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Direct Identification of Continuous-Time LPV

Input/Output Models

V. Laurain, R. T́oth, M. Gilson, H. Garnier

Abstract

Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuous-

time (CT) requiring accurate and low-order CT models of the system. However, identification of

continuous-time LPV models is largely unsolved, representing a gap between the available LPV iden-

tification methods and the needs of control synthesis. In order to bridge this gap, direct identification

of CT LPV systems in an input-output setting is investigated, focusing on the case when the noise part

of the data generating system is an additive discrete-time colored noise process. To provide consistent

model parameter estimates in this setting, a refined instrumental variable (IV) approach is proposed and

its properties are analyzed based on the prediction-error framework. The benefits of the introduced direct

CT-IV approach over identification in the discrete-time case are demonstrated through a representative

simulation example inspired by the Rao-Garnier benchmark.

Index Terms

Continuous-time models, LPV models, system identification, refined instrumental variable, Box–

Jenkins models, input/output.

I. I NTRODUCTION

The framework oflinear parameter-varying(LPV) systems was introduced in the 1990s with

the purpose to handle in a simple but efficient way the often nonlinear or time-varying nature

of systems encountered in practice. The LPV system class forms an intermediate step between

linear time-invariant(LTI) systems and nonlinear/time-varying plants as the signal relations in

LPV systems are considered to be linear just as in the LTI case, but the parameters are assumed

to be functions of a measurable time-varying signal, the so-calledscheduling variablep : Z → P.

Here the compact setP ⊂ R
nP denotes thescheduling space. The scheduling variablep represents
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the nonlinear or time-varying nature of the modeled dynamics,e.g.p describes the changes in the

operating conditions of the plant, time-variation of the system dynamics or external effects like

temperature changes. This LPV modeling concept allows for awide representation capability

of physical processes, but the real practical significance of the LPV framework lays in its well

worked out and industrially reputed control synthesis approaches,e.g. [1]–[3], that have led to

many successful applications of LPV control in practice [4]–[7].

However a major drawback of the LPV framework today is that, despite the advances of the

LPV control field, identification of such systems is not well developed as the current methods

are unable to support practical control design. Commonly LPVcontrollers are synthesized in

continuous time(CT) as stability and performance requirements of the closedloop behavior can

be more conveniently expressed in CT, like in a mixed-sensitivity setting [8]. Therefore, the

current design tools focus on continuous-time LPV controller synthesis requiring accurate and

low-order CT models of system. However, LPV identification methods are almost exclusively

developed fordiscrete-time(DT) (for a recent survey see [9]), as in this setting it is much

easier to handle the estimation of parameter-varying dynamics. The only available CT method

(to the authors’ knowledge) uses a local, or a so-called multiple-model type of approach, where

CT-LTI models of the LPV system are estimated for constant trajectories ofp, i.e. at certain

operating operating points, by using a frequency domain method and then the resulting models

are interpolated overP. However such an approach is unable to capture the global behavior of

the system (limited number of identified CT-LTI models, no information about transient behavior

from one operating condition to the other) and is affected byinterpolation problems described

in [10], [11]. Thus, the absence of CT methods obviously represents a gap between the available

identification approaches and the needs of LPV control synthesis. As developing CT-LPV models

based on first principle laws is a very costly and time consuming process, often resulting in a

high-order model unsuitable for control design, there is a growing need of the LPV framework

for efficient identification methods that directly deliver reliable CT models.

In practice, CT systems can only be identified based on sampledmeasured data records. Thus

in general, for delivering a CT model estimate, the availableapproaches in system identification

can be categorized as follows [12]:

• Indirect approaches: These methods involve the identification of a DT model in a com-

pletely DT setting, followed by the transformation of the DTmodel estimate to a CT form.
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• Direct approaches: The methods formulate the identification of the CT model directly

based on samples of the measured CT signals.

Unfortunately, transformation of DT-LPV models to CT-LPV models is more complicated than

in the LTI case and despite recent advances in LPV discretization theory (see [13], [14]) the

theory of CT realization of DT models is still in an immature state. Thus, it is often difficult in

practice to obtain an adequate CT realization from an identified DT model. In order to illustrate

the underlaying problems, consider the following simple CT-LPV model

d

dt
y(t) + p(t)y(t) = bu(t), (1)

wherep, y and u are the scheduling, output and input signals of the system respectively and

b ∈ R is a constant parameter. When approximating the derivative in DT by, for example, using

the backward Euler approximation:d
dt

y(tk) ≈
y(tk)−y(tk−1)

Ts
with Ts > 0 the sampling period, (1)

transforms into:
y(tk) =

1

1 + Tsp(tk)
y(tk−1) +

bTs

1 + Tsp(tk)
u(tk). (2)

This discretized model has now twop-dependent coefficients to be estimated instead of the one

single constant parameter in (1). Moreover, the dependenceof the coefficients onp is not linear

anymore but rational with a singularity wheneverp(tk) = − 1
Ts

. An alternative way to approximate

derivatives in DT is to apply a forward Euler approximation:d
dt

y(tk) ≈
y(tk+1)−y(tk)

Ts
, which gives

y(tk) = (1 − Tsp(tk−1))y(tk−1) + bTsu(tk−1). (3)

This discretized model has only onep-dependent coefficient and the linearity of the dependence

is preserved, however now the model equation is dependent onp(tk−1) instead ofp(tk). This so-

calleddynamic dependence(dependence of the model coefficients on time-shifted versions ofp)

is a common result of model transformations in the LPV case and rises problems in LPV system

identification and control alike (see [15]). Furthermore, it is well known in numerical analysis

that the forward Euler approximation is more sensitive for the choice ofTs in terms of numerical

stability than the backward Euler approximation [16]. Thismeans that (3) requires much faster

sampling rate than (2) to give a stable approximation of the system and it is more sensitive

to parameter uncertainties which rises problems if (3) is used for estimation. Consequently it

can be concluded that even for a very simple CT-LPV model, estimation of a DT model with
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the purpose of obtaining afterwards a CT realization is a tedious task with many underlaying

problems for which there are no general theoretical solutions available.

