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Abstract— This paper proposes a method for reduction of
scheduling dependency in linear parameter-varying (LPV)
systems. In particular, both the dimension of the scheduling
variable and the corresponding scheduling region are shrunk
using kernel-based principal component analysis (PCA). Kernel
PCA corresponds to linear PCA that is performed in a high-
dimensional feature space, allowing the extension of linear
PCA to nonlinear dimensionality reduction. Hence, it enables
the reduction of complicated coefficient dependencies which
cannot be simplified in a linear subspace, giving kernel PCA
an advantage over other linear techniques. This corresponds
to mapping the original scheduling variables to a set of lower
dimensional variables via a nonlinear mapping. However, to
recover the original coefficient functions of the model, this
nonlinear mapping is needed to be inverted. Such an inversion
is not straightforward. The reduced scheduling variables are a
nonlinear expansion of the original scheduling variables into a
high-dimensional feature space, an inverse mapping for which
is not available. Therefore, we cannot generally assert that
such an expansion has a “pre-image” in the original scheduling
region. While certain pre-image approximation algorithms are
found in the literature for Gaussian kernel-based PCA, we
aim to generalize the pre-image estimation algorithm to other
commonly used kernels, and formulate an iterative pre-image
estimation rule. Finally, we consider the case study of a
physical system described by an LPV model and compare
the performance of linear and kernel PCA-based LPV model
reduction.

I. INTRODUCTION

Principal component analysis (PCA) is a mathematical tool
that extracts a set of linearly uncorrelated variables from an
observation of possibly correlated variables using orthogonal
transformations. PCA is an eigenvector-based multivariate
data analysis technique. The extracted variables are called
principal components and are arranged in descending order
of their variance in the data, measured by their corresponding
eigenvalues. This means that the data components with
very small variance can be neglected without losing useful
information, a property which makes PCA an extremely
attractive option for dimensionality reduction purpose [1].
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The ability of PCA to reduce the data dimension makes it
ideal for tightening the scheduling region in linear parameter-
varying (LPV) models. LPV systems are a class of systems,
in which nonlinear models can be represented as a linear
dynamic relation of the input and output variables, where
this relation is dependent on a measurable time-varying
signal, the so called scheduling variable, which expresses
the varying operating conditions of the system. This allows
one to apply linear optimal control techniques to nonlinear
systems represented by LPV models. However, in practice,
LPV controller design often encounters significant difficul-
ties due to the high number of scheduling variables and
conservatism and overbounding in the scheduling region [2].
For instance, in polytopic LPV systems, the complexity of
controller synthesis has an exponential dependence on the
number of scheduling variables. Hence, a large number of
scheduling signals results in a high computational complexity
for controller synthesis. Due to this, one of the objectives in
deriving an LPV model for even a highly complex system is
to limit the number of scheduling variables to a very few as
described in [3], [4], [5]. PCA has proven to be an effective
tool for solving this problem and a handful of papers have
successfully demonstrated the use of PCA for finding tighter
scheduling regions for LPV systems (see [2], [7]).

With the emergence of kernel-based techniques, a new
avenue of data processing appeared in the last decade.
Kernels are nonlinear functions that enable us to perform
linear operations in high-dimensional feature spaces, where it
is easier to separate components in the data. These nonlinear
functions operate in the original data space and do not require
mapping of the original data to the feature space, where
the actual extraction takes place. This so called kernel trick
has made component extraction much more efficient and
realizable [8]. It is thus natural to investigate the use of
kernel-based PCA for attaining efficient LPV models with
reduced scheduling region.

In this paper, we explore the use of kernel-based PCA for
LPV model reduction. It should be noted that model reduc-
tion in the LPV case refers to both reduction of the number
of state variables (model order) and scheduling dependency
as these facets of complexity are strongly related [5]. In
particular, reduction of state-order can result in an increased
complexity, while reduction of dependency is often available
via the introduction of extra state variables [5]. Here, we
address the problem of reduction of the complexity of the
dependency with a proposed kernel PCA approach while the
current state order is preserved. We analyze the advantages of
kernel-based PCA over linear PCA, as well as the difficulties
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associated with it in obtaining a pre-image of the reduced
parameters in the feature space. The paper is arranged as
follows: Section II gives an introduction to LPV systems
and formulates the problem of interest. Section III revisits
the use of PCA for LPV systems. In Section IV, kernel-based
PCA is applied to determine a tighter LPV scheduling region,
and the mathematical advantages and pitfalls are explored.
Section V considers a practical example of a mechanical
system approximated by kernel-based PCA reduced LPV
model. Some concluding remarks are made in Section VI.
Throughout this paper, unless otherwise specified, for any
given vector β ∈ R

