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Abstract

Controllers in the linear parameter-varying (LPV) framekvare commonly designed in continuous-
time (CT) requiring accurate and low-order CT models of tlygstem. However, identification of
continuous-time LPV models is largely unsolved, represgna gap between the available LPV iden-
tification methods and the needs of control synthesis. Ierotd bridge this gap, direct identification
of CT LPV systems in an input-output setting is investigafedusing on the case when the noise part
of the data generating system is an additive discrete-tiohered noise process. To provide consistent
model parameter estimates in this setting, a refined ingintah variable (IV) approach is proposed and
its properties are analyzed based on the prediction-amordwork. The benefits of the introduced direct
CT-IV approach over identification in the discrete-timeecase demonstrated through a representative

simulation example inspired by the Rao-Garnier benchmark.

Index Terms

Continuous-time models, LPV models, system identificati@fined instrumental variable, Box—

Jenkins models, input/output.

I. INTRODUCTION

The framework oflinear parameter-varyindLPV) systems was introduced in the 1990s with
the purpose to handle in a simple but efficient way the oftemlinear or time-varying nature
of systems encountered in practice. The LPV system classsfan intermediate step between
linear time-invariant(LTI) systems and nonlinear/time-varying plants as thealigelations in
LPV systems are considered to be linear just as in the LTI, dagethe parameters are assumed
to be functions of a measurable time-varying signal, theatedscheduling variable : Z — P.

Here the compact sét C R"* denotes thecheduling spaceél'he scheduling variablerepresents
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the nonlinear or time-varying nature of the modeled dynan@gy.p describes the changes in the
operating conditions of the plant, time-variation of theteyn dynamics or external effects like
temperature changes. This LPV modeling concept allows faide representation capability
of physical processes, but the real practical significaridbe LPV framework lays in its well
worked out and industrially reputed control synthesis apphese.g.[1]-[3], that have led to
many successful applications of LPV control in practice-[4].

However a major drawback of the LPV framework today is thaspite the advances of the
LPV control field, identification of such systems is not wedivdloped as the current methods
are unable to support practical control design. Commonly ld®¥itrollers are synthesized in
continuous timgCT) as stability and performance requirements of the clésep behavior can
be more conveniently expressed in CT, like in a mixed-sefitsitsetting [8]. Therefore, the
current design tools focus on continuous-time LPV congroflynthesis requiring accurate and
low-order CT models of system. However, LPV identificationthhegls are almost exclusively
developed fordiscrete-time(DT) (for a recent survey see [9]), as in this setting it is muc
easier to handle the estimation of parameter-varying dycgrihe only available CT method
(to the authors’ knowledge) uses a local, or a so-callediptedtnodel type of approach, where
CT-LTI models of the LPV system are estimated for constanedtaries ofp, i.e. at certain
operating operating points, by using a frequency domairhateind then the resulting models
are interpolated ovelP. However such an approach is unable to capture the globalvimhof
the system (limited number of identified CT-LTI models, ncomhation about transient behavior
from one operating condition to the other) and is affectedrigrpolation problems described
in [10], [11]. Thus, the absence of CT methods obviously regmés a gap between the available
identification approaches and the needs of LPV control ggish As developing CT-LPV models
based on first principle laws is a very costly and time consgngrocess, often resulting in a
high-order model unsuitable for control design, there is@wing need of the LPV framework
for efficient identification methods that directly delivesliable CT models.

In practice, CT systems can only be identified based on sanmpéadured data records. Thus
in general, for delivering a CT model estimate, the availapproaches in system identification
can be categorized as follows [12]:

« Indirect approaches. These methods involve the identification of a DT model in a com

pletely DT setting, followed by the transformation of the DWbdel estimate to a CT form.
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« Direct approaches: The methods formulate the identification of the CT model diyec

based on samples of the measured CT signals.

Unfortunately, transformation of DT-LPV models to CT-LPV dais is more complicated than
in the LTI case and despite recent advances in LPV disctetizéheory (see [13], [14]) the
theory of CT realization of DT models is still in an immaturatst Thus, it is often difficult in

practice to obtain an adequate CT realization from an idedtfdT model. In order to illustrate
the underlaying problems, consider the following simple .G’ model

Sult) + p(e)y(0) = butt), @

wherep, y and v are the scheduling, output and input signals of the systespectively and
b € R is a constant parameter. When approximating the derivathi2Ti by, for example, using
the backward Euler approximatiogig'y(tk) R~ w with Ty > 0 the sampling period, (1)

transforms into:
bTs

T 1+ Top(t) 1+ Tp(tr)
This discretized model has now twedependent coefficients to be estimated instead of the one

y(tr) Y(te-1) + u(t). 2)

single constant parameter in (1). Moreover, the dependehttee coefficients om is not linear
anymore but rational with a singularity wheneygt;) = —Tl An alternative way to approximate

derivatives in DT is to apply a forward Euler approximatighy(t;,) ~ “:U=2C) which gives

y(te) = (1 — Top(te—1))y(tr1) + bTeu(tr—1). 3)

This discretized model has only opedependent coefficient and the linearity of the dependence
is preserved, however now the model equation is dependepttpn, ) instead ofp(tx). This so-
calleddynamic dependendeependence of the model coefficients on time-shifted oassofp)

is a common result of model transformations in the LPV caskeraes problems in LPV system
identification and control alike (see [15]). Furthermoteisiwell known in numerical analysis
that the forward Euler approximation is more sensitive & thoice ofT, in terms of numerical
stability than the backward Euler approximation [16]. Tmeans that (3) requires much faster
sampling rate than (2) to give a stable approximation of tysesn and it is more sensitive
to parameter uncertainties which rises problems if (3) isdufor estimation. Consequently it

can be concluded that even for a very simple CT-LPV modelmadion of a DT model with
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the purpose of obtaining afterwards a CT realization is aoteglitask with many underlaying
problems for which there are no general theoretical saistiavailable.

