise,

the DFT of which is asymptotically independent over the frequency [15, Theorem 16.25].

Problem formulation: The identification problem consists of estimating an(t) and bn(t) in
(1), based on sampled and windowed, noisy measurements of the input and output signals

u and y, given that the noiseless signals obey (1) with known model orders Na and Nb, and

given Assumption 4 on the noise. We will distinguish the cases when the noise covariances

are either known or not.

3. Methodology

3.1. Frequency domain system equation

Denote ωk = 2πk
NTs

the angular frequency corresponding to the k-th DFT bin. We have that,

if x(t) is a periodic signal with period length NTs, then ψn(jωk)X(k) is equal to the DFT of

ψn(p)x(t) at the kth bin. That is, for a periodic signal, a time-derivative corresponds to a

multiplication of the DFT by (a power of) jωk. This will give a convenient way of handling

the time-derivatives in the system equation in (1). To handle non-periodic signals, a transient

term will be taken into account, see further on.

Denote ψn ∈ C
N the column vector stacking ψn(jωk), k ∈ K, see (3), and introduce the

diagonal matrix

φn,x , diag
(

FH (ψn ⊙X)
)

, (6)
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with x to be substituted by y or u, X by Y or U , and ⊙ the element-wise product. Introduce

the following notations

cn ,

{

bn for 0 6 n 6 Nb

an−Nb
for Nb < n 6 Na +Nb + 1

(7)

φn ,

{

φn,u for 0 6 n 6 Nb

−φn−Nb,y for Nb < n 6 Na +Nb + 1
(8)

Φ ,
[

φ0 · · · φNc

]

∈ R
N×N(Nc+1), (9)

C ,[cT0 · · · cTNc
]T ∈ R

N(Nc+1), Nc = Na +Nb, (10)

where an, bn ∈ R
N are equal to an(t) and bn(t) vectorized with t ∈ T.

Theorem 5 (DFT of the system equation). Equation (1) is equivalent to

Y◦ =FΦ◦C +Ψγ, with Ψ ,
[

ψ0 · · · ψNγ

]

, (11)

such thatΨγ is a vectorised polynomial in jωk of degreeNγ = max(Na, Nb)−1. The coefficient

vector γ ∈ R
(Nγ+1) depends on the initial and end conditions u

(n)
◦ (0), y

(n)
◦ (0), u

(n)
◦ (NTs),

y
(n)
◦ (NTs), and on the polynomial expansions of cn(t), with n = 0, · · · ,max(Na, Nb)− 1.

Proof. This has been proven for cn(t) a polynomial in t by [7] (see equations (12) and (23) in

this reference). Since cn(t) is assumed to be smooth, it can be approximated arbitrarily well

by a polynomial, which validates (11).

Equation (11) expresses the system behaviour – the solution set of a differential equation – as

the solution of a set of algebraic equations, without having to approximate the time derivatives

by finite differences. The polynomial Ψγ takes into account the transient effects, such that

(11) is valid, even if the signals u(t) and y(t) are non-periodic. The problem of identifying a

system given by (1) is reformulated as the estimation of C and γ from the measured input and

output DFTs U and Y , given that the noiseless DFT spectra satisfy (11).

Remark 6 (Residual alias error). As explained in [15, Appendix 6.F] (for LTI systems) and

in [7] for the system class given by (1), the conversion of the differential equation (1) into

the algebraic equations (11) introduces a small residual alias error, when the signals are not

periodic (even though perfectly band-limited). Nevertheless, this alias error is smooth and,

thus, can be captured by an additional polynomial in jωk. In practice, this alias error will

be captured by the transient polynomial Ψγ, the degree of which can be increased (by a

few units, typically) until no significant decrease of the estimation residuals is detected (i.e.

Nγ > max(Na, Nb)− 1).

Remark 7. For simplicity, and in view of Remark 6, the knowledge that γ depends on the

initial and end conditions, on the model parameters, and on the residual alias error will not

be used during the identification. That is, γ will be estimated alongside C as if it were an

independent vector of parameters. Given the limited dimension of γ, this is unlikely to have

a significant impact on the performance of the estimation.