n, we use the notation β j
i to denote the

jth component of the ith measurement vector βi.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a nonlinear system Q shown in Figure 1. The
system describes (possibly) nonlinear dynamic relation be-
tween measurable signals µ : R → R

s. Let B be the set
of all trajectories of µ compatible with Q. By introducing
an auxiliary variable θ , one can reformulate the system
representation of Q as shown in Figure 1 (b), where given
the trajectory of θ , all relations between µ are linear.
By applying this reformulation of cutting the dependency
of θ on Q, and assuming that all trajectories of θ are
allowed in the resulting θ -dependent linear structure which
is now possible in Q, the reformulated system will form
a possible behavior B

′. This behavior B
′ will contain

B, giving us a linear, but θ -dependent description of Q.
The reformulated system represents an LPV system. This
enables us to use several linear control techniques and convex
controller synthesis for the nonlinear system described by an
LPV representation. There can be several different relations
between the scheduling variable θ and the original variables
µ . Variable θ might be a free variable w.r.t. Q, However,
often the auxillary variable depends on other signals. In such
a case, the resulting system is referred as a quasi parameter-
varying system [9].

LPV systems in continuous-time are often described by a
state-space representation as follows:

ẋ(t) = A(θ (t))x(t)+B(θ (t))u(t),
y(t) =C(θ (t))x(t)+D(θ (t))u(t), (1)

where x(t) ∈ R
nx , u(t) ∈ R

nu , and y(t) ∈ R
ny represent the

state, input, and output variables at time t, respectively. The
system matrix, as well as the input, output and feedthrough
matrices are continuous functions of the time-varying pa-
rameters θ (t) ∈ R

l , commonly known as the scheduling
variables. The scheduling variables are in turn a continuous
function of measurable signals µ(t) ∈ R

s, available from
the system. This dependence can be written as

θ (t) = p(µ(t)), p : R
s → R

l . (2)

The LPV system is considered affine in the scheduling
variables if

Q(θ ) =
l

∑
i=1

θ iQi, (3)

Fig. 1. (a) Original nonlinear system representation. (b) LPV representa-
tion. (c) Resulting behaviors

where Q(θ ) is given by

Q(θ ) =
[

A(θ ) B(θ )
C(θ ) D(θ )

]

. (4)

Now, consider the compact set Rθ ⊂ R
l : θ (t) ∈ Rθ ,∀t > 0

defined by vertices

Rθ := Co{θv1 · · ·θvN}, (5)

where N = 2l defines the number of vertices in the scheduling
region and Co denotes minimal convex hull. Given the
fact that θ can be obtained by a convex combination of
vertices θvi, and that Q(θ ) depends affinely on the scheduling
variables, it follows that the system can be represented by a
linear combination of multiple LTI systems at the vertices.
Such a representation/system is referred to as a polytopic
LPV system, giving a highly useful system representation
for LPV control design.

Given the system (1), the problem of LPV model reduction
can be described as follows: Find a mapping defined by

ρ(t) = q(µ(t)), q : R
s →R

m, (6)

where m ≤ l, such that the system matrices in

ẋ(t) = Ã(ρ(t))x(t)+ B̃(ρ(t))u(t),
y(t) = C̃(ρ(t))x(t)+ D̃(ρ(t))u(t), (7)

approximate (1) sufficiently well. We use kernel-based PCA
to find a tighter scheduling region, and seek to find a
relatively small m, that can approximate the original system
with the one in (7), without incurring a significant loss of
useful information in the scheduling variable data. The later
sections in this paper will formulate an accuracy measure for
this purpose.

III. PCA FOR LPV MODELING

Before formulating a kernel-based PCA algorithm for
model reduction, we quickly revisit the standard linear PCA
as applied to the LPV model reduction problem. For the basic
details of PCA, we refer the reader to [10]. To apply PCA
to LPV scheduling variable data, one first needs to generate
and collect data by means of measurement or simulation,
such that the data covers all regions of operation within the
operating range. Given the LPV system (1) and assuming
that the scheduling signals have been sampled at time instants
t = 1,2, · · · ,n, scheduling variables θi ∈ R

l for i= 1,2, · · · ,n
are computed and represented by the following l×n matrix:

Θ =
[

θ1 · · · θn
]