Unlike an indirect approach, a direct solution offers a way to efficiently overcome the previous

problems. Due to the recent technological developments of sampling instruments in terms of

achievable sampling rate, use of direct CT approaches in identification has recently regained

interest showing a better performance than indirect approaches for both linear and nonlinear

models, seee.g. [12], [17]–[20]. An exhaustive review of direct estimationmethods can be

found in [12], [21], [22]. Among the available identification approaches for CT-LTIinput-

output (IO) models, the interest forinstrumental variable(IV) methods has been growing in

the last years [20], [23], [24]. The main reason of this increasing interest is that IV methods

offer similar performance as extendedleast square(LS) methods or otherprediction-error-

minimization(PEM) methods (see [18], [25]) and provide consistent results even for an imperfect

noise structure which is the case in most practical applications. These approaches have been used

in many different frameworks such as direct CT [18], [22], direct nonlinear CT [19] or closed-

loop CT identification [26], [27] and lead to optimal estimates in the LTI case if the system

belongs to the model set defined.

In this paper we aim to provide the very first step towards bridging the existing gap between

LPV control and identification via the introduction of a direct CT identification approach that

benefits from the properties of IV methods. It was shown recently in [28] that in order to minimize

the classical prediction error for DT-LPV models, aMultiple Input Single Output(MISO)-LTI

reformulation of the data-generating system is needed. Based on a similar reformulation, the

prediction error minimization problem can be clearly stated in the present CT case. Furthermore,

the proposed approach extends the recent results from the CT-LTI identification framework

using an IV method to face the direct CT-LPV identification problem stated here. The resulting

approach not only provides the very first global LPV identification method that is able to provide

consistent estimates of LPV-IO models in continuous-time,but it is also applicable in case of

colored output noise and has a low computational load. Furthermore, it opens the possibility for

closed-loop CT-LPV identification.

The paper is organized as follows: in Section II, the generalclass of CT-LPV systems in

an IO representation form is introduced pointing out the main difficulties of this model class.

Additionally, a reformulation of the dynamical description of LPV data generating plants in the
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considered setting is developed which makes possible the extension of CT LTI-IV methods to

the LPV framework. In Section III, CT LPV-IV methods are described and analyzed, while their

performance are illustrated in Section IV through a representative simulation example inspired

by the Rao-Garnier benchmark. Finally in Section V, the main conclusions of the paper are

drawn and directions of future research are indicated.

II. PROBLEM DESCRIPTION

A. System description

Consider the data generating CT LPV system described by the following equations

So







Ao(pt, d )χo(t) = Bo(pt, d )u(t),

y(t) = χo(t) + vo(t),
(4)

whered denotes the differentiation operator w.r.t. time, i.e.d = d
dt

, p : R → P is the scheduling

variable withpt = p(t), χo is the noise-free output,vo is a quasi stationary noise process with

bounded spectral density and it is uncorrelated top. Ao and Bo are polynomials ind with

coefficientsao
i and bo

i that are meromorphic functions1 of p with no singularity onP

Ao(pt, d ) = d na +
na∑

i=1

ao
i (pt)d

na−i and Bo(pt, d ) =

nb∑

j=0

bo
j(pt)d

nb−j. (5)

Note thatao
i and bo

j are functions ofp at time t, which is calledstatic dependence. In LPV

system theory, a more generalp-dependence of coefficients than static is required to establish

equivalence of representations. In particular, the coefficientsao
i andbo

j need to depend also on the

time derivatives ofp, which is calleddynamic dependence[9]. In order to simplify the upcoming

discussion, we restrict our attention to static dependence. Nevertheless, the established results

hold also in the case of dynamic dependence of (4) and of the proposed model structure.

In terms of identification we can assume that sampled measurements of(y, p, u) are available

with a sampling periodTs > 0. Hence, we will denote the discrete-time samples of these signals

as u(tk) = u(kTs), wherek ∈ Z. The basic idea to solve the noisy CT modeling problem of

(4) is to assume that the CT noise processvo(t) can be considered at the sampling instances

as a DT noise process filtered by a DT transfer function. In this paper, a practically general

case is considered where the colored noise associated with the sampled output measurement

1A function f is called meromorphic iff =
g

h
whereg, h are holomorphic (analytic) functions andh is not the zero function.
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y(tk) is assumed to have a rational spectral density which might has no relation to the actual

process dynamics ofSo. As a preliminary step towards the case of ap-dependent noise, it is also

assumed that this spectral density is not dependent onp, like in case of a measurement noise.

Therefore,vo is represented by a discrete-timeautoregressive-moving-average(ARMA) model

vo(tk) = Ho(q)eo(tk) =
Co(q

−1)

Do(q−1)
eo(tk), (6)

whereeo(tk) is a DT zero-mean white noise process,q−1 is the backward time shift operator,

i.e. q−iu(tk) = u(tk−i). Co and Do are monic polynomials having constant coefficients. This

formulation of the noise model (6) avoids the rather difficult mathematical problem of treating

sampled CT random process in terms of a filtered piece-wise constant CT noise source (see [29],

[30]). In terms of (6),y(tk) can be written as

y(tk) = χo(tk) + vo(tk), (7)

which corresponds to a so called hybrid Box-Jenkins system concept already used in CT iden-

tification of LTI systems (see [29], [30], [19]). Furthermore, in terms of (6), exactly the same

noise assumption is made as in the classical DT Box-Jenkins models (see [31]).

B. Model structure considered

1) Process model:The process model is denoted byGρ and defined in a form of an LPV-IO

representation with a static scheduling dependence:

Gρ : (A(pt, d , ρ), B(pt, d , ρ)) , (8)

where thep-dependent polynomialsA andB given as

A(pt, d , ρ) = d na +
na∑

i=1

ai(pt)d
na−i and B(pt, d , ρ) =

nb∑

j=0

bj(pt)d
nb−j,

are parameterized as

ai(pt) = ai,0 +
nα∑

l=1

ai,lfl(pt), i = 1, . . . , na, (9a)

bj(pt) = bj,0 +

nβ∑

l=1

bj,lgl(pt), j = 0, . . . , nb, (9b)

In this parametrization,{fl}
nα

l=1 and {gl}
nβ

l=1 are meromorphic functions ofp, with static

dependence, allowing the identifiability of the model (theycan be chosen for example as linearly

independent functions onP). The associated model parameters are stacked column wise:
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ρ = [ a1 . . . ana b0 . . . bnb
]⊤ ∈ R

nρ , (10)

whereai = [ ai,0 ai,1 . . . ai,nα
] ∈ R

nα+1, bj = [ bj,0 bj,1 . . . bj,nβ
] ∈ R

nβ+1 and nρ =

na(nα + 1) + (nb + 1)(nβ + 1). Introduce alsoG = {Gρ | ρ ∈ R
nρ}, as the collection of all

process models in the form of (8).