Unlike an indirect approach, a direct solution offers a wagfficiently overcome the previous
problems. Due to the recent technological developmentsaofpiing instruments in terms of
achievable sampling rate, use of direct CT approaches inifg@tion has recently regained
interest showing a better performance than indirect ames for both linear and nonlinear
models, seee.g. [12], [17]-[20]. An exhaustive review of direct estimationethods can be
found in [12], [21], [22]. Among the available identificatioapproaches for CT-LTinput-
output (I0) models, the interest foinstrumental variable(IV) methods has been growing in
the last years [20], [23], [24]. The main reason of this iasiag interest is that IV methods
offer similar performance as extendéghst square(LS) methods or otheprediction-error-
minimization(PEM) methods (see [18], [25]) and provide consistent te®uen for an imperfect
noise structure which is the case in most practical appdicat These approaches have been used
in many different frameworks such as direct CT [18], [22],edir nonlinear CT [19] or closed-
loop CT identification [26], [27] and lead to optimal estimat@ the LTI case if the system
belongs to the model set defined.

In this paper we aim to provide the very first step towardsding the existing gap between
LPV control and identification via the introduction of a diteCT identification approach that
benefits from the properties of IV methods. It was shown réig@m[28] that in order to minimize
the classical prediction error for DT-LPV modelsMaltiple Input Single Outpu{MISO)-LT]I
reformulation of the data-generating system is needed.Bagsea similar reformulation, the
prediction error minimization problem can be clearly sfiatethe present CT case. Furthermore,
the proposed approach extends the recent results from thieT ICiientification framework
using an IV method to face the direct CT-LPV identification lgem stated here. The resulting
approach not only provides the very first global LPV idengifion method that is able to provide
consistent estimates of LPV-IO models in continuous-tiing, it is also applicable in case of
colored output noise and has a low computational load. Eurtbre, it opens the possibility for
closed-loop CT-LPV identification.

The paper is organized as follows: in Section II, the genelass of CT-LPV systems in
an |0 representation form is introduced pointing out themifficulties of this model class.

Additionally, a reformulation of the dynamical descriptiof LPV data generating plants in the
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considered setting is developed which makes possible ttemgwn of CT LTI-IV methods to
the LPV framework. In Section Ill, CT LPV-IV methods are deked and analyzed, while their
performance are illustrated in Section IV through a repregere simulation example inspired
by the Rao-Garnier benchmark. Finally in Section V, the manctusions of the paper are

drawn and directions of future research are indicated.

Il. PROBLEM DESCRIPTION
A. System description

Consider the data generating CT LPV system described by tlevioh equations

s Ao(pe, ) Xo(t) = Bo(py, 4 Ju(t), 4)

y(t) = Xo(t) + vo(t),
wheres denotes the differentiation operator w.r.t. time, ke~ %, p : R — P is the scheduling
variable withp, = p(t), x, is the noise-free outputy, is a quasi stationary noise process with
bounded spectral density and it is uncorrelatedp.tod, and B, are polynomials ins with

coefficientsa and ¢ that are meromorphic functiortsof p with no singularity onP

Mg

ny,
Ao(pe,d) =dm +Za§’(pt)tf”“*" and Bo(pi, d) = Zb?(pt)tfnrj- )
i=1 =0

Note thata; and b} are functions ofp at timet, which is calledstatic dependencen LPV
system theory, a more genenaldependence of coefficients than static is required to ksitab
equivalence of representations. In particular, the caefftsa; andb; need to depend also on the
time derivatives op, which is calleddynamic dependendg8]. In order to simplify the upcoming
discussion, we restrict our attention to static dependeNesertheless, the established results
hold also in the case of dynamic dependence of (4) and of tyeoged model structure.

In terms of identification we can assume that sampled measmts of(y, p, u) are available
with a sampling period; > 0. Hence, we will denote the discrete-time samples of thepsais
asu(ty) = u(kTs), wherek € Z. The basic idea to solve the noisy CT modeling problem of
(4) is to assume that the CT noise proces&) can be considered at the sampling instances
as a DT noise process filtered by a DT transfer function. Is thaper, a practically general

case is considered where the colored noise associated hétisampled output measurement
LA function f is called meromorphic iff = & whereg, h are holomorphic (analytic) functions ardis not the zero function.
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y(tx) is assumed to have a rational spectral density which mightrioarelation to the actual
process dynamics &,. As a preliminary step towards the case gf-dependent noise, it is also
assumed that this spectral density is not dependent, ¢ike in case of a measurement noise.

Therefore,v, is represented by a discrete-tiragtoregressive-moving-averagdaRMA) model

CO(q_l)
Do(qfl)e()(tk)’ (6)

wheree,(t;) is a DT zero-mean white noise process; is the backward time shift operator,

vo(tr) = Ho(q)eo(tr) =

i.e. ¢ ‘u(ty) = u(tr_;). C, and D, are monic polynomials having constant coefficients. This
formulation of the noise model (6) avoids the rather diffiauathematical problem of treating
sampled CT random process in terms of a filtered piece-wisstaohCT noise source (see [29],

[30]). In terms of (6),y(tx) can be written as

y(tk) = Xo(tk) + Uo(tk)a (7)

which corresponds to a so called hybrid Box-Jenkins systemeaqt already used in CT iden-
tification of LTI systems (see [29], [30], [19]). Furthermeorin terms of (6), exactly the same

noise assumption is made as in the classical DT Box-Jenkireisigsee [31]).