=
[

p(µ1) · · · p(µn)
]

,
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where n ≥ l. PCA can be applied either by performing a
singular value decomposition (SVD) on the data matrix Θ, or
by solving an eigenvalue problem for the covariance matrix
ΘΘT. Here, we describe the procedure based on eigenvalue
decomposition problem in order to maintain uniformity with
the kernel version of PCA. The covariance matrix is given
by C̄ = ΘcΘT

c , where Θc = N (Θ) = Θ−Θmean is the data
centered around the origin. We then solve an eigenvalue
problem for the covariance matrix C̄, such that C̄vi = λivi,
where λi and vi are the ith eigenvalue and eigenvector,
respectively. The eigenvectors are then sorted in descending
order of their corresponding non-zero eigenvalues, and the m
principal components for a test point θt at time t are extracted
using

ρt = q(µt) =V T
m p(µt) =V T

m θt ,

where Vm denotes an l ×m matrix whose columns contain
the first m significant eigenvectors associated with the m
significant eigenvalues. The approximation of the actual
parameter θ̂t corresponding to ρt can be computed as

θ̂t = N
−1(Vmρt), (8)

where N −1(vmρt) = vmρt +Θmean denotes scaling back of
the data by adding the mean along each dimension of Θ.

IV. KERNEL PCA FOR LPV MODELING

Kernel-based PCA, more simply known as kernel PCA,
is an extension of the traditional PCA approach, in which
linear dot-product operation is performed, albeit in a higher
dimensional feature space [1]. Due to the high dimension
of the feature space, separation of features or components
in the data is much easily realizable. The beauty of kernel-
based methods primarily lies in the now-famous kernel trick,
which allows performing linear operations in the feature
space without explicitly mapping the parameters into the
feature space. In LPV systems, this can lead to reduced
over-parametrization by reducing scheduling variables more
effectively.

Let us assume that the scheduling variables of the
LPV system (1) are mapped into the feature space as
Φ(θ1),Φ(θ2), · · · ,Φ(θn). We also assume that the mapped
parameters are centered, i.e., ∑n

j=1 Φ(θ j) = 0. Since it is not
possible to obtain the mean of data we do not explicitly cal-
culate, we will assume at this point that the data is centered
in the feature space and explore an implicit alternative to
centering the data, later in this section. To perform traditional
PCA on this data, we derive the covariance matrix as follows:

C̄ =
1
n

n

∑
j=1

Φ(θ j)ΦT(θ j). (9)

In order to select the principal components, the relation
λivi = C̄vi should hold, where λi and vi denote the ith

eigenvalue and eigenvector, respectively. We can, therefore,
consider the following

λ (v ·Φ(θi)) = (C̄v ·Φ(θi)), ∀ i = 1, · · · ,n, (10)

where (a ·b) denotes dot product given by aTb, and that there
exists coefficients αw for w = 1, · · · ,n such that

v =
n

∑
w=1

αwΦ(θw). (11)

This means that the eigenvectors of the matrix C̄ belong
to the span of Φ(θ j) for j = 1, · · · ,n. Substituting (9) and
(11) in (10), we obtain [12]

λ
n

∑
w=1

αw(Φ(θw) ·Φ(θi))

=

{(

1
n

n

∑
j=1

Φ(θ j)ΦT(θ j)

)(

n

∑
w=1

αwΦ(θw)

)}

·Φ(θi)

=
1
n

n

∑
j=1

n

∑
w=1

αw
(

Φ(θ j) ·Φ(θw)
)(

Φ(θ j) ·Φ(θi)
)

∀i = 1, · · · ,n

(12)

The eigenvalue problem in (12) only involves dot products
of mapped vectors in the feature space and does not explicitly
require computing Φ(·). We define an n× n matrix K as

Ki j = (Φ(θi) ·Φ(θ j)) = k(θi,θ j), (13)

where matrix K ∈ R
n×n is known as the Gram matrix,

or kernel matrix, and k is a nonlinear kernel function.
Substituting (13) in (12) gives us the final problem of finding
the solutions to

λ
n

∑
w=1

αwk(θw,θi) =
1
n

n

∑
j=1

n

∑
w=1

αwk(θ j ,θw)k(θ j ,θi), (14)

where i = 1, · · · ,n, α i
r denotes the ith component of αr.