3.2. Kernel based estimator (KBE)

The Kernel based estimator defined in this section, and further discussed in the next sections,

constitutes the main contribution of this article.
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Definition 8 (KBE). The kernel based estimate of the system in (11) is

Ĉ, γ̂ =argmin
C,γ

EHW−1E + C̆T
K

−1C̆, (12a)

E(C, γ) ,Y − FΦC −Ψγ, K , INc+1 ⊗K, (12b)

C̊ , [̊c0 · · · c̊Nc
]T ∈ R

Nc+1, C , C̆ + C̊ ⊗ 1, (12c)

with ⊗ denoting the Kronecker product, INc+1 the identity matrix, and 1 ∈ R
N×1 a vector of

ones.

Note that the vector of time-varying coefficients C is written as a time-varying part C̆, and

a constant part C̊. The matrixW ∈ C
N×N is a symmetric, positive definite weighting matrix,

and K ∈ R
N×N is a kernel matrix (symmetric and semi-positive definite) which regularises

the estimated time-varying part C̆. In this paper, the same kernel is used for all time-varying

coefficients for notational and computational simplicity. The method can straightforwardly

be extended to allow a different kernel for each coefficient. The choice of the kernel and

weighting matrices W and K have a great impact on the resulting estimate, see Sections 5

and 6. The solution of the KBE in Definition 8 is computed explicitly as follows (proof in

Appendix A).

Theorem 9 (KBE solution). The minimizers in (12a) are

ˆ̆
C = KΦHFHα (13a)





α
ˆ̊
C
γ̂



 =



Λ +





W 0 0
0 0 0
0 0 0









−1 



Y
0
0



 , Λ =





FΦKΦHFH F Φ̊ Ψ

Φ̊HFH 0 0
ΨH 0 0



 (13b)

with Φ̊ =
[

φ̊0 · · · φ̊Nc

]

, and φ̊n ∈ R
N a column vector with the diagonal elements of φn.

All the 0’s in (13b) and in further equations are zero vectors or matrices with appropriate

dimensions. Note that Theorem 9 corresponds to [25, Theorem 1.3.1], applied to the specific

problem of this paper. It can be shown that Ĉ is real, such that the associated estimate of the

differential equation is real as well.

Remark 10 (Selection of the frequency band). The data fitting part EHW−1E in the cost

function in (12a) is formulated in the frequency domain. As a consequence the estimation

can be limited to a selected frequency band of interest. This is important in the context of

continuous-time systems: the frequency band close to half the sampling frequency (where

aliasing is likely to occur) can be discarded. Also, omitting the frequency band where the

measured spectra do not contain information (e.g., where the spectrum of the input signal is

zero) decreases the computational load of the estimator.

3.3. Basis function based estimator (BFE)

The KBE will be compared with the Basis function based Estimator (BFE), proposed in [7].

The BFE parameterises the time-varying coefficients cn(t) as linear combinations of Np basis

functions fp(t), p = 0, · · · , Np.
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Definition 11 (BFE). The Basis functions based estimate is given by

θ̂, γ̂ = argmin
θ,γ

E(θ, γ)HW−1E(θ, γ), (14a)

E(θ, γ) = Y − F
∑Nc

n=0
φnĉn −Ψγ, (14b)

ĉn(t) =
∑Np

p=0
fp(t)θ̂n,p, n = 0, . . . , Nc (14c)

The basis functions fp(t) are assumed to be known. For this estimator, choosing W as the

diagonal of cov(E) (see further) was proven in [7] to achieve consistency under some mild

assumptions. Note that cov(E) depends on θ, making the optimisation problem non-convex.

4. Covariance and bias of the estimated parameters

Expressions for the noise covariance and bias are important because they provide a quality

measure of the estimate. These expressions will be derived for the KBE in the following sub-

sections. First, the covariance of the equation error E is introduced, as required subsequently.

4.1. Equation error and its covariance

For a given {an}Na

n=1 and {bn}Nb

n=0, the equation error defined in (12b) for the KBE and in (14b)

for the BFE can be written as

E = AY −BU −Ψγ, (15a)

A= IN +
∑Na

n=1
F diag(an)F

H diag(ψn), (15b)

B=
∑Nb

n=0
F diag(bn)F

H diag(ψn). (15c)

Since Ψγ does not contain the noisy signals, we have

cov(E) ,E

{

(E − E {E}) (E − E {E})H
}

=
[

A −B
]

[

CY CY U

CUY CU

] [

A
H

−BH

]

. (16)