2) Noise model:The noise model is denoted byH and defined as a DT-LTI transfer function:

Hη : (H(q, η)) , (11)

whereH is a monic rational function given in the form of

H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + . . . + cncq

−nc

1 + d1q−1 + . . . + dnd
q−nd

. (12)

The associated model parametersη are stacked columnwise in the parameter vector,

η = [ c1 . . . cnc d1 . . . dnd
]⊤ ∈ R

nη , (13)

wherenη = nc + nd. Additionally, denoteH = {Hη | η ∈ R
nη}, the collection of all noise

models in the form of (11).

3) Whole model:With respect to a given process and noise part(Gρ,Hη), the parameters can

be collected asθ = [ ρ⊤ η⊤ ] and the signal relations of the LPV-BJ model, denoted in the

sequel asMθ, are defined as:

Mθ







A(pk, d , ρ)χ(t)=B(pk, d , ρ)u(t)

v(tk)=
C(q−1, η)

D(q−1, η)
e(tk)

y(tk)=χ(tk) + v(tk)

(14)

Based on this model structure, the model set, denoted asM, with process (Gρ) and noise (Hη)

models parameterized independently, takes the form

M =
{
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}

. (15)

This set corresponds to the set of candidate models in which we seek the model that explains

data gathered fromSo the best, under a given identification criterion (cost function).

C. Predictors and prediction error

Similar to the LTI case, in the LPV prediction error framework, one is concerned about finding

a model in a given LPV model structureM, which minimizes the statistical mean of the squared

prediction error based on past samples of(y, u, p). However in the LPV case, no transfer function
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representation of systems is available. Furthermore, multiplication with d is not commutative

over thep-dependent coefficients [9], meaning that

d (B(p, d )u(t)) =

nb∑

j=0

(
∂bj

∂p
(pt)dpt

)

d
nb−ju(t) + B(p, d )du(t) (16)

which is not equal toB(p, d )du(t).

In the DT case, in order to define predictors with respect to modelsMθ ∈ M, a convolution

type representation of the system dynamics,i.e. an LPV Impulse Response Representation(IRR),

is used where the coefficients have dynamic dependence onp [9], [28]. Considering the CT case,

no IRR has been developed yet and thus the same concept cannot be used to define the predictors.

1) System reformulation and prediction error:Under the assumed noise conditions and for

DT-LPV-IO models, it was shown in [28] that an efficient way todeal with the LPV identification

problem in the PEM framework is to express the LPV system as a MISO LTI model. Therefore,

based on the same idea, if the system belongs to the model set defined and with a deterministic

p signal, it is possible to express the CT LPV system as a CT MISO LTI system by rewriting

the signal relations of (4) as

χ(na)
o (t) +

na∑

i=1

ao
i,0χ

(na−i)
o (t)

︸ ︷︷ ︸

Fo(d )χo(t)

+
na∑

i=1

nα∑

l=1

ao
i,lfl(p(t))χ(na−i)

o (t)
︸ ︷︷ ︸

χo
i,l

(t)

=

nb∑

j=0

nβ∑

l=0

bo
j,lgl(p(t))u(nb−j)(t)

︸ ︷︷ ︸

uj,l(t)

(17)

whereg0(t) = 1 and the superscript(n) for a signal, likeu(n), denotes thenth time-derivative

of the signal,e.g.u(n)(t) = d nu(t). Furthermore,F (d ) = d na +
∑na

i=1 ai,0d
na−i while u(n)(tk)

represents the value of the signalu(n)(t) sampled at time instancetk.

Note that in this way, the time variation of the coefficients is transposed onto the signals

χo
i,l(t) = fl(p(t))χ(na−i)

o (t), {i, l} ∈ {1 . . . na, 1 . . . nα}, (18a)

uj,l(t) = gl(p(t))u(nb−j)(t), {j, l} ∈ {1 . . . nb, 1 . . . nα}. (18b)

Therefore, the process part of the LPV-BJ model is rewritten as aMultiple-Input Single-Output

(MISO) system with(nb + 1)(nβ + 1) + nanα inputs {χo
i,l}

na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0. By using

(17), (14) can be rewritten in terms of the sampled output signal y(tk) as

y(tk) = −

(
na∑

i=1

nα∑

l=1

ao
i,l

Fo(d )
χo

i,l

)

(tk) +

(
nb∑

j=0

nβ∑

l=0

bo
j,l

Fo(d )
uk,j

)

(tk)

︸ ︷︷ ︸

Go(χo,u,tk)

+ vo(tk), (19)
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which is a sampled LTI representation of the system defined in(4).

Given the assumption thatvo(tk) = Ho(q)eo(tk) andC(q−1) is a monic polynomial, (6) can

be rewritten in the form
vo(tk) = eo(tk) +

∞∑

i=1

hieo(tk−i). (20)

This shows that the knowledge of{vo(τ)}τ≤tk−1
implies the knowledge of{eo(τ)}τ≤tk−1

. There-

fore, by using the traditional approach [31], the prediction of vo(tk) is considered as the condi-

tional expectation ofvo(tk) based on{eo(τ)}τ≤tk−1
which is according to (20):

v̂(tk) = v̂(tk | tk−1) = E{vo(tk) | {eo(τ)}τ≤k−1} =
∞∑

i=1

hieo(tk−i), (21)

whereE is the expectation operator. Assuming thatHo has a stable inverse such thateo(tk) =

H−1
o (q)vo(tk), then the classical one-step-ahead predictor can be given as [31]

v̂(tk) = v(tk | tk−1) = vo(tk) − eo(tk) = (1 − H−1
o (q))vo(tk). (22)