B. Model structure considered
1) Process modelThe process model is denoted @y and defined in a form of an LPV-10

representation with a static scheduling dependence:
gp : (A(ptvlfap)aB(ptvd’p))v (8)

where thep-dependent polynomiald and B given as

Na Ny
Alped,p)=d™ + > ai(p)a™ ™ and Blp,.d,p) =Y bi(p)a™ 7,
i=1 j=0
are parameterized as
ai(pt) = afi,O + Z ai,lfl(pt)a 1= 17 ceey Ny, (9a)
=1
ng
bi(pe) = bjo+ Z bjagi(pe), 7 =0,....m, (9b)
=1

In this parametrization{ f;}7>, and {g;},”, are meromorphic functions of, with static
dependence, allowing the identifiability of the model (tlveyr be chosen for example as linearly

independent functions o). The associated model parameters are stacked column wise:
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,0:[8.1 ... Ap, b() bnb ]TERnPa (10)

wherea;, = [ o @ ... Qip, ] € Rratl b; = [ bj70 bj71

b

+1 _
ims | € R andn, =

Na(ne + 1) + (np + 1)(ng + 1). Introduce also§ = {G, | p € R™}, as the collection of all
process models in the form of (8).

2) Noise model:The noise model is denoted By and defined as a DT-LTI transfer function:
Hy = (H(g,m)) (11)

where H is a monic rational function given in the form of
Clghn)  14+eaqg '+ +eg™

H(q,n) = = : 12
(@) D(gtn)  1+digt+... +dpq 12)

The associated model parameterare stacked columnwise in the parameter vector,
n=1[c ... co di ... dn, ] ER™ (13)

wheren, = n. + nq. Additionally, denoted{ = {H, | n € R"}, the collection of all noise
models in the form of (11).

3) Whole model:With respect to a given process and noise p&yt +, ), the parameters can
be collected a® = [ p7 7T ] and the signal relations of the LPV-BJ model, denoted in the

sequel asM,, are defined as:

Mo S v(ty)= Eq;l’n)e(tk) (14)

L y(te) =x(t) + v(ti)
Based on this model structure, the model set, denotell,awith process §,) and noise %7,)

models parameterized independently, takes the form
M ={(G, H,) | col(p,n) =0 R} (15)

This set corresponds to the set of candidate models in whelseek the model that explains
data gathered frons, the best, under a given identification criterion (cost fiorot
C. Predictors and prediction error

Similar to the LTI case, in the LPV prediction error framewoone is concerned about finding
a model in a given LPV model structupé, which minimizes the statistical mean of the squared

prediction error based on past sample$:ofi, p). However in the LPV case, no transfer function
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representation of systems is available. Furthermore,iphattion with 4« is not commutative
over thep-dependent coefficients [9], meaning that
d (B(p, d)u(t)) = i (%(pt)dpt) d™ Tu(t) + B(p, ¢ )du(t) (16)
=0 NP

which is not equal taB(p, & )du(t).

In the DT case, in order to define predictors with respect taetmM, € M, a convolution
type representation of the system dynami@s,an LPVImpulse Response RepresentaiilirR),
is used where the coefficients have dynamic dependenpd®n[28]. Considering the CT case,
no IRR has been developed yet and thus the same concept carusedto define the predictors.

1) System reformulation and prediction erronder the assumed noise conditions and for
DT-LPV-IO models, it was shown in [28] that an efficient waydeal with the LPV identification
problem in the PEM framework is to express the LPV system a32(M.TI model. Therefore,
based on the same idea, if the system belongs to the modetfsetd and with a deterministic
p signal, it is possible to express the CT LPV system as a CT MISDsi$tem by rewriting

the signal relations of (4) as

Na Na np Ng

x5t +Z afox§ " +ZZ a2 fipOXS () =D Bg(p®)u™ (1) (17)

i=1 =1 =0 =0 ™
N X9 () I= s (t)

~~

Fo(‘[)Xo(t)

where go(t) = 1 and the superscrigiz) for a signal, likeu™, denotes thex'™" time-derivative
of the signal,e.qg. u™(t) = «™u(t). Furthermore F(¢) = ¢ + > 1 a;od "~ while u(™(t;,)
represents the value of the signdl’(¢) sampled at time instanag.

Note that in this way, the time variation of the coefficierggriansposed onto the signals

Xt = lpONS=2@), {0} e {1, na 1. nab, (18a)

ua(t) = gu(p(®))u™ 9 (t),  {j, 1} € {1..omp, 1. na ) (18b)

Therefore, the process part of the LPV-BJ model is rewrite@ Blultiple-Input Single-Output

(MISO) system with(ny, + 1)(ns + 1) + nana inputs {x7,}7=", and {u;,};>"_,. By using
(17), (14) can be rewritten in terms of the sampled outputaig(t;) as

Na Na } np 16) b .

1, s

(zzpo oo+ (S5

i=1 I=1 =0 1=0

Ug ])(tk) + o (), (19)

'

G (X01u7tk)
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which is a sampled LTI representation of the system defingd)in
Given the assumption that,(t,) = H,(q)e.(tx) and C(¢~') is @ monic polynomial, (6) can

be rewritten in the form 00
Vo(tk) = eolte) + > hico(ts—s). (20)

=1
This shows that the knowledge 66,(7)}.<:, _, implies the knowledge ofe,(7)},<:, ,. There-
fore, by using the traditional approach [31], the predicta¥ v,(¢,) is considered as the condi-

tional expectation ot (t;) based onfe,(7)},<:,_, which is according to (20):

0(tk) = 0t [th—1) = E{vo(tr) [ {eo(T) }ran} = Z hieo(th—s), (21)

whereE is the expectation operator. Assuming tl#af has a stable inverse such thatt,) =

H;'(q)vo(t1), then the classical one-step-ahead predictor can be giéBila

[¢]