4.2. Covariance of the estimated parameters

Theorem 12 (Covariance). The noise covariance of the estimated parameters Ĉ and γ̂ of the

KBE can be approximated by the following expression:

cov







ˆ̆
C
ˆ̊
C
γ̂






≈
[

L 0
0 INc+Nγ+2

]

(

JJH
)−1

RH cov(E)R
(

JJH
)−1

[

L
H 0
0 INc+Nγ+2

]

(17a)

R ,W−1
[

FΦL F Φ̊ Ψ
]

(17b)

JH =

[

W−1/2 0
0 IN(Nc+1)

] [

FΦL F Φ̊ Ψ
IN(Nc+1) 0 0

]

(17c)

with L = INc
⊗ L, and L the lower triangular Cholesky decomposition of K (s.t. K = LLH).
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The evaluation of this covariance expression requires the noise covariances CY , CU and

CY U . The proof is in Appendix B and explains why Theorem 12 is an approximation. Note that

(JJH)−1 in (17a) can be computed in a numerically stable fashion via the QR decomposition

of J .

4.3. Bias of the estimated parameters

The KBE is biased for two reasons: i) the regressors φ are noisy (see the discussion in [20,

p. 186]), and ii) the cost function includes a regularisation term. The sum of both bias

contributions is given in the following theorem.

Theorem 13 (Bias). Assuming that the true parameters (denoted C◦ and γ◦) exist, the bias is

given by:




C̆b

C̊b

γb



 =− E







H
−1









KΦHFH

Φ̊HFH

ΨH



W−1E◦ +





C̆◦

0
0















, (18)

H ,





KΦHFH

Φ̊HFH

ΨH



W−1
[

FΦ F Φ̊ Ψ
]

+





IN(Nc+1) 0 0
0 0 0
0 0 0





where E◦ , E(C◦, γ◦) is the equation error, see (12b), evaluated in the true parameters.

This theorem is exact, see Appendix B. The following proposition provides an imple-

mentable approximation, and will be used in Section 7.3 on a simulation example.

Proposition 14 (Approximate bias). The bias of the estimated parameters of the KBE can be

approximated as





C̆b

C̊b

γb



 ≈ −H
−1

















KE

{

B̆
}

E

{

B̊
}

0









+





C̆◦

0
0













, (19a)

B̆ =







...

(Fφn)
HW−1E◦
...






, B̊ =







...

(Fφ̊n)
HW−1E◦
...






, (19b)

n = 0, · · · , Nc.

The i-th element of E
{

(Fφn)
HW−1E◦

}

is given by

FH[i, :]W−1(A◦CY X −B◦CUX) diag(ψ
H
r )F [:, i], (19c)

and E

{

(Fφ̊n)
HW−1E◦

}

is computed as

trace
{

(A◦CY X −B◦CUX) diag
(

ψH
r

)

W−1
}

, (19d)

with

{

r = n, X = U for 0 6 n 6 Nb

r = n−Nb, X = Y for Nb < n 6 Nc

A◦ and B◦, from (15), are evaluated for the true parameters.
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Proof. The approximation in (19a) results from the fact that the noise in H is discarded.

Then, (19a) follows immediately from (18). The expressions (19c) and (19d) are obtained

from simple algebraic operations, taking into account (5), (6), (8), the fact that E {E◦} = 0,
and that the noise is uncorrelated with the noiseless signals (Assumption 4).

Remark 15. Given that the estimate of C̆ is not constrained to be zero-mean, a constant term

can be exchanged between the estimates of C̊ and C̆, such that they cannot be estimated

uniquely. However, this is not a problem since we are only interested in the sum C = C̊ + C̆,

which is estimated uniquely. The covariance and bias of Ĉ can straightforwardly be obtained

from the covariances of
ˆ̊
C and

ˆ̆
C in Theorem 12 and Theorem 13.

5. Kernel selection

5.1. Kernel structure selection

The use of semi-positive definite kernels for regularising a regression problem is an extensively

studied topic in the literature, see [12, 16, 24, 25] just to name a few. The resulting estimate

Ĉ highly depends on the choice of the kernel matrix K. A lot of work has been devoted

to designing kernels and for an extensive discussion on this matter, the reader is referred

to [19]. Typically, a kernel structure is selected, which is expected to be appropriate for

the application at hand (i.e. in our case the kernel should capture the time function of the

coefficient variations). In the simulation section, the squared exponential (SE) kernel will be

used. That is, the elements of K are given by

ρe
−(t−t′)2

l2 , for t, t′ ∈ T (20)

which can be shown to favour smooth solutions for cn. The kernel parameters l and ρ quantify,
respectively, the length scale of the smoothness, and the inverse of the amount of regularisation

applied. These kernel parameters must be tuned, as explained in the next section.