Consequently, for the considered LPV system formulated as in(19), the one-step-ahead predic-

tor of y(tk) (defined as the conditional expectationŷ(tk | tk−1) on{y(ti)}i≤k−1, {u(ti), χo(ti)}i≤k)

is given by

ŷ(tk) =H−1
o (q)Go(χo, u, tk) + (1 − H−1

o (q))(y(tk)),

ŷ(tk) =H−1
o (q)

(

−

(
na∑

i=1

nα∑

l=1

ao
i,l

Fo(d )
χo

i,l

)

(tk) +

(
nb∑

j=0

nβ∑

l=0

bo
j,l

Fo(d )
uk,j

)

(tk)

)

+ (1 − H−1
o (q))(y(tk)). (23)

2) Prediction Error Model:Using the same idea as in Subsection II-C1, the LPV model from

(14) can also be expressed in a MISO LTI form [28]:

yθ(tk) = −

(
na∑

i=1

nα∑

l=1

ai,l

F (d , ρ)
χi,l

)

(tk) +

(
nb∑

j=0

nβ∑

l=0

bj,l

F (d , ρ)
uk,j

)

(tk) + H(q, η)e(tk). (24)

Therefore, similarly to the LTI case, theone-step-ahead prediction errorcan be expressed and

defined as [31]:
εθ(tk) = y(tk) − ŷθ(tk), (25)
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where ŷθ(tk) is theone-step-ahead predictorbased on the model (14) written as in (24) and is

defined as (see (23)):

ŷθ(tk) = H−1(q, η)

(

−

(
na∑

i=1

nα∑

l=1

ai,l

F (d , ρ)
χi,l

)

(tk) +

(
nb∑

j=0

nβ∑

l=0

bj,l

F (d , ρ)
uk,j

)

(tk)

)

+
(

1 − H−1(q, η)
)

y(tk). (26)

3) Prediction error minimization:DenoteDN = {y(tk), u(tk), p(tk)}
N
k=1 a data sequence of

So. Then to provide an estimate ofθ based on the minimization ofεθ, an identification criterion

W (DN , θ) can be introduced, like theleast squarecriterion

W (DN , θ) =
1

N

N∑

k=1

ε2
θ(tk), (27)

such that the parameter estimate is

θ̂N = arg min
θ∈R

nρ+nη
W (DN , θ). (28)

4) CT filtering and sampled data:The hybrid representation of the model (14) is a combined

operation of CT filtering and DT filtering which implicitly appears in the formulation of (26).

In order to clearly define the coexistence of DT and CT filteringin (26), a detailed investigation

and discussion about the assumptions and the structure of the model are needed. In this paper,

we considered the practically feasible situation such thatonly sampled measurements of the CT

signals (y, p, u) are available. In order to apply a CT filter on sampled data one can either

interpolate the samples to obtain a continuous-time signaland apply the CT filter on this

reconstructed signal or use a numerical approximation,i.e. DT approximation of the considered

system. This is a common problem for simulation of continuous-time systems. For simulation

purposes, DT approximation of the system can efficiently be dealt with by using powerful

numerical algorithms available [16]. Note that to derive anaccurate DT approximation of the

system, it is often sufficient in terms of the classical discretization theory to assume that the

sampled free CT signals of the system are restricted to be constant in the sampling period [32],

which has also been shown in case of LPV systems with static dependence [9]. This provides the

hypothesis, also used in [29], [30], that if CT(p, u) are piecewise constant between two samples,

then the trajectory ofy is completely determined by its observations at the sample period Tsk.

Therefore, under these inter-sampling conditions, the following operation is well-defined [22]:
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(F (d )y) (tk) = F (d )y(tk), (29)

Under this assumption, and considering that a CT filter can only be applied to sampled data

through numerical approximation, the usual filter properties such as commutativity holds between

a DT filter and the numerical approximation of a CT filter. Nevertheless, it is important to notice

that the numerical approximation method used for the evaluation of a CT filter does not have

any impact on the coefficients to be estimated which remain, in terms of (26), the coefficients

of the parsimonious CT model.

D. Identification problem statement

Based on the previous considerations, the identification problem addressed in the sequel can

now be defined.

Problem 1: Given a CT-LPV data generating systemSo defined as in (4) and a data setDN

collected fromSo. Based on the hybrid LPV-BJ model structureMθ defined by (14), estimate

the parameter vectorθ usingDN under the following assumptions:

A1 So ∈ M, i.e. there exits aGo ∈ G and aHo ∈ H such that(Go,Ho) is equal toSo.

A2 In (9a-b){fl}
nα

l=1 and{gl}
nβ

l=1 are chosen such that(Go,Ho) is identifiable.

A3 u(tk) andp(tk) are not correlated toeo(tk).

A4 DN is informative with respect toM.

A5 So is globally BIBO stable, i.e. for any trajectory ofp : R → P and any bounded input

signalu, the output ofSo is bounded [9].

III. R EFINED INSTRUMENTAL VARIABLE FOR LPV SYSTEMS

Based on the MISO-LTI formulation (24), it becomes theoretically possible to achieve optimal

PEM using linear regression [28]. This allows to extend theRefined Instrumental Variable(RIV)

approach of the LTI framework to provide an efficient way of identifying hybrid LPV-BJ models.

A. Linear Regression for CT LPV-BJ models

Using the LTI model (14) reformulated as in (24),y(tk) can be written in the regression form:

y(na)(tk) = ϕ⊤(tk)ρ + ṽ(tk), (30)
where,

ϕ(tk) = [ −y(na−1)(tk) . . . −y(tk) −χ1,1(tk) . . . −χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)]
⊤

ρ = [ a1,0 . . . ana,0 a1,1 . . . ana,nα
b0,0 . . . bnb,nβ

]⊤
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and ṽ(tk) = F (d , ρ)v(tk). The extended regressor in (30) contains the noise-free output terms

{χi,k}. Therefore, by momentary assuming that{χi,l(tk)}
na,nα

i=1,l=0 are knowna priori, the pre-

diction errorεθ(tk) for (30) is given in terms of (25) as:

εθ(tk) =
D(q−1, η)

C(q−1, η)

[

1

F (d , ρ)

(

F (d , ρ)y(tk) −
[

−

na∑

i=1

nα∑

l=1

ai,lχi,l(tk) +

nb∑

j=0

nb∑

l=0

bj,luj,l(tk)
]
)]

.