0(tr) = vt | teo1) = vo(t) — eoltr) = (1 — Hy ' (q))vo(tr). (22)

Consequently, for the considered LPV system formulated &89)) the one-step-ahead predic-
tor of y(¢,) (defined as the conditional expectatig | tx—1) on{y(t;) }i<k—1, {u(ts), Xo(t:) bi<k)

is given by

(te) =H5 (0)Golxo, usti) + (1 — Hy ' (@) (y(tr)),

Na Na ny  Ng
zl
i=1 I=1 0 j=0 1=0 0

+ (1 — H, ' () (y(te))- (23)

2) Prediction Error Model: Using the same idea as in Subsection 1I-C1, the LPV model from
(14) can also be expressed in a MISO LTI form [28]:

(Zi le> <iz m;) te) + H(g,ne(ty). (24)

1 1=1 0 =0

Therefore, similarly to the LTI case, tlome-step-ahead prediction erraan be expressed and

defined as [31]:
eo(ty) = y(tr) — Do(tr), (25)

February 2, 2011 DRAFT



10

wherey,(tx) is the one-step-ahead predictdrased on the model (14) written as in (24) and is
defined as (see (23)):

Na Na n ng

N _ b

Jo(te) = H (g, n) <— ( F Xu) k) + ( F(;’l )Uk,j)(tk))
i=1 =1 4,p j=0 1=0 P

+ (1 — H7Y(q, n))y(tk)- (26)

o

3) Prediction error minimization:Denote Dy = {y(ts), u(ty), p(t,)}2_, a data sequence of
S,. Then to provide an estimate 6fbased on the minimization af,, an identification criterion

W (Dy,0) can be introduced, like thieast squarecriterion

DN, 259 tk (27)
such that the parameter estimate is
Oy =arg min W(Dy,0). (28)
PeR"p TN

4) CT filtering and sampled datarhe hybrid representation of the model (14) is a combined
operation of CT filtering and DT filtering which implicitly ag@rs in the formulation of (26).
In order to clearly define the coexistence of DT and CT filteiim@26), a detailed investigation
and discussion about the assumptions and the structuree ghtldlel are needed. In this paper,
we considered the practically feasible situation such ¢imé¢ sampled measurements of the CT
signals (y, p,u) are available. In order to apply a CT filter on sampled data are aither
interpolate the samples to obtain a continuous-time sigmal apply the CT filter on this
reconstructed signal or use a numerical approximatienPT approximation of the considered
system. This is a common problem for simulation of contirsibme systems. For simulation
purposes, DT approximation of the system can efficiently baltdwith by using powerful
numerical algorithms available [16]. Note that to deriveaturate DT approximation of the
system, it is often sufficient in terms of the classical ditization theory to assume that the
sampled free CT signals of the system are restricted to beauns the sampling period [32],
which has also been shown in case of LPV systems with stapierdkence [9]. This provides the
hypothesis, also used in [29], [30], that if G#, u) are piecewise constant between two samples,
then the trajectory of; is completely determined by its observations at the samele@Tx.

Therefore, under these inter-sampling conditions, thieviohg operation is well-defined [22]:
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(F(d)y) (tr) = F(4)y(ty), (29)
Under this assumption, and considering that a CT filter cay bel applied to sampled data
through numerical approximation, the usual filter progsrsuch as commutativity holds between
a DT filter and the numerical approximation of a CT filter. Nekiefess, it is important to notice
that the numerical approximation method used for the evialuaf a CT filter does not have
any impact on the coefficients to be estimated which remairtieims of (26), the coefficients

of the parsimonious CT model.

D. Identification problem statement
Based on the previous considerations, the identificatioblpno addressed in the sequel can

now be defined.
Problem 1: Given a CT-LPV data generating syste$n defined as in (4) and a data sBty

collected fromsS,. Based on the hybrid LPV-BJ model structukd, defined by (14), estimate

the parameter vectdr using D under the following assumptions:
Al S, €M, i.e. there exits &, € G and aH, € H such that(G,, H,) is equal toS,.

A2 In (9a-b){f}r=, and{g},”, are chosen such thég,, H,) is identifiable.

A3 u(ty) andp(t) are not correlated te, ().

A4 Dy is informative with respect tov.

A5 S, is globally BIBO stable, i.e. for any trajectory pf: R — P and any bounded input
signalu, the output ofS, is bounded [9].

[1l. REFINED INSTRUMENTAL VARIABLE FOR LPV SYSTEMS
Based on the MISO-LTI formulation (24), it becomes theosdlycpossible to achieve optimal
PEM using linear regression [28]. This allows to extendRetined Instrumental Variabig&IV)
approach of the LTI framework to provide an efficient way adntifying hybrid LPV-BJ models.
A. Linear Regression for CT LPV-BJ models

Using the LTI model (14) reformulated as in (24)¢x) can be written in the regression form:

Yy (tk) = @ (te)p + D(te), (30)
where,
QO(tk) = [_y(na_l)(tk) _y(tk) _Xl,l(tk) _an,na(tk) uO,()(tk) uva,rL[g(tk)]T
P = [ aio .- Qpao Q11 .- GQpyng 6070 bnb,nﬁ ]T
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12

ando(ty) = F(4,p)v(ty). The extended regressor in (30) contains the noise-freqgubterms

{xix}. Therefore, by momentary assuming tHat (t.)};2);_, are knowna priori, the pre-

diction errorey(t) for (30) is given in terms of (25) as:

go(tr) = g((;]_l:;])) F(;’m (F(J>p)y(tk) — [— ; gai,lxz',z(tk) + - l:)o bj,luj,l<tk):|>] .