5.2. Tuning the kernel parameters with LTO-CV

We propose to tune the kernel parameters based on the Leave-two-out cross validation (LTO-

CV) criterion, which is a frequency-domain modification of the Leave-One-Out cross-validation

(LOO-CV). This tuning criterion aims at minimising the out-of-sample error, while using only

the estimation data. The LTO-CV criterion is formulated in the frequency domain because, as

has been shown in [6], this is more robust to time-correlated errors. The LTO-CV criterion is

defined as

ELTO−CV(Θ) =
∑

k∈K

∣

∣

∣
Y (k)− Ŷ (k,Θ)\k

∣

∣

∣

2

, (21)

where Θ denotes the vector of kernel parameters (given by Θ = [ρ l] for the kernel in (20))

and Ŷ (k,Θ)\k is defined as the estimated output spectrum at frequency bin k, computed using

the parameters which have been estimated with neither the use of the system equation at that

frequency nor that at the conjugate frequency −k. The frequencies at k and −k are omitted

simultaneously because the spectra at those frequencies are complex conjugates of each other.
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5.3. Continuous tuning of the model complexity

It follows from the above discussion that the kernel parameters determine themodel complexity.

More importantly, the model selection criterion ELTO−CV(Θ) is continuous in Θ, such that it

can be minimized via a gradient based optimisation algorithm. This is an attractive property

of the KBE (and kernel based regression methods in general). In contrast to that, for the BFE

the selection of the number of basis functions is a discrete optimisation problem of potentially

combinatorial complexity.

Note that, being a nonlinear optimisation problem, the LTO-CV criterion is prone to have

local optima. This is partially mitigated via an initial coarse grid search. Computationally

efficient implementations of the LTO-CV criterion in (21) and its gradient are obtained from a

minor modification of the expressions for LOO-CV in [23].

6. Algorithmic implementation

6.1. Choice of the frequency weighting W

Inspired by the fact that the BFE (Definition 11) is consistent (for known basis functions fp(t)
and model orders), using the diagonal of the covariance of E as a weighting W in the KBE

(Definition 8) is a sensible choice. In this case, consistency is not applicable, because the KBE

is biased. Nevertheless, if the system lies in the considered model class (1) and Assumption 4

is satisfied, it can easily be shown that the optimiser of the expected value of the data fit term

EHW−1E in (12a) is independent of the noise properties, shown by following the reasoning

in [7]. It will be shown on simulations that this weighting reduces the Mean-Squared-Error

(MSE) on the estimate.

6.2. Implementation of the Kernel based estimator

Algorithm 16. The KBE is implemented as follows.

1. Acquire the measured signals u and y, determine the model orders Na and Nb (assumed

to be known), and choose the kernel structure (for instance, a SE kernel).

2. Initialise the weighting matrix: W ← I

3. Tune the kernel parameters: Θ←argminΘELTO−CV(Θ)

4. Ĉ ← from (13)

5. if the noise covariances are available, repeat

(a) V− ← EH(diag covE)−1E

(b) W ← (diag covE)/‖ diag covE‖1
(c) Ĉ ← from (13)

(d) V ← EH(diag covE)−1E

until V− 6 V

6. Ĉ ← the parameter values that gave the smallest value for V in (5d).
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The iterative procedure in Step 5 is a convex relaxation of the problem where W =
diag(covE) would explicitly depend on the parameters C. This is inspired by the Iterative

Quadratic Maximum Likelihood (IQML) estimator, see [22]. In Steps 5a, 5b and 5d, E is given

by (12b), with the current values for Ĉ. In step 5b,W is normalised to its 1-norm such that the

relative balance in (12a) between the data fit EHW−1E and the regularisation term C̆TK−1C̆
remains unaltered. Two different estimates are extracted from Algorithm 16:

KBEI: defined as the estimate obtained at Step 4, and doesn’t require the noise covariance

information.