(31)

In the given context, the filtersD(q−1,η)
C(q−1,η)

andF (d , ρ) in (31) commute (see Section II-C4). The

later allows us to rewritethe one-step-ahead prediction error(31) associated with (30) as

εθ(tk) = (F (d , ρ)yf) (tk) −
na∑

i=1

nα∑

l=1

ai,lχ
f
i,l(tk) +

nb∑

j=0

nβ∑

l=0

bj,lu
f
k,j(tk), (32)

whereyf(tk), uf
j,l(tk) andχf

i,l(tk) represent the outputs of a hybrid prefiltering operation, involving

the CT and DT filters (see [33]):

Qc(d , ρ) =
1

F (d , ρ)
and Qd(q

−1, η) =
D(q−1, η)

C(q−1, η)
. (33)

In other words:

yf(tk) =
D(q−1, η)

C(q−1, η)

[ (
1

F (d , ρ)
y

)

(tk)

]

. (34)

Based on (32), the associated linear-in-the-parameters model takes the form [33]:

y
(na)
f (tk) = ϕ⊤

f (tk)ρ + ṽf(tk), (35)
where

ϕf(tk) = [ −y
(na−1)
f (tk) . . . −yf(tk) −χf

1,1(tk) . . . −χf
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)]

⊤

ṽf(tk) = Qd(q
−1, η)Qc(d , ρ)ṽ(tk) = e(tk).

B. The refined instrumental variable approach

Under the assumption that both the inverse noise modelQd(q
−1, η) and the CT filterQc(d , ρ)

and consequently{χi,l(tk)}
na,nα

i=1,l=0 are knowna priori, traditional parametric estimation methods

from the LTI framework could provide efficient estimates ofρ and η. However, in a practical

situation,Qd(q
−1, η) andQc(d , ρ) are unknown and need to be estimated as well.

Furthermore, it is important to notice here that the regressors in (35) and (30) contain some

time-derivatives ofy and u which, in the assumed framework considering sampled data, can

only be approximated. It is well-known that the approximation of derivatives requires a low

pass filtering ofy andu. The most commonly used filters for this purpose are Poisson’s filters,
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or state-variable filters [21]. The drawback of these filtersis that they require the choice of

a design variable. However, in the proposed approachF (d , ρ) achieves this stable low-pass

filtering directly. Therefore, it is a particular strength of the presented reformulation (35) is that

the estimated filterF (d , ρ) is not only used for the minimization of the prediction errorbut it

also provides the filtering for the approximation of the timederivatives. In order to estimate the

parameter vector in (35) without the prior knowledge ofQd(q
−1, η) and Qc(d , ρ), the refined

instrumental variable(RIV) method is proposed due to the following reasons:

• RIV methods lead to optimal estimates in the LTI case ifSo ∈ M (see [23], [20], [33]).

• In a practical identification scenario,Go ∈ G might be fulfilled due to first principle or

expert’s knowledge, however, it is commonly fair to assume that Ho /∈ H. In such case,

RIV methods have the advantage of providing consistent estimates whereas methods such

as the extended LS are biased and more advanced PEM methods need robust initialization

[25].

• The RIV algorithm has been successfully used for models with similar hybrid structure,

like in the case of linear models [17], [20] and nonlinear ones [19].

Aiming at the extension of the RIV approach for the estimationof hybrid LPV-BJ models,

consider the relationship between the process input and output signals as in (30). Based on this

form, the extended-IV estimate is given as [20]:

ρ̂XIV(N)=arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζf(tk)ϕ
⊤
f(tk)

]

ρ−

[

1

N

N∑

t=1

ζf(tk)y
(na)
f (tk)

]∥
∥
∥
∥
∥

2

W

,

where ζ(tk) is the instrument,‖x‖2
W = xT Wx, with W a positive definite weighting matrix

and the filtered variablesζf , ϕf and yf are constructed using a stable prefilter. IfGo ∈ G, the

extended-IV estimate is consistent under the following twoconditions2:

C1 Ē{ζf(tk)ϕ
⊤
f (tk)} is full column rank.

C2 Ē{ζf(tk)ṽf(tk)} = 0.

Moreover it has been shown in [23], [24] and [20] that the minimum variance estimator can be

achieved if:

C3 W = I.

2The notationĒ{.} = limN→∞

1
N

PN

t=1 E{.} is adopted from the prediction error framework of [31].
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C4 ζ is chosen as the noise-free version of the extended regressor in (30) and is therefore

defined in the present LPV case as:

ζ(tk)=
[

−χ(na−1)(tk) . . .−χ(tk) −χ1,1(tk) . . .−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

C5 Go ∈ G andnρ is equal to the minimal number of parameters required to representGo

with the considered model structure.

C6 The used hybrid filter is chosen as the filter chain (33).

While conditions C1, C2, C3 and C5 are quite straight-forward to fulfill (see [23], [24]),

both the construction of a suitable instrument that fulfillsC4 and of an optimal filter fulfilling

C6 are not trivial in practice. The RIV algorithm involves an iterative (or relaxation) algorithm

in which, at each iteration, an ‘auxiliary model’ is used to generate the instrumental variables

(which guarantees C2), as well as the associated prefilters. This auxiliary model is based on the

parameter estimates obtained at the previous iteration. Consequently, if convergence occurs, C4

and C6 are fulfilled. Thus, the RIV is a suitable method to i) efficiently estimateρ in (35) when

So ∈ M and ii) consistently estimateρ in a practical situation whenHo /∈ H.

Nonetheless, it has to be added that even in the CT LTI case, theconvergence of the iterative

CT RIV algorithm has not been proven so far and is only empirically assumed [20]. An additional

concern is that even if conditions C1-C6 are fulfilled, assuming that the properties of the approach

established in the LTI case apply to the estimation of the reformulated LPV model would mean

that the noise-free output terms area priori known. Therefore, even if the presented method

considerably lowers the variance in the estimated parameters, the optimality of the estimates

cannot be guaranteed.