Writing (14) in matrix form, we obtain

nλ α = Kα (15)

for all nonzero eigenvalue. The solutions αr belonging to
nonzero eigenvalues need to be normalized by requiring that
the corresponding vectors in the resulting feature space F
are normalized. This translates to the condition (vr ·vr) = 1.
Using (11), (13) and (15), we obtain

1 =
n

∑
i, j=1

α i
rα j

r (Φ(θi) ·Φ(θ j)) = (αr ·Kαr) = λr(αr ·αr). (16)

This translates to dividing each eigenvector αr of K by√
λr in order to normalize it. Lastly, for principal component

extraction, we compute the projections of the image of a
test-point θt at a given time t onto the eigenvectors vr in the
feature space as

ρr
t = (vr ·Φ(θt)) =

n

∑
j=1

α j
r (Φ(θ j) ·Φ(θt)) =

n

∑
j=1

α j
r k(θ j,θt), (17)

where ρ r
t is the rth component of the said projection of

Φ(θt ) on vr. It is noteworthy that the above equation does
not explicitly require the computation of Φ(θ j). What is
needed is only the dot product in feature space F . This can
be computed by using nonlinear kernel functions k. This way,
the kernel trick allows us to project the image of a point onto
the eigenvectors in F without explicitly having to calculate
the data image in F .

Finally, it can be recalled that the data was initially, and
rather simplistically, assumed to be centered in F . This
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however is not always the case, and care must be taken to
center the data in F first. However, we cannot in general
center the scheduling variables data in F , since we cannot
compute the mean of the data that we explicitly do not
calculate. We therefore, work around it and obtain a centered
Gram matrix as explained in [1].

K̃i j = K − 1nK −K1n + 1nK1n, (18)

where 1n ∈ R
n×n with each entry being 1/n. Kernel func-

tions can be chosen from a variety of different functions that
exist in the literature, and have been used for classification,
feature extraction, and other applications [13]. These include
but are not limited to the polynomial kernel given as

k(θi,θ j) = (θi ·θ j + 1)d, (19)

the radial basis function kernel given as

k(θi,θ j) = e
− || θi−θ j ||2

σ2 , (20)

and the sigmoid kernel given as

k(θi,θ j) = tanh(a θi ·θ j + b), (21)

where d, σ , a, and b in (19), (20), and (21) refer to the degree
of polynomial, the spread of radial basis function, and the
slope and bias in sigmoid functions, respectively.

A. Accuracy of the estimated LPV model

Using linear or kernel PCA, one can reduce the LPV
model to have affine dependence on lesser number of
scheduling variables. The accuracy of the estimated model
can be gauged from the fraction of total data variation

a(m) =
∑m

i=1 λi

∑v
i=1 λi

, (22)

where m is the number of reduced parameters, and λi denotes
the ith eigenvalue of the kernel matrix K̃. In case of linear
PCA, the eigenvalue is that of the covariance matrix [6].
Since the kernel and covariance matrices are square matrices
of dimensions n and l, respectively, v is consequently equal
to n and l for kernel and linear PCA, respectively. Therefore,
by choosing the number of scheduling variables, a trade-off
can be achieved between accuracy and complexity.

B. The pre-imaging problem

In the LPV model reduction problem, it is important
that we are able get the original scheduling variables back
by using the reduced set of scheduling variables. This is
because of the fact that for LPV control design, the controller
matrices are scheduled based on the reduced variables.
The control matrices however depend on the open-loop
LPV system matrices which are a function of the original
scheduling variables. Therefore, one can also say that the
original scheduling variables are required for calculating the
new representation of the system. The kernel PCA, however,
suffers from an inability to reconstruct the original patterns
in a straightforward way. So to say, given reduced parameter
vector ρi extracted from θi using kernel PCA, there is no

systematic way to reconstruct the original parameters θi,
since feature space algorithms express their solutions as
expansions in terms of mapped data points. Therefore, one
cannot in general say that a pre-image exists under the map
Φ, for which Φ(θi) = Ψ. Moreover, this problem of finding
the pre-image might be unsolvable in the general case, since
the pre-image might not always exist [11]. Schölkopf et
al. therefore argued in [11] that rather than finding the
exact pre-image, it is possible to find an estimate of the
pre-image. This is done by considering the fact that we
may seek to approximate the pre-image of a feature space
expansion Ψ = ∑n

i=1 γ iΦ(θi) by its estimate Ψ′ = β Φ(θ̃ i),
where θ̃ denotes the approximated pre-image. One can,
therefore, attempt to minimize the distance between Ψ and
Ψ′. Somewhat equivalently, one can minimize the distance
between Ψ and the orthogonal projection of Ψ onto the span
of Φ(θ̃ ), i.e.,

|| (Ψ ·Φ(θ̃ ))
(Φ(θ̃ ) ·Φ(θ̃))