KBEW : defined as the estimate obtained at Step 6, and relies on the availability of the noise

covariances. The kernel parameters Θ obtained in Step 3 are retained.

6.3. Implementation of the Basis function based estimator

Two versions of the BFE are considered based on Definition 11, depending on whether the

noise information is available: BFEW with W = diag(covE) and BFEI with W = I. The

implementation is given in [7].

7. Simulation results

The main goals of the simulations in this section are the following:

• To show that the KBE is more robust to noise than the BFE. To this end, a low SNR of

10 dB on the input and output signals will be used. For the BFE, the true model orders

and basis functions will be used. Therefore, the BFE can be seen as an ‘Oracle’ estimator

and, in that sense, is put in a privileged position w.r.t. the KBE.

• To show the validity of the variance and bias expressions in Section 4 for the KBE.

7.1. Simulated and frozen system

The simulated signals satisfy (1), with r = 2, and where an(t) and bn(t) are 8-th order

polynomials in t, specified in Appendix C. The noise satisfies Assumption 4, with

CY = diag
∣

∣Hy(e
−jωkTs)

∣

∣

2
, CU = diag

∣

∣Hu(e
−jωkTs)

∣

∣

2

for k ∈ K, where Hy(z
−1) and Hu(z

−1) are LTI filters (z−1 is the 1-sample backward-shift

operator), see Appendix C. These are required to compute W = diag(covE), for KBEW and

BFEW . In this simulation example, CY U = 0.

Definition 17 (Frozen system). The frozen system associated with the model equation at the

time instant t ∈ [0, NTs] is the LTI system, whose frequency response function is parameterized

by the instantaneous time t, viz.:

Gf(jω, t) =
b0(t)ψ0(jω) + b1(t)ψ1(jω)

a0(t)ψ0(jω) + a1(t)ψ1(jω) + a2(t)ψ2(jω)
.

This frequency response function will be called the Frozen Frequency Response Function

(FFRF) at time instant t.
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Fig. 1. Noisy input and output DFT spectra (black dots •), and noise power spectrum (grey full

line).

Note that the frozen system at a given t is uniquely determined by the differential equation.

The amplitude of the true FFRF as a surface plot is given in the top left of Fig. 3. The Mean-

Square Error (MSE) on the estimated FFRF will be used as a performance indicator:

MSET(jω) , N−1
∑

t∈T

∣

∣

∣
Gf(jω, t)− Ĝf(jω, t)

∣

∣

∣

2

. (22)

The sample time is chosen as Ts = 1s. The noiseless input signal u◦(t) is band-limited

random noise with a flat amplitude spectrum in the frequency band [0, 0.2] Hz. The signal-

to-noise ratios of the noisy input and output signals is 10 dB. A total of 100 realisations of

the disturbing input and output noise vu and vy are generated, and successively added to

the noiseless input and output signals, giving 100 Monte Carlo experiments. For each noise

realisation, a total of N = 1014 time domain samples of the input and output signals are

acquired. An example of the noisy input and output DFT-spectra, together with the associated

noise power spectra (i.e., the main diagonals of CU and CY ) are plotted in Fig. 1.

7.2. Higher robustness of the KBE to noise

The MSET, see (22), is shown in Fig. 2 for the noiseless signals (left), and for individual

realisations of the noisy signals (right). For both estimators (KBE and BFE), Nγ = 9 in the

noiseless case, and Nγ = 4 for the noisy case, in agreement with Remark 6. We observe the

following.

Noiseless data The BFE and KBE give very accurate results. MSEs of about 90 dB and 80 dB
below the true FFRFs are obtained, respectively. This observation confirms the validity of

Theorem 5. For the KBE, the SE kernel in (20) is used, and the tuned kernel parameters

(see Section 5.2) are ρ = 109, l = 185 s. The residual MSE of the BFE is due to the limited

precision of the Ordinary Differential Equation (ODE) solver used to generate the data.

Noisy data For the KBE (black dots) and KBEW (black squares) the MSEs lie respectively

about 10 dB and 12 dB below the true FFRFs. The MSE of the BFEW (grey squares), for

one realisation of the noise, lies a few dB below that of the KBE. This estimate will be

tagged the ‘good’ estimate of the BFEW . For another noise realisation, the MSE lies much

higher. This estimate will be tagged the ‘bad’ estimate of the BFEW . The MSE of the

BFEI (grey dots) is high as well. The corresponding estimated FFRFs, obtained using the

noisy signals, are shown in Fig. 3.
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Fig. 2. True frozen FRFs at t ∈ [0, NTs] (grey band), and RMS errors. Left: on noiseless data.