C. TheLPV-RIVC and LPV-SRIVC (Simplified RIVC) Algorithms

Based on the previous considerations, the iterative scheme of the LPV-Refined Instrumental

Variable for Continuous-time models(LPV-RIVC) as well as the simplified version (LPV-SRIVC)

can be given in the considered hybrid LPV framework.

1) TheLPV-RIVC Algorithm: The following algorithm is designed for hybrid LPV-BJ mod-

els.

Algorithm 1 (LPV-RIVC):

Step 1 The usual initialization forCT-RIV algorithm is a DT model estimate issued from an

LS method or aDT-RIV algorithm. In the LPV case however, the transformation
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of a DT model into a CT model is not trivial. Consequently, the initial estimate

proposed for theLPV-RIVC algorithm is anLTI-RIVC estimate ofMθ, i.e. θ̂(0) =

[ (ρ̂(0))⊤ (η̂(0))⊤ ]⊤ is given. Setτ = 0.

Step 2 Compute an estimate ofχ(tk) via numerical approximation of

A(pt, d , ρ̂
(τ))χ̂(t) = B(pt, d , ρ̂

(τ))u(t),

whereρ̂(τ) is estimated in the previous iteration. Based onMθ̂(τ) , deduceχ̂(tk) which

is bounded according to Assumption A5. Moreover in terms of Assumption A3,χ(t)

is not correlated to the noise.

Step 3 Compute the estimated continuous-time filterQ̂c(d , ρ̂
(τ)):

Q̂c(d , ρ̂
(τ)) =

1

F (d , ρ̂(τ))
, (36)

whereF (d , ρ̂(τ)) is as given in (17).

Step 4 Use the CT filter̂Qc(d , ρ̂
(τ)) as well asχ̂(tk) in order to generate the estimates of the

derivatives which are needed later to construct the regressor:

{Q̂c(d , ρ̂
(τ))χ̂(i)}na−1

i=0 , {Q̂c(d , ρ̂
(τ))ŷ(i)}na−1

i=0 ,

{Q̂c(d , ρ̂
(τ))uj,l(tk)}

nb,nβ

j=0,l=0, {Q̂c(d , ρ̂
(τ))χ̂i,l(tk)}

na,nα

i=1,l=0.

Step 5 Compute the estimated discrete-time filter:

Q̂d(q
−1, η̂(τ)) =

D(q−1, η̂(τ))

C(q−1, η̂(τ))
,

Step 6 The needed filtered signals{uf
j,l(tk)}

nb,nβ

j=0,l=0, yf(tk) and{χf
i,l(tk)}

na,nα

i=1,l=0 are computed

by applying the DT filterQ̂d on the estimated derivatives obtained in Step 4.

Step 7 Build the filtered estimated regressorϕ̂f(tk) and, in terms of C4, the filtered instrument

ζ̂f(tk) as:

ϕ̂f(tk) =
[

−y
(na−1)
f (tk) . . . −yf(tk)

−χ̂f
1,1(tk) . . . −χ̂f

na,nα
(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]⊤

,

ζ̂f(tk) =
[

−χ̂
(na−1)
f (tk−1) . . . −χ̂f(tk)

−χ̂f
1,1(tk) . . . −χ̂f

na,nα
(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]⊤

.
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Note that the generation ofχ(t) using Step 2 guarantees that the instrument is not

correlated to the noise and therefore implies C2.

Step 8 The IV optimization problem can now be stated in the form

ρ̂(τ+1)(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζ̂f(tk)ϕ̂
⊤
f (tk)

]

ρ −

[

1

N

N∑

k=1

ζ̂f(tk)y
(na)
f (tk)

]∥
∥
∥
∥
∥

2

. (37)

where the solution is obtained as

ρ̂(τ+1)(N)=

[
N∑

k=1

ζ̂f(tk)ϕ̂
⊤
f (tk)

]−1N∑

k=1

ζ̂f(tk)y
(na)
f (tk).

The resultingρ̂(τ+1)(N) is the IV estimate of the process model associated parameter

vector at iterationτ + 1 based on the prefiltered input/output data.

Step 9 An estimate of the noise signalv is obtained as

v̂(tk) = y(tk) − χ̂(tk, ρ̂
(τ)). (38)

Based on̂v, the estimation of the noise model parameter vectorη̂(τ+1) follows, using

in this case theARMA estimation algorithm of theMATLAB identification toolbox (an

IV approach can also be used for this purpose, see [20]).

Step 10 If θ(τ+1) has converged or the maximum number of iterations is reached, then stop,

else increaseτ by 1 and go to Step 2.

2) TheLPV-SRIVC Algorithm: Based on a similar concept for the estimation of CT LPV-OE

models, the so-calledsimplifiedLPV-RIVC (LPV-SRIVC) method can also be developed. This

method is based on a model structure (14) withC(q−1, η) = D(q−1, η) = 1 and consequently

in this caseQd(q
−1, η) = 1. Therefore theLPV-SRIVC algorithm remains the same as the

LPV-RIVC algorithm except Step 5, 6 and 10 of Algorithm 1 are skipped. Naturally, the

LPV-SRIVC does not lead to the statistically optimal PEM for hybrid LPV-BJ models, however

it still leads to consistent estimates. Moreover, a CT LPV-OEmodels does not involve any DT

filtering and consequently, their structure is fully CT unlike for hybrid LPV-BJ models.

IV. SIMULATION EXAMPLE

As a next step, the performance of the proposed algorithms are presented on a representative

simulation example. It is important to note that to the best of the authors’ knowledge, the

presented method is the first approach able to handle the caseof colored output measurement

noise for CT LPV models. Therefore, the results obtained for the presented algorithm cannot be

compared to other algorithms.

