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SIMULATION RESULTS ON THE ASYMPTOTIC
PERIODICITY OF COMPARTMENTAL SYSTEMS WITH
LAGS*
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Abstract. In this paper, we study the asymptotic behavior of solutions for a phar-
macokinetic application, where the drug level is controlled between two boundary levels
by repeated impulsive doses.
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1. Introduction. More than fifty years ago, compartmental systems
were originally introduced as the dynamic models of biological systems [1],[6].
Since then, this type of modeling have become an essential theory for medical
sciences, because with it, the qualitative analysis of drugs in living organisms
can be implemented. In many pharmacokinetic applications the biological
systems are described by models consisting of three or two compartments,
but in case of a very simplified system, the whole behavior can be described
by one compartment. Although, one compartment seems to be a very sketchy
representation of the original system, the presence of an inner delayed feed-
back in the model can make this level of resolution useful [2]. For a dosage
model, impulsive input is very common, by which we would like to control
the drug level, or the state of the system between an efficiency drug level ¢
and an overdose level a + ¢. By considering this, a basic drug dosage model
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has the following form:

(1) z(t) = —azt)+pzt—71) t>o0,

z(t) = p(t—0), ifo—7<t<o,

©(0) > ¢, andif z(t—) = ¢ then z(t4+) = a + ¢, when t > o,
where a, 3,7 € Ry, the starting time is denoted by o € Ry, ¢ : [-7,0] — Ry
is integrable, and R = [0,00). Because of the strong dissipativity of the
original system, we assume « > (3. In this short note, our main goal is to
verify and also to extend a conjecture (see [3]) on the asymptotic periodicity

of the solutions of problem (1). We also give a brief explanation of the
numerical methods which have been used to develop our computer programs.

2. Asymptotic periodicity of solutions. The fundamental solution
v:[—7,00) = R of (1) is defined as follows:

(2) 0(t) = —av(t)+po(t—71), t>0,

1, t=0,
olt) = {0, —r<t<0,

where v(t) exists, is unique on [—7,00), and continuous on [0, 00). Because
a > (3, it follows tlim v(t) = 0, and the zero solution is asymptotically stable
—00

(see [3]). Moreover, we show

PROPOSITION 1. Let v be the fundamental solution of (1), and assume
a > . Then

(3) e < w(t) < e, t>0,

where \g is the positive root of g = o — Be7.
Proof. Clearly, such unique \q > 0 exists. Equation (2) and the positivity
of 8 and v(t) yield v(t) > —awv(t). Therefore

log(v(t)) — log(v(0)) = /0 %ds > /0 —ads = —at,

which clearly leads to v(t) > e . To get the upper estimation of v(t) we
introduce the function w(t) = v(t)e*?, and consider

w(t) = Mv(t)e + e (—aw(t) + fu(t — 7))
(Ao — @)w(t) + B w(t — 1)
—Be (w(t) —w(t — 1)), t>0.
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Therefore

%(w(t) + BeoT /;w(S) dS) =0, t=20,

and thus, using the initial condition of v, we get
t
w(t)=1- [36’\07/ w(s) ds, t>0.
t—T

This concludes the proof, since w(t) > 0 for ¢ > 0 implies w(t) < 1,¢>0. O
The exact solution of problem (1) has been constructed in [3]:

THEOREM 1. There exist a sequence of constants {ty}, 0 =1t < ... <
ty < ... called injection times, such that the original boundary value problem
(1) has a unique solution x(t) = x(o, ¢, «, B, T,a,c)(t) which can be written
into the following form:

(4) o(t) zv(t—a)cp(())+ﬁ/_ ot =0 —s = T)pls)ds +a > ol — 1),

where t > o, t ¢ {tk}r>1-
To show the asymptotic periodicity of solutions we consider a special,
related problem:

(5) yit) = —ax(t)+pyt—71), t>o,
yit) = t—o), ifo—17<t<o,
ylo+iT+) = ylo+iT—)+a, i=0,1,2,...,
where T, o, 3, 7,0 € Rf and a > 3. This related problem is very similar to
(1) except of that the input of this model is a T periodic constant impulsive
input sequence. For (5) the unique solution is (see [4]):
[t/T]

(6) y(o, ¢, 0, B,7,0)() = y(o, 0,0, B,7,0)() + @ > _v(t —o —iT),t > o,
=0

where [.] is the greatest integer part function. Based on [4], we know that:
(7) lim [y(o, @, @, 5,7, 0)(t) — aWor(t)| = 0,

where W, (t) = > 2y v(t — o — [t/T] +4T) is a T periodic, piecewise con-
tinuous function and

Wor(T+) = Zv(iT) =14+ W,r(T-) = (a+¢)/a.

i=0
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Relation (7) motivated the following conjecture in [3] for problem (1).

CONJECTURE 1. (see [3]) For (1) iftlim |tk+1—ti| = T, then there exists
— 00
a k € R such that tlim |z (0, ¢, a, B,7,a,c¢)(t) — aWer(t)] =0 holds.
—00

If this result is true, then asymptotic periodicity exists in (1). Our nu-
merical experiments suggest the following extension of the above conjecture:

CONJECTURE 2. For (1) there exists constants | € N and k € R such
that tlim |tkss — te] =T, and tlim |z(o, ¢, v, B,7,a,¢)(t) — aW,r(t)| = 0.
—00 — 00

In addition to numerically verifying Conjecture 2, one of our main goal
is to give an approximation on the fundamental time period 71" of the limit-
ing periodic function al¥, 7. These questions are important in constructing
optimalized drug dosing strategies.

We can derive form (3)

(%) 00 00
Ze—aiT < ZU(ZT) < Ze_)\OiT'
i=1 =1 =1

Using relation W, r(T+) — 1 =32, v(iT) = ¢/a we get

e—OcT C e—)\oT

(8) —— < -<

1l—e T = g = 1—e M1’

since e~ T, e=2T < 1 by the positivity of & and \g. From (8) simple calcu-
lation implies
1. c+a 1 c+a

—1 <T< =1 )
9) an c _/\on c

The efficiency of estimation (9) will be investigated in the next section (see
Fig. 7-10).

3. Numerical simulations. To investigate the problem numerically,
we developed a software package in Matlab. We used a version of the explicit
Euler method and the chain method, described in the next section, in our
simulations. In all of our experiments we found that always exists an [, such
that limy o |tgr; —tx| = T, showing that with this input strategy, periodicity
always reachable. Based on these investigations, we classified the solutions
by speed of convergence and by order of periodicity:
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Quickly convergent, | = 1 solutions: These solutions (Fig. 1) have a short
transient and their limiting periodic function has an exponential decay. In
this case [ = 1, thus the difference between the consecutive injection points
tends to a constant value (Fig. 2), which equals to the time period T of the
limiting solution, as stated in Conjecture 1.

Slowly convergent, | = 1 solutions: These solutions (Fig. 3) have a much
longer transient and their periodic function is the multiplication of a exponen-
tial function and a polynomial. We analytically computed these polynomials
in several cases. For these systems, the relative value of a and f is much
closer to each other than for quickly convergent systems. As in the previous
case, Conjecture 1 holds (see Fig. 4).

Solutions with [ > 1: As the relative value of o and § gets close enough
to each other and the time delay is larger than an unknown value related to
a, then |ty 1 — tx| will be asymptotically periodic, but not convergent (see
Fig. 5), and, at the same time, the solution is also asymptotically periodic,
and Conjecture 2 holds. In this case during an interval with length 7" there
will be more than one injection points.