(31)
1 1 (qflﬁi) 1 1 -
In the given context, the f||tergm andF'(4, p) in (31) commute (see Section 11-C4). The

later allows us to rewriteghe one-step-ahead prediction err(@1) associated with (30) as

Na Na ny, N
eo(te) = (F (&, p)ye) (t) = DD aiaxiy(te) + > > bjaug;(th), (32)
i=1 1=1 j=0 1=0

wherey (tx), u’, () andy;, (t) represent the outputs of a hybrid prefiltering operatiovpliving
the CT and DT filters (see [33]):

- D(q~",n)
o, - and 17 = —. 33
In other words:
_ D@ 'n) 1
wrlin) = Clan) | \F(e.p)’ (f1)]. (34)
Based on (32), the associated linear-in-the-parametergintaikkes the form [33]:
" () = of (te)p + e (), (35)
where
ertn) = [ =y V) - —welte) —xEa(te) o =X () ubo(te) - b, ()]

Ue(te) = Qala™ ", m)Qc(d, p)i(tr) = e(tr).

B. The refined instrumental variable approach

Under the assumption that both the inverse noise m@dé&—*, ) and the CT filterQ.(«, p)
and consequentlyy;(tx)};21—, are knowna priori, traditional parametric estimation methods
from the LTI framework could provide efficient estimates ©&nd»n. However, in a practical
situation,Qq4(¢~*,n) andQ.(«, p) are unknown and need to be estimated as well.

Furthermore, it is important to notice here that the regness (35) and (30) contain some
time-derivatives ofy and « which, in the assumed framework considering sampled data, c
only be approximated. It is well-known that the approxiroatiof derivatives requires a low

pass filtering ofy andu. The most commonly used filters for this purpose are Poissiters,
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13

or state-variable filters [21]. The drawback of these filterghat they require the choice of
a design variable. However, in the proposed approB¢h, p) achieves this stable low-pass
filtering directly. Therefore, it is a particular strengthtbe presented reformulation (35) is that
the estimated filte'(«, p) is not only used for the minimization of the prediction erburt it
also provides the filtering for the approximation of the tiderivatives. In order to estimate the
parameter vector in (35) without the prior knowledge@f(¢—',n) and Q.(«, p), the refined
instrumental variablg RIV) method is proposed due to the following reasons:

« RIV methods lead to optimal estimates in the LTI casé&,jfe M (see [23], [20], [33]).

. In a practical identification scenari¢j, € § might be fulfilled due to first principle or
expert's knowledge, however, it is commonly fair to assuimat 7, ¢ H. In such case,
RIV methods have the advantage of providing consistent agtsnwhereas methods such
as the extended LS are biased and more advanced PEM methextisabest initialization
[25].

o The RIV algorithm has been successfully used for models withlar hybrid structure,
like in the case of linear models [17], [20] and nonlinear O{E9].

Aiming at the extension of the RIV approach for the estimatadnhybrid LPV-BJ models,
consider the relationship between the process input arquubsignals as in (30). Based on this

form, the extended-IV estimate is given as [20]:

][5 e

where ((t;) is the instrument||z||3, = "Wz, with W a positive definite weighting matrix

2

prry(N)=arg min

)

w

and the filtered variables;, ¢ andy; are constructed using a stable prefilterGlf € G, the
extended-1V estimate is consistent under the following twaditions:

Cl  E{G(tr)y{ (tx)} is full column rank.

C2  E{G(ty)tr(tr)} = 0.
Moreover it has been shown in [23], [24] and [20] that the minim variance estimator can be

achieved if:

C3 W=1I

*The notationE{.} = limy oo & Zf’zl E{.} is adopted from the prediction error framework of [31].
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C4 (is chosen as the noise-free version of the extended regres&20) and is therefore

defined in the present LPV case as:
-
Clt=| =X D) o x(tr) X0 (08 - X () W00(E) - iy (1)

C5 G, € §andn, is equal to the minimal number of parameters required toessmg,
with the considered model structure.

C6  The used hybrid filter is chosen as the filter chain (33).
While conditions C1, C2, C3 and C5 are quite straight-forward téliffsee [23], [24]),

both the construction of a suitable instrument that fuli@4 and of an optimal filter fulfilling
C6 are not trivial in practice. The RIV algorithm involves aerétive (or relaxation) algorithm
in which, at each iteration, an ‘auxiliary model’ is used tengrate the instrumental variables
(which guarantees C2), as well as the associated prefiltars.alixiliary model is based on the
parameter estimates obtained at the previous iterationségprently, if convergence occurs, C4
and C6 are fulfilled. Thus, the RIV is a suitable method to i) effidy estimatep in (35) when
S, € M and ii) consistently estimate in a practical situation whet, ¢ .

Nonetheless, it has to be added that even in the CT LTI caseothesrgence of the iterative
CT RIV algorithm has not been proven so far and is only empisicsumed [20]. An additional
concern is that even if conditions C1-C6 are fulfilled, assgntivat the properties of the approach
established in the LTI case apply to the estimation of thermefilated LPV model would mean
that the noise-free output terms aaepriori known. Therefore, even if the presented method
considerably lowers the variance in the estimated paras)etiee optimality of the estimates
cannot be guaranteed.

C. TheLPV- Rl VC and LPV- SRI VC (Simplified RIVC) Algorithms

Based on the previous considerations, the iterative schénteed-PV-Refined Instrumental
Variable for Continuous-time modgllsPV- Rl VC) as well as the simplified versiohPV- SRI VC)
can be given in the considered hybrid LPV framework.

1) TheLPV- Rl VC Algorithm: The following algorithm is designed for hybrid LPV-BJ mod-
els.