February 2, 2011 DRAFT



17

A. Data generating system

The system taken into consideration is inspired by a benchmark example proposed by Rao

and Garnier in [17]. It has been widely used since then to demonstrate the performance of

direct continuous-time identification methods [17]–[19],[34], [35]. In order to create a CT LPV

system on which the strength of direct CT identification can bedemonstrated, a “moving pole” is

considered. A particular feature of LPV systems is that theyhave an LTI representation for every

constant trajectory ofp. Such an LTI representation describes the so-called frozenbehavior of

the system and can be expressed in a transfer function form. In terms of the frozen concept, the

“moving pole” means that a particular pole of these frozen transfer functions ofSo is a function

of p. This phenomenon often occurs in mechatronic applicationssuch as for instance, wafer

scanners [36]. In our case, the Rao-Garnier benchmark inspired “moving pole” LPV system is

a fourth order system with non-minimum phase frozen dynamics and ap-dependent complex

pole pair. It is defined as follows:

So







Ao(d , p) = d 4 + (2ζ2ω2(p) + 2ζ1ω1) d
3 + (ω2

1 + ω2
2(p) + 4ζ2ζ1ω2(p)ω1) d

2

+ (2ζ2ω2(p)ω2
1 + 2ζ1ω

2
2(p)ω1)d + ω2

2(p)ω2
1

Bo(d , p) = −Tω2
2(p)ω2

1d + ω2
2(p)ω2

1

Ho(q) =
1

1 − q−1 + 0.2q−2

(39)

whereT = 4 [s], ω1 = 20 [rad/s], ζ1 = 0.1, ζ2 = 0.5. The slow frozen modeω2 is p-dependent

and chosen as:ω2 = 2+0.5p. Notice that the frozen behavior (p is fixed to a constant trajectory)

of So for p = 0 corresponds exactly to the Rao-Garnier benchmark defined as

GRG(d ) =
−T d + 1

( d
2

ω2
1

+ 2ζ1
d

ω1
+ 1)( d

2

ω2
2(0)

+ 2ζ2
d

ω2(0)
+ 1)

. (40)

Using the given numerical values,So takes the following form

So







Ao(d , p) = d 4 + ao
1(p)d 3 + ao

2(p)d 2 + ao
3(p)d + ao

4(p)

Bo(d , p) = bo
0(p)d + bo

1(p)

Ho(q) =
1

1 − q−1 + 0.2q−2

(41)
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where

ao
1(p) = 5 + 0.25p, ao

2(p) = 408 + 3p + 0.25p2, (42a)

ao
3(p) = 416 + 108p + p2, ao

4(p) = 1600 + 800p + 100p2, (42b)

bo
0(p) = −6400 − 3200p − 400p2, bo

1(p) = 1600 + 800p + 100p2. (42c)

The Bode plot of20 frozen behaviors ofSo is depicted in Figure 1 for20 fixed values of the

scheduling variablep equally distributed from−1 to 1 where the consequence of the moving

low frequency mode can be clearly observed.
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Fig. 1. Bode plot of the frozen behaviors of the true LPV system for 20 values of the scheduling variablep (between−1 to 1)

To obtain data records for identification purposes, the input signalu is chosen as a uniformly

distributed sequenceU(−1, 1), while the scheduling variable is chosen asp(t) = sin(πt).

Furthermore, the sampling period is chosen asTs = 1ms, and the simulation time isTmax = 10s

which, considering the currently available acquisition possibilities, is a fair assumption.

B. Model structures

In the sequel both theLPV-RIVC and theLPV-SRIVC algorithms are studied for the

identification of the data generating systemSo. The proposedLPV-RIVC method is applicable

to the hybrid LPV-BJ model and assumes the following model structure:

MLPV−RIVC







A(d , p) = d 4 + a1(p)d 3 + a2(p)d 2 + a3(p)d + a4(p)

B(d , p) = b0(p)d + b1(p)

H(q) =
1

1 + d1q−1 + d2q−2

where
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a1(p) = a1,0 + a1,1p, . a2(p) = a2,0 + a2,1p + a2,2p
2, (43a)

a3(p) = a3,0 + a3,1p + a3,2p
2, a4(p) = a4,0 + a4,1p + a4,2p

2, (43b)

b0(p) = b0,0 + b0,1p + b0,2p
2, b1(p) = b1,0 + b1,1p + b1,2p

2. (43c)

while theLPV-SRIVC method is applicable to CT LPV-OE models and assumes the following

model structure:

MLPV−SRIVC







A(d , p) = d 4 + a1(p)d 3 + a2(p)d 2 + a3(p)d + a4(p)

B(d , p) = b0(p)d + b1(p)

H(q) = 1

(44)

with a1(p), a2(p), a3(p), a4(p), b0(p), b1(p) as given in (43a-f). Note that to demonstrate the

achievable performance with the proposed methods we assumethat information about the plant

in terms of model order and structural dependency is known priori.

In terms of identification, the modelMLPV−RIVC corresponds to the caseSo ∈ M while the

modelMLPV−SRIVC corresponds to the more realistic practical assumptionGo ∈ G andHo /∈ H.

Therefore,17 parameters are to be estimated by theLPV-SRIVC algorithm and19 by the

LPV-RIVC algorithm. To provide representative results, aMonte Carlo (MCs) simulation of

NMC = 200 random realizations is used with aSignal-to-Noise Ratio(SNR) of 20dB where

SNR = 10 log
Pχo

Pvo

, (45)

andPx is the power of signalx. The MC results obtained using both algorithms are presented

in Table I. It can be clearly seen that the estimates are unbiased which conforms to the theory.

The standard deviation for the nominal part of the coefficients (a∗,0(p) andb∗,0(p)) remains low

whereas it raises considerably for coefficientsa∗,2(p) and b∗,2(p).

In Figure 2, the200 simulated model outputs are plotted together with validation data set

(generated under the same excitation conditions as the one used for estimation). It can be seen that

despite the large variance in the estimated parametersa∗,2(p) andb∗,2(p), the simulated outputs

remain close to the true noise-free output signal (considering the level of noise corresponding to

a SNR = 20dB). It appears therefore, that these parameter values have a low contribution to the

observed output signal under these excitation conditions.Thus, in terms of minimization of the

squared prediction error, their role is less significant which results in a relatively large variance

of their estimates under noisy conditions. This fact underlines that experiment design is needed
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TABLE I

MONTE CARLO SIMULATION RESULTS WITH ADDITIVE COLORED MEASUREMENTNOISE FORSNR = 20 DB

LPV-RIVC LPV-SRIVC

Name True Value mean st. dev. mean st. dev.