In Fig. 7-10 we investigate the effect of the parameters on the values of T
on examples, where all parameters except one are fixed. We found that the
time delay has no effect on the value of 7. We observed that for small a or
distant o and §3, the lower and upper estimations given by (9) are efficient but
if a increases and «, 3 get closer to each other, our knowledge about the true
behavior of the system fades away. On Fig. 6 the efficiency of our estimation
is presented when | = 6. We found numerically that our estimation (9) is
also valid in the case, when we replace T in (9) by |tx41 — tx| (see Fig. 6,
where we plotted out the upper and lower estimates in (9) together with 7T
and |tk+1 — tk|)

4. Estimation of the periodic solution. In the following, we present
a numerical method in case of [ = 1, to approximate the periodic function
W. With this method, we would like to give an easy way to describe the
behaviour of (1) after a large number of inputs. To do this, we will use
the chain method from [5]. By this method, any channel with time delay
is substituted by the series connection of infinite number of compartments
with no time lags. If we use only finite number (r — 1) € N of substituting
compartments, then our system is approximated with a first order ODE
system:

(10) % = AX(t) + bu(t),
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—a 0 0 r/r (o)

B8 —r/t 0 0 —7/r
A — 0 r/t —r/t 0 0 , }"{(0) _ fo ?O(S)ds

6 O‘ r/T —T/.T . f__‘r(r_l)T/T (p(S)dS 1
andb=(a, 0, -+, 0 )fxr, u(t) =Y 7o, 0(t — ti), where t;, denotes the

injection points and ¢ is the Dirac-delta function. By solving (10), the esti-
mation of the unique solution of (1) can be obtained between each injection
points:

n—1 t
(11)  %(a, B,7,a,¢)(t,r) = eA"%(0) + Z/ AT g(s — ty)ds,
i=0 Yt

where q(s) = ( ad(s), 0, -+, 0 )fw and t € [o,t,). After large number of
inputs the solution of (11) gets close enough to its periodic state, which can be
described by its fundamental time period T, and initial values z1, ..., z_; €
R of the substituting compartments at the beginning of the period. These
parameters can be obtained by solving

(12) ZO = eATzl’
T T
where zg = ( C, 21, ‘v, Zp_1 ) and z; = ( a+c, z1, -+, Zr_1 ) CIf

we assumes that 7 = T, then from these parameters, the estimated periodic
solution of (1) can be constructed, which one period is as follows:

(13) (v, B,7,a,¢)(t, ) = eAlzy, te (0+,T-).

CONJECTURE 3. There exists a k € R such that the unique solution of
(1) satisfies:

(14) lim ’l’(O’, ®, CY,B, T,Q, C)(t) - pi(aa 677—7 a, C)(t — R, T)| = 07

t,r—00

wherep:(l, 0, ---, 0).

In Fig. 11 an example is given which affirms that Conjecture 3 is valid.
By analyzing Fig. 12, it can be concluded that the estimated solution is a
bit faster due to the finite resolution, but in between consecutive injection
points the difference of the two solutions is relatively small.
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Fig. 4: |tk+1 — tk| for
x(0,6,4,3.5,0.4,4,5)(t)

Fig. 2: |tg41 — tg| for
2(0,2,1,0.5,0.2,1, 3)(¢)

Fig. 3:
2(0,6,4,3.5,0.4,4, 5)(t)
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Fig. 5: |tg+1 — t| for
x(0,14,3,2.75,4,9,5)(¢)

Fig. 6: Estimations for T;—g,
z(0,14,3,2.75,4,9, 5)(¢)
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Fig. 7: Effect of a on T for
2(0,1,,0.1,1,1,1)(¢)

Fig. 8: Effect of 8 on T for
z(0,1,1,8,1,1,1)(¢)

Fig. 9: Effect of a on T for
x(0,1,1,0.1,1,1,a)(¢)
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Fig. 10: Effect of ¢ on T for
2(0,1,1,0.1,1,¢,1)(¢)

Fig. 11: z(t) and %(¢,25),
2(0,14,3,2.75,4,9,5)(1)

Fig. 12: |z(t) — %(¢, 25)|,
2(0,14,3,2.75,4,9,5)(¢)
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