Right: on noisy data.

For the noisy data, two results are given for the BFEW (grey squares): one bad result (high RMSE)

and one good result (low RMSE).

In Fig. 4, the MSEs, averaged over both the instantaneous time and the frequency, are given

for all 100 noise realisations. This plot confirms the following.

• The KBEW performs slightly (a few dB) better than the KBEI . As expected, it makes sense

to include the noise variance information as prior knowledge.

• For a significant amount of noise realisations, the BFEW gives a much higher MSE than

the KBEW .

• For an input/output SNR of 10 dB, the BFEI does not result in any useful estimate.

The ‘bad’ results of the BFE are probably due to its finite sample behaviour. As shown in

Fig. 5, the variation of the estimated coefficients (black full lines) has a significantly larger

amplitude than the true time-varying coefficients (dashed black-grey line). This phenomenon

was not observed in the case of the KBE, which can be attributed to the associated regularisa-

tion. Note that, for the BFEW , the estimator was assured not to be stuck in a local optimum,

by using the true coefficients as initial estimates.

7.3. Verification of the bias and variance expressions

In Fig. 6, the estimated time-varying coefficients (black full lines) from the KBEI are given,

averaged over the 100Monte Carlo runs. The results for the KBEW (not shown) are qualitatively

very similar. We observe the following.

The estimated standard deviation of Ĉ, computed via Theorem 12 for a single realisation of

the data, is denoted by the grey area. It has a very good agreement with the sample

variance from the 100 Monte Carlo runs (black dashed line). Note that the kernel

parameters were tuned for the first noise realisation only, and were set to l = 183.6 s and
ρ = 1.56. The same kernel parameters were used for all the Monte Carlo runs, because

the expressions for the variance and the bias in Theorems 12 and 13 do not take into

account the variability of the kernel parameters.

The estimated coefficients are clearly biased, as discussed in Section 4.3. The bias is ap-

proximated via Proposition 14 and by using the estimated coefficients Ĉ instead of C◦.
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Fig. 3. True and estimated Frozen FRFs. The result for KBEW (not shown in the figure) is very

similar to the KBEI .

This is used to compensate the averaged estimated time-varying coefficients, giving the

black dotted line, which lies closer to the true parameters. This shows that Proposition 14

can be used to obtain an order of magnitude of the bias. Besides, the bias expression in

Theorem 13 is validated by averaging the argument of the expected value in (18) by using

the 100 Monte Carlo realisations. Then, the true time-varying coefficients are recovered

(red full line).

The estimated coefficients are smoother than the true ones. This is the bias contribution

due to the regularisation: a smoother estimate with a smaller variance is preferred to a

less smooth estimate with a higher variance.

8. Conclusions

A kernel based estimator formulated in the frequency domain has been derived for identifying

linear time-varying systems. The complexity of the time variation of the coefficients has been

tuned via a Leave-Two-Out Cross-Validation technique. This has the advantage – over classical

model order selection problems – of being a continuous optimisation problem. It has been
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Fig. 4. Root-mean-squared errors on the estimated frozen FRF, for 100 noise realisations (each

dot corresponds to a realisation).
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Fig. 5. True (black/grey dashed lines) and estimated time-varying coefficients from BFE, with

‘bad’ results (black full lines), and ‘good’ results (grey) dots.

shown on simulations that, in very noisy environments especially, the kernel based estimator

manages to trade off the bias and the variance, resulting in more reliable results than a non-

regularised ‘Oracle’ estimator (i.e. which uses the true model orders and structure). Bias

and variance expressions of the kernel based estimator have been constructed, and verified

on a simulation example. As such, this estimator combines system theoretic fundamentals

with machine learning concepts, resulting in potentially attractive properties when linear

time-varying models need to be estimated.
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Appendix

A. Proof of Theorem 9

The constrained optimisation problem (12) is solved by defining the Lagrangian, and applying

the Karush-Kuhn-Tucker conditions for optimality

L(C, γ, E, α) =
1

2
EHW−1E +

1

2
C̆T

K
−1C̆ + αH (Y − FΦC −Ψγ − E) , (23)