a1,0 5 4.99 0.058 4.99 0.059

a1,1 0.25 0.249 0.081 0.249 0.082

a2,0 408 407.94 1.27 407.95 1.29

a2,1 3 2.93 1.47 2.92 1.47

a2,2 0.25 0.268 2.35 0.251 2.37

a3,0 416 415.64 14.22 415.61 14.19

a3,1 108 107.72 11.20 107.76 11.13

a3,2 1 1.14 30.62 1.17 30.40

a4,0 1600 1598.9 44.58 1599.1 44.67

a4,1 800 799.31 27.22 799.38 27.13

a4,2 100 101.31 79.85 101.08 80.01

b0,0 -6400 -6396.4 47.95 -6396.4 48.03

b0,1 -3200 -3195.2 65.72 -3195.2 65.76

b0,2 -400 -398.92 70.40 -399.14 70.30

b1,0 1600 1593.8 366.9 1593.8 365.7

b1,1 800 805.02 219.77 802.43 221.7

b1,2 100 104.86 749.61 102.95 743.9

d1 -1 -0.999 0.0096 X X

d2 0.2 0.202 0.0094 X X

to minimize the variance of the parameters estimates. However, there is a lack of input design

methods suited for the identification of LPV systems (see [28], [9] and references therein) as

the concept of persistency of excitation is not well understood yet for LPV models. A procedure

for input design for CT-LTI models such as in [35] might be suitable to solve the estimation

problem of thea∗,2(p) and b∗,2(p) parameters but optimal input design is not investigated for

the considered system here.

Consequently, the quality of the estimated model cannot be judged only from the parameter

values. Therefore, the Bode plot of each estimated model (NMC = 200) at 20 frozen values of

p from −1 to 1 are depicted in Figure 3. It can be clearly observed from the Bode plot that the

large variance of the parametersa∗,2(p) andb∗,2(p) plays an important role in the low frequency
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Fig. 2. 200 simulated model outputs together with a noise-free and a single MCs output

area only whereas it does not affect the quality of the estimated models for frequencies above

0.5 rad/s. Therefore in order to analyze the distribution of responses at low frequencies, the

density of curves at frequencyω = 0.1 rad/s is displayed on the left hand-side of Figure 3 both

for the magnitude and phase. Furthermore, this distribution density is used as color coding for

drawing the frequency responses in the Bode plot: the darker agiven line, the higher the number

of estimated models having the same response atω = 0.1 rad/s. In terms of this description,

it becomes clear that the estimated models are normally distributed and centered on the true

model. Moreover, it can be seen from Table I that theLPV-RIVC andLPV-SRIVC give very

similar variances in the estimated parameters. This reinforces the hypothesis of a sub-optimal

excitation.

Finally, the most interesting advantage of the direct CT estimation in LPV framework is shown

in Figure 4. In this figure, the poles of the200 estimated models at20 fixed values ofp between

−1 and 1 are plotted against the poles of the true model. This figure also displays in the top

part the density of the real part of the poles. Using the same idea as in Figure 3, the intensity of

each displayed pole is related to the number of poles among all MC simulations which have the

same real part. Using this representation, it can clearly beseen that the pole distribution around

the “fixed pole” (around−2± 20i) has a gaussian distribution while there is a sparse repartition

around the “moving pole” (around(−0.5±0.16)± (2+0.5p)i). Furthermore, the imaginary part

of all estimated poles is in the close neighborhood of the imaginary part of the “fixed pole”.

This means that by using a parsimonious CT model, the estimated models perfectly captures the

time-varying nature ofSo as well as the transient behavior from one operating condition to the

other, which is a significant achievement considering the complexity of the studied system and
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Fig. 3. Bode plots of the estimated models

Fig. 4. Poles of the estimated models and of the true system

the level of additive noise.
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C. Comments

Note that trying to identify a discrete-time model for the considered CT system is quite a

tedious task and requires the following critical issues to be addressed:

• In the LTI case, it has been shown that direct CT identificationmethods are better suited

for the identification of the Rao-Garnier benchmark [18]. In the presented LPV context,

this means that any frozen behavior ofSo (for any fixed trajectory ofp) is better identified

using a direct CT identification method.

• Using the trapezoidal integration method [16], the system described in (1) is discretized as:

y(tk) =
2 − Tsp(tk−1)

2 + Tsp(tk)
y(tk−1) +

Tsb

2 + Tsp(tk)
u(tk) +

Tsb

2 + Tsp(tk)
u(tk−1). (46)

By analyzing this simple discretization scheme, it is clear that applying it to (39) re-

sults in i) the augmentation of the number of parameters to beestimated, ii) non-linear-

in-the-parameters dependence onp iii) some dynamic dependence onp (appearance of

p(tk−1), p(tk−2) . . . terms).

Estimating such a DT model, where the dependences onp are non-linear-in-the-parameters,

is hardly feasible using the existing parametric methods asit requires a customized nonlinear

optimization approach. Alternatively, non-parametric methods can be applied or the model can

be approximated by a simplified model structure. The latter relaxes the assumptionGo ∈ G: in

other words, the time-varying property of the LPV system (inthis case, a “moving pole”) would

not anymore be directly linked to the coefficients of the considered DT model and consequently,

could not be clearly identified.

V. CONCLUSION

Due to the lack of methods dedicated to the case of direct continuous-time identification

of LPV models, there exists a clear gap between the availableidentification approaches and

the practical needs of control synthesis. In order to bridgethis gap, a novel method has been

proposed in this paper for the identification of hybrid LPV-BJmodels and CT LPV-OE models

with a p-independent noise process.

The presented method is based on a particular MISO-LTI reformulation of the data equations

which enables the use of Refined IV-based methods for LPV IO models in the error-prediction-

minimization framework. The proposed algorithm has been tested on a representative numerical

simulation example inspired by the Rao-Garnier benchmark. The presented example has shown
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that the proposed procedure is robust to noise and can reasonably well estimate the system in case

of an imperfect noise model. Furthermore, it was motivated that in the given LPV framework

and for relatively complicated systems, a direct CT estimation method is an attractive approach

for capturing the true time-varying nature of the studied system. In this paper, only the case

of p-independent noise models has been investigated. Even if refined IV-based methods are

theoretically unbiased forp-dependent noise models, the investigation of scheduling dependent

noise models remain as a topic for future research.
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