Φ(θ̃ )−Ψ||2 = ||Ψ||2 − (Ψ ·Φ(θ̃ ))2

(Φ(θ̃ ) ·Φ(θ̃ ))
(23)

This can be achieved by maximizing

H(θ̃) =
(Ψ ·Φ(θ̃))2

(Φ(θ̃ ) ·Φ(θ̃ ))
, (24)

and once the maximum is achieved, we set the variable β
as β = Ψ ·Φ(θ̃ ) /( Φ(θ̃ ) ·Φ(θ̃ )) [11]. To find the extremum,
we solve

∇θ̃ H(θ̃) = ∇θ̃
(Ψ ·Φ(θ̃ ))2

(Φ(θ̃ ) ·Φ(θ̃))
= ∇θ̃

(∑n
i=1 γ ik(θi, θ̃ ))2

k(θ̃ , θ̃ )
= 0

(25)

1) pre-image for Gaussian kernels: For the Gaussian
kernel, since k(θ̃ , θ̃ ) = 1, (25) becomes

∇θ̃

(

n

∑
i=1

γ ie
− ||θi−θ̃ ||2

2σ2

)2

= 0, (26)

giving us

θ̃ =
∑n

i=1 γ i k(θi, θ̃ )θi

∑n
i=1 γ i k(θi, θ̃ )

. (27)

2) pre-image for polynomial kernels: Similarly, solving
(25) for polynomial kernel gives us

θ̃ =

(

∑n
i=1 γ i kd−1(θi, θ̃ )θi

)

kd(θ̃ , θ̃ )
(

∑n
i=1 γ i kd(θi, θ̃ )θi

)

kd−1(θ̃ , θ̃ )
, (28)

where kd(·, ·) indicates a polynomial kernel function of
degree d, γ i =∑m

j=1 ρ jα i
j, with ρ j being the jth component of

the reduced variable ρ[14]. Similar relations can be worked
out for other kernels as well.

A generalized iterative update rule
To formulate an iterative update equation for the estimate

θ̃ , we can generalize (27) and (28) as θ̃ = f (θ̃ ). Defining a
new function

g(θ̃ ) = θ̃ − f (θ̃ ) = 0, (29)
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Algorithm 1 Applying kernel PCA for LPV model reduction
Step 1: Obtain a set of measurable signals using measurements
or simulations, covering the expected range of operation
Step 2: Compute the trajectories of the corresponding scheduling
variables θi for i = 1, · · · ,n
Step 3: Compute matrix K using (13)
Step 4: Center the data in feature space to find K̃ using (18)
Step 5: Solve (15) by diagonalizing K̃
Step 6: Normalize the eigenvectors using (16)
Step 7: For online LPV control: For each set of observed
scheduling variable θt at time t, get the rth component of
reduced-dimension parameter ρr

t by using (17)
Step 8:
while g(θ̃) is not minimized, do

Compute pre-image θ̃ t from ρt using (30)
end while

we can reduce the problem at hand to finding the root θ̃
of g(θ̃ ) such that g(θ̃) = 0. Note that g(θ̃ ) is a vector-valued
function of vector θ̃ . To find the root of g(θ̃ ), one can use
iterative root-finding algorithms like Newton’s method. An
alternative to root finding is to use a steepest descent method
with variable or fixed step size, in order to minimize g(θ̃).
Steepest descent methods iteratively estimate the pre-image
θ̃ according to the following equation:

h(k̄) =−[Jg(θ̃ (k̄))]Tg(θ̃ (k̄)),
θ̃ (k̄+ 1) = θ̃ (k̄)+ηh(k̄), (30)

where k̄ is the iteration index, η is the step size, g[θ̃(k̄)] is
as defined in (29), f (θ̃ ) would be formulated according to
the kernel function in use, and Jg(·) is the Jacobian matrix.
A small step size η ensures stability at the cost of slower
convergence; conversely, a larger η speeds up convergence
but may cause instability of the iterative approximation. The
success or failure of steepest descent methods are highly
dependent on the nonlinearities in the data, the number of
minima in the function, the choice of the kernel function, a
“decent” initial condition for θ̃ and an initial estimate of the
Jacobian. Certain variable step size variants of the steepest
descent methods vary the step size at each iteration to
ensure a stable convergence to the best solution. In case of
numerical instabilities, which is rare, the algorithm simply
requires a restart with different starting values. Finally,
the kernel PCA-based method for LPV model reduction is
summarized in Algorithm 1.