Algorithm 1 CPV- RI VO) :

Step 1 The usual initialization faC€T- Rl V algorithm is a DT model estimate issued from an

LS method or aDT- Rl V algorithm. In the LPV case however, the transformation
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of a DT model into a CT model is not trivial. Consequently, th&iah estimate
proposed for the.PV- Rl VC algorithm is anL Tl - Rl VC estimate ofM,, i.e. 6 =
[ (T ()T ]T is given. Setr = 0.

Step 2 Compute an estimate pft;) via numerical approximation of

Alpe, &, 97)X() = Blpe, 4, p7)ult),
where (") is estimated in the previous iteration. Based.et),,, deducex(t;) which
is bounded according to Assumption A5. Moreover in terms s§umption A3,x(¢)
Is not correlated to the noise.

Step 3 Compute the estimated continuous-time fiftets, )(7):

1

Qc(d, p™) = e, 70’ (36)

where F'(4, p7) is as given in (17).
Step 4 Use the CT filtef). (¢, ™) as well asg(t,) in order to generate the estimates of the

derivatives which are needed later to construct the regress

{Qcld, )XY pag {Qcld, PG5,
{Qe(, P )uja(t) Y20 e {Qc(d, ) Xia(tr) 215
Step 5 Compute the estimated discrete-time filter:
D(g',7'")

Yool oy = 2N 00
Qd(q 1 ) C(q_l’ﬁ(7)>7

Step 6 The needed filtered signdle!, (tx)}, 2o, ve(tx) and {x{,(tx)}i*/", are computed
by applying the DT filterQq on the estimated derivatives obtained in Step 4.

Step 7 Build the filtered estimated regresgeft,) and, in terms of C4, the filtered instrument

(i(tr) as:
@f(tk):[—yf(na_l)(tk) oo —ye(tr)

SR e R () ubalte) ol () ]
5f(tk)=[—>z§”a*1)(tk,1) o =Rty

SR e R ) wholt) ol () |
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Note that the generation of(¢) using Step 2 guarantees that the instrument is not
correlated to the noise and therefore implies C2.

Step 8 The IV optimization problem can now be stated in thenfor

[ ZCftkSOf tk]p—[ ZC L)yt ]

where the solution is obtained as

2

ST () —
pTN) = arg min

(37)

_1N

A(T—&-l [Zg tk LPf tk: ] ZCf tk

The resultings™Y(N) is the IV estimate of the process model associated parameter
vector at iterationr + 1 based on the prefiltered input/output data.

Step 9 An estimate of the noise signals obtained as

B(te) = y(te) — X(te, p7). (38)
Based ony, the estimation of the noise model parameter vegtor!) follows, using
in this case theARMA estimation algorithm of th&/ATLAB identification toolbox (an
IV approach can also be used for this purpose, see [20]).
Step 101f6"tY) has converged or the maximum number of iterations is readhet stop,
else increase by 1 and go to Step 2.

2) TheLPV- SRI VC Algorithm: Based on a similar concept for the estimation of CT LPV-OE
models, the so-callesimplifiedLPV- Rl VC (LPV- SRI VC) method can also be developed. This
method is based on a model structure (14) witfy—*,n) = D(¢~',n) = 1 and consequently
in this caseQq(¢',n) = 1. Therefore theLPV- SRI VC algorithm remains the same as the
LPV- Rl VC algorithm except Step 5, 6 and 10 of Algorithm 1 are skippedtuially, the
LPV- SRI VC does not lead to the statistically optimal PEM for hybrid 1-BY models, however
it still leads to consistent estimates. Moreover, a CT LPV4@&dels does not involve any DT
filtering and consequently, their structure is fully CT uslifor hybrid LPV-BJ models.

IV. SIMULATION EXAMPLE

As a next step, the performance of the proposed algorithepr@sented on a representative
simulation example. It is important to note that to the besthe authors’ knowledge, the
presented method is the first approach able to handle theofas®ored output measurement
noise for CT LPV models. Therefore, the results obtainedHergresented algorithm cannot be

compared to other algorithms.
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A. Data generating system

The system taken into consideration is inspired by a bendhmeample proposed by Rao
and Garnier in [17]. It has been widely used since then to detnate the performance of
direct continuous-time identification methods [17]-[18], [35]. In order to create a CT LPV
system on which the strength of direct CT identification camdémonstrated, a “moving pole” is
considered. A particular feature of LPV systems is that theye an LTI representation for every
constant trajectory op. Such an LTI representation describes the so-called froedravior of
the system and can be expressed in a transfer function forterins of the frozen concept, the
“moving pole” means that a particular pole of these frozamgfer functions of, is a function
of p. This phenomenon often occurs in mechatronic applicatsuth as for instance, wafer
scanners [36]. In our case, the Rao-Garnier benchmark @tspmoving pole” LPV system is
a fourth order system with non-minimum phase frozen dynamaied ap-dependent complex

pole pair. It is defined as follows:

(

Ao(d,p) = 4%+ (2Gw2(p) + 2Gwr) 2 + (wi + w3 (p) + 4Gwa(p)wr) 42

+ (2Cwa (p)wi + 2¢w3 (p)wr)d + w3 (p)wi

So (39)
Bo(d,p) = —Twi(p)wid + w3(p)wi
1
|old) = T a0

whereT = 4 [s], w; = 20 [rad/s],(; = 0.1, (; = 0.5. The slow frozen modes, is p-dependent
and chosen ass; = 2+ 0.5p. Notice that the frozen behavigp (s fixed to a constant trajectory)

of S, for p = 0 corresponds exactly to the Rao-Garnier benchmark defined as

—Td +1
GRG(‘[) - T2 2 . (40)
(Z +2G5 + V(GG +20enm + D
Using the given numerical values§, takes the following form

(

Ao(d,p) = d* +af(p)a® + a§(p)d? + a5(p)4 + ag(p)
So  Bo(d,p) = b3(p)d + b5 (p) (41)
1

H,(q) =

\ (9) =17 71+ 0.2q2
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where

aS(p) =5+ 0.25p, a3(p) = 408 + 3p + 0.25p7, (42a)
a$(p) = 416 + 108p + p?, a$(p) = 1600 + 800p + 100p?, (42b)
b3(p) = —6400 — 3200p — 400p?, b3(p) = 1600 + 800p + 100p>. (42c)

The Bode plot 0f20 frozen behaviors o8, is depicted in Figure 1 foR0 fixed values of the
scheduling variable equally distributed from-1 to 1 where the consequence of the moving

low frequency mode can be clearly observed.