∂L/∂E = 0 ⇒ Wα = E (24)

∂L/∂C̆ = 0 ⇒ C̆ = KΦHFHα (25)

∂L/∂C̊ = 0 ⇒ 0 = Φ̊HFHα (26)

∂L/∂γ = 0 ⇒ 0 = ΨHα (27)

∂L/∂α = 0 ⇒ E = Y − FΦC −Ψγ (28)

By plugging (24) and (25) into (28) we have

Y =
(

FΦKΦHFH +W
)

α + F Φ̊C̊ +Ψγ (29)

which, combined with (25), (26) and (27), gives (13). Note that (12) and (29) are often called

the primal and dual formulations of the optimisation problem respectively, see [24]. Since

(12a) is a convex objective function and (12b) is affine in the primal parameters C and γ, the
dual optimisation problem (29) provides the same optimum as (12) (i.e., there is no duality

gap).

B. Covariance and bias of estimated coefficients

Denote the minimisers of the expected value of the cost function:

[

C̃, γ̃
]

, argmin
C,γ

E {V ([C, γ])} , (30)

with V ([C, γ]) , EHW−1E + C̆T
K

−1C̆, (31)

and E given in (12b). The shorthand notation [C, γ] , [C̆T C̊T γT]T is used. Denote

[Ĉ, γ̂] = [C̃, γ̃] + δ the minimiser of V for a given noisy data set. Since [C̃, γ̃] is a deterministic
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vector, we have that cov(δ) = cov([Ĉ, γ̂]). By letting δ be the solution of V ′
([

C̃, γ̃
]

+ δ
)

= 0,

we have δH = −V ′
(

[C̃, γ̃]
)

V ′′−1, with

δ =− V ′′−1









ΦHFH

Φ̊HFH

ΨH



W−1E +





K
−1 ˜̆C
0
0







 , (32)

V ′′ =









ΦHFH

Φ̊HFH

ΨH



W−1
[

FΦ F Φ̊ Ψ
]

+





K
−1 0 0
0 0 0
0 0 0







 . (33)

Then, by approximatingE {V ′′−1•} ≈ V ′′−1
E {•} and by neglecting the effect of the correlation

between the noise in Φ and E compared with terms which include Φ◦ and Φ̊◦, we have

δ − E {δ} ≈ − V ′′−1





ΦHFH

Φ̊HFH

ΨH



W−1(E − E {E}). (34)

This approximation is valid as long as the noise is significantly smaller than the noiseless

signal. The covariance expression in Theorem 12 is obtained by computing cov(δ) with (34),

where E is evaluated for [C̃, γ̃], and by rearranging the expression such that K−1 and the

matrix multiplications in V ′′ (leading to an important loss of precision) do not need to be

computed. The bias expression (18) is obtained as [Cb, γb] = E {δ}, where [C̃, γ̃] is replaced
by [C◦, γ◦] (the true parameters) in (32), rearranged such that K−1 should not be computed.

C. Simulation details

The noise filters are given by

Hy(z
−1) = syz

−2/
(

1− 1.65z−1 + 0.90z−2
)

, (35)

Hu(z
−1) = suz

−2/
(

1− 1.38z−1 + 0.72z−2
)

, (36)

where sy and su are scaling factors chosen such that the specified SNRs are obtained. The

time-varying coefficients in (1) of the simulated system are given by an(t) =
∑8

p=0 an,pfp(t),

bn(t) =
∑8

p=0 bn,pfp(t), where fp(t) = Pp ((2t)/(NTs)− 1), Pp is the pth degree Legendre

polynomial, and an,p and bn,p are given in Table 1. The system was simulated with the ode45

solver from Matlab.
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Table 1 Coefficients of an(t) and bn(t) of the simulated system.

an,p × 1000 bn,p × 1000
n = 0 1 2 n = 0 1

p = 0 −433.92 190.98 −1000 75.989 477.47
1 −8.157 −27.02 0 10.441 −30.077
2 13.238 33.317 0 8.3018 31.981
3 15.994 −19.641 0 −10.203 3.3666
4 −8.5959 −13.264 0 3.9055 65.955
5 −19.79 −0.54219 0 10.916 −62.18
6 −13.706 −16.247 0 10.237 −29.306
7 −1.4546 −5.3577 0 −11.389 −46.701
8 22.217 32.973 0 7.9717 54.298
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