Magnitude(dB)
Phase(rad)
Lo

|
[e2]

|
[ee]

10° 10° 10" 10° B 10° 10" 10°
Frequency(rad/s) Frequency(rad/s)

=
o

Fig. 1. Bode plot of the frozen behaviors of the true LPV system for&Qes of the scheduling variabte(between—1 to 1)

To obtain data records for identification purposes, thetigmnal « is chosen as a uniformly
distributed sequencé/(—1,1), while the scheduling variable is chosen gg) = sin(nt).
Furthermore, the sampling period is choserfas- 1ms, and the simulation time %}, = 10s

which, considering the currently available acquisitiorssibilities, is a fair assumption.
B. Model structures

In the sequel both thé.PV- RI VC and the LPV- SRI VC algorithms are studied for the
identification of the data generating systéin The proposed.PV- Rl VC method is applicable
to the hybrid LPV-BJ model and assumes the following modeicstire:

(

Ald,p) = d* +ar(p)d® + az(p)d’ + az(p)d + as(p)
Mrpy_rve § B(4,p) = bo(p)d + b1(p)

1
H =
9 = T v 4

where
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a1(p) = a1 o+ a11p, . as(p) = ago + ag1p + a272p2, (43a)
as(p) = ago + az1p + Cls,zp?, as(p) = aso + as1p + Cl4,2p2, (43b)
bo(p) = boo + bo1p + b072p2, bi(p) = b1o + b11p + b1,2P2- (43c)

while the LPV- SRI VC method is applicable to CT LPV-OE models and assumes thefioigp
model structure:
A(d,p) = d* +ai(p)d® + ax(p)d® + az(p)d + as(p)
Muzy-suve § B(d,p) = bo(p)d + by (p) (44)
H(g) =1
with a1(p), az(p), as(p), as(p), bo(p), b1(p) as given in (43a-f). Note that to demonstrate the
achievable performance with the proposed methods we astanhaformation about the plant
in terms of model order and structural dependency is knovripr
In terms of identification, the modeM py_gvc COrresponds to the case € M while the
model M py_srrve COrresponds to the more realistic practical assumpfipe G and H,, ¢ H.
Therefore,17 parameters are to be estimated by tteV- SRI VC algorithm and19 by the
LPV- Rl VC algorithm. To provide representative resultsMante Carlo(MCs) simulation of

Nye = 200 random realizations is used withSignal-to-Noise RatigSNR) of 20dB where

SNR = 10 log ];XO , (45)

and P, is the power of signak. The MC results obtained using both algorithms are predente
in Table 1. It can be clearly seen that the estimates are safiavhich conforms to the theory.
The standard deviation for the nominal part of the coeffisidi, o(p) andb, o(p)) remains low
whereas it raises considerably for coefficienis(p) andb. »(p).

In Figure 2, the200 simulated model outputs are plotted together with valaiatilata set
(generated under the same excitation conditions as thesatefar estimation). It can be seen that
despite the large variance in the estimated parametel®) andb. »(p), the simulated outputs
remain close to the true noise-free output signal (consigehe level of noise corresponding to
a SNR = 20dB). It appears therefore, that these parameter values hawe eontribution to the
observed output signal under these excitation conditibhss, in terms of minimization of the
squared prediction error, their role is less significantoiviesults in a relatively large variance

of their estimates under noisy conditions. This fact undes that experiment design is needed
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TABLE |

MONTE CARLO SIMULATION RESULTS WITH ADDITIVE COLORED MEASUREMENTNOISE FORSN R = 20 DB

LPV- Rl VC LPV- SRI VC
Name || True Value|| mean | st. dev.|| mean | st. dew.
a0 5 4.99 0.058 4.99 0.059
ai 0.25 0.249 | 0.081 | 0.249 | 0.082
a0 408 407.94 | 1.27 407.95| 1.29
a1 3 2.93 1.47 2.92 1.47
a2 0.25 0.268 2.35 0.251 2.37
as.o 416 415.64 | 14.22 || 415.61 | 14.19
as 1 108 107.72 | 11.20 107.76 | 11.13
as2 1 1.14 30.62 1.17 30.40
a0 1600 1598.9 | 44.58 || 1599.1 | 44.67
Q4,1 800 799.31 | 27.22 || 799.38 | 27.13
Q42 100 101.31 | 79.85 || 101.08 | 80.01
bo.o -6400 -6396.4| 47.95 | -6396.4| 48.03
bo 1 -3200 -3195.2| 65.72 || -3195.2| 65.76
bo.2 -400 -398.92| 70.40 || -399.14| 70.30
bio 1600 1593.8 | 366.9 || 1593.8 | 365.7
bi1 800 805.02 | 219.77| 802.43 | 221.7
b2 100 104.86 | 749.61 | 102.95| 743.9
dy -1 -0.999 | 0.0096 X X
dsy 0.2 0.202 | 0.0094 X X

to minimize the variance of the parameters estimates. Hexyéhere is a lack of input design
methods suited for the identification of LPV systems (sed, [l and references therein) as
the concept of persistency of excitation is not well underdtyet for LPV models. A procedure
for input design for CT-LTI models such as in [35] might be ahle to solve the estimation
problem of thea.»(p) and b, »(p) parameters but optimal input design is not investigated for
the considered system here.

Consequently, the quality of the estimated model cannot dgejd only from the parameter
values. Therefore, the Bode plot of each estimated madigk(= 200) at 20 frozen values of
p from —1 to 1 are depicted in Figure 3. It can be clearly observed from theeBaot that the

large variance of the parameters,(p) andb. »(p) plays an important role in the low frequency
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— Noisy output
0.5 h ﬁ Simulated outputs
L Ll -Noise-free output
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Fig. 2. 200 simulated model outputs together with a noise-free and a singgddtput

area only whereas it does not affect the quality of the eséichanodels for frequencies above
0.5 rad/s. Therefore in order to analyze the distribution ojpoeses at low frequencies, the
density of curves at frequency = 0.1 rad/s is displayed on the left hand-side of Figure 3 both
for the magnitude and phase. Furthermore, this distribuiensity is used as color coding for
drawing the frequency responses in the Bode plot: the dargerea line, the higher the number
of estimated models having the same response at 0.1 rad/s. In terms of this description,
it becomes clear that the estimated models are normallyilisdd and centered on the true
model. Moreover, it can be seen from Table | that tH&/- RI VC and LPV- SRI VC give very
similar variances in the estimated parameters. This resefthe hypothesis of a sub-optimal
excitation.

Finally, the most interesting advantage of the direct CThestion in LPV framework is shown
in Figure 4. In this figure, the poles of tl260 estimated models &0 fixed values ofp between
—1 and1 are plotted against the poles of the true model. This figuse displays in the top
part the density of the real part of the poles. Using the salea as in Figure 3, the intensity of
each displayed pole is related to the number of poles amdmg@lksimulations which have the
same real part. Using this representation, it can clearlgdsa that the pole distribution around
the “fixed pole” (around-2 + 20i) has a gaussian distribution while there is a sparse réparti
around the “moving pole” (aroung-0.5+0.16) & (2 + 0.5p)i). Furthermore, the imaginary part
of all estimated poles is in the close neighborhood of thegimary part of the “fixed pole”.
This means that by using a parsimonious CT model, the estihmatelels perfectly captures the
time-varying nature ofS, as well as the transient behavior from one operating candiio the

other, which is a significant achievement considering themexity of the studied system and

February 2, 2011 DRAFT



0.096 0.072 0.048 0.024

0 ; :
- -1
2 -2
-3 T-3r
4 2.4
&
_5 0O _5-
-6 -6F
-7 -7t
0.239 0.12 0 107" 160
curves density frequency (rad/s)
Fig. 3. Bode plots of the estimated models
0.12 T T
0.09r i
=
2 0.061 1
Jo)
o
0.03r J
—8.5 -2 -1.5 -1 -0.5 0
30 T
20F - ]
T
g 10r 1
>
= -
g o —_—
&
£ -100 1
-20r - 4
3 . . . .
—8.5 -2 -1.5 -1 -0.5 0
Real part

Fig. 4. Poles of the estimated models and of the true system

the level of additive noise.
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C. Comments

Note that trying to identify a discrete-time model for thensmlered CT system is quite a

tedious task and requires the following critical issues é¢calddressed:

« In the LTI case, it has been shown that direct CT identificatiwethods are better suited
for the identification of the Rao-Garnier benchmark [18]. e fpresented LPV context,
this means that any frozen behavior&f (for any fixed trajectory op) is better identified
using a direct CT identification method.

« Using the trapezoidal integration method [16], the systescdbed in (1) is discretized as:

2 — Top(tp_i) Tb Tb
t) = — kL) Y )
Vi) = S5 ) 2 Tl S T

By analyzing this simple discretization scheme, it is cldaat tapplying it to (39) re-

Y(tr—1) + u(ty—1). (46)

sults in i) the augmentation of the number of parameters tedtenated, ii) non-linear-
in-the-parameters dependence pnii) some dynamic dependence gn(appearance of
p(te—1),p(tr—2) ... terms).
Estimating such a DT model, where the dependence® ame non-linear-in-the-parameters,
is hardly feasible using the existing parametric method# asquires a customized nonlinear
optimization approach. Alternatively, non-parametrictimoels can be applied or the model can
be approximated by a simplified model structure. The latéaxes the assumptiof, € G: in
other words, the time-varying property of the LPV systemtkiis case, a “moving pole”) would
not anymore be directly linked to the coefficients of the adexed DT model and consequently,
could not be clearly identified.
V. CONCLUSION
Due to the lack of methods dedicated to the case of directiraonis-time identification
of LPV models, there exists a clear gap between the availaletification approaches and
the practical needs of control synthesis. In order to brittge gap, a novel method has been
proposed in this paper for the identification of hybrid LPV4Badels and CT LPV-OE models
with a p-independent noise process.
The presented method is based on a particular MISO-LTI maditation of the data equations
which enables the use of Refined IV-based methods for LPV 10emsad the error-prediction-
minimization framework. The proposed algorithm has bestetton a representative numerical

simulation example inspired by the Rao-Garnier benchmalke. @resented example has shown
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that the proposed procedure is robust to noise and can i@agomell estimate the system in case

of an imperfect noise model. Furthermore, it was motivateat in the given LPV framework

and for relatively complicated systems, a direct CT estiomathethod is an attractive approach

for capturing the true time-varying nature of the studiedtem. In this paper, only the case

of p-independent noise models has been investigated. EverfinedelV-based methods are

theoretically unbiased fop-dependent noise models, the investigation of schedulemedent

noise models remain as a topic for future research.
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