Remark: The pre-image mapping from reduced scheduling
variables ρi to approximated scheduling variables θ̃i is based
on solving a nonlinear problem; therefore, it is noteworthy
here that the LPV model approximated using kernel PCA is
no longer affine in the approximated variables θ̃i.

V. NUMERICAL EXAMPLE

A dynamic model of a two-link planar robotic manipulator
is considered here; the schematic diagram is shown in Figure
2. Detailed nonlinear model and the associated parameters
have been taken from [15]. The lower arm of the robot is
known as the shoulder, while the upper part is simply known

Fig. 2. Schematic of 2-DoF robotic manipulator

as the arm, which is attached to the actuator. The two joints
are connected via a gear servo mechanism. Following the
ideas in [2] and [15], the derived LPV model is given as

A =









0 0 1 0
0 0 0 1

cdθ3 −beθ4 θ5 bθ6

−bdθ7 aeθ8 θ9 θ10









, C =
[

I /0
]

B =









0 0
0 0

cnkmθ1 −bnkmθ2

−bnkmθ2 ankmθ1









, D = /0,

h = ac− b2 cos2(∆),

θ1 =
g
h
,θ2 =

gcos(∆)
h

,θ3 =
sinc(q1)

h
,

θ4 = cos∆
sinc(q2)

h
,θ6 =

−csin(∆)q̇2 + cos(∆) f
h

,

θ5 =
−b2 sin(∆) cos(∆)q̇1 − (c+ bcos(∆)) f

h
,

θ7 =
cos(∆)sinc(q1)

h
,θ8 =

sinc(q2)

h
,

θ9 =
ab sin(∆)q̇1 + f (a+ bcos(∆))

h
,

θ10 =
b2 sin(∆)cos(∆)q̇2 − a f

h
, (31)

where cos(∆) = cos(q1−q2), sin(∆) = sin(q1−q2), and I and
/0 are identity and zero matrices of appropriate dimensions,
respectively. The state vector is given by x = [q1 q2 q̇1 q̇2]

T.
Angles of the two links with respect to the vertical reference
make up the first two states, while angular velocities make
up the other two states of the LPV model. This LPV model
has s = 4 states and a total of l = 10 scheduling variables.
The objective here is to reduce the number of scheduling
variables in order to reduce the over-parametrization in the
given LPV model. We seek to find, using PCA, a smaller
number of reduced parameters m, with m ≤ l that gives an
LPV model that can approximate the original model (31).

A set of trajectories is generated with open-loop simulation
of the LPV model using sinusoidal inputs u and scheduling
variables are computed. We apply linear and kernel PCA on
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Fig. 3. Accuracy of estimates (22) as a function of the number of scheduling
variables m for (*) linear PCA, (o) kernel PCA with polynomial kernel, and
(⊲) kernel PCA with sigmoid kernel
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Fig. 4. Scheduling variables θi (blue solid line), PCA-based approximation
θ̂i (red dashed line), and kernel PCA-based approximation θ̃ i (black dotted
line) with m = 1.

the data. For the kernel PCA case, we choose a polynomial
kernel of degree 12 and sigmoid kernel with a = 0.5, b =
−13, based on trial and error. Gaussian kernel-based PCA
provides an accuracy measure close to that of linear PCA
with this problem; hence, it is not discussed here. We then
compare the accuracy (22) of the approximated LPV models
as a function of the number of LPV variables, m. This is
shown in Figure 3. Kernel PCA for both kernels gives around
78% accuracy with one scheduling variable, much higher
than 33% accuracy of the linear PCA. Both polynomial and
sigmoid kernels give an almost equal measure of accuracy;
therefore, here we present the results for polynomial kernel
PCA only. Having reduced the scheduling variables from
l = 10 to m = 1, we re-estimate the actual scheduling
variables using pre-imaging. We employ the steepest descent
estimation (30) with step size η = 0.001. Initial estimate is
chosen randomly. Results for a few parameters are shown
in Figure 4. Other parameters show a very similar trend to
those plotted here. These results show a good fit between
the actual (solid line) and kernel PCA re-estimated (dotted

line) scheduling variables. As observed, linear PCA (dashed
line) simply fails to estimate θ1 and θ10, while showing some
trend in the other parameters.

VI. CONCLUDING REMARKS

In this paper, we have explored the use of kernel-based
PCA for the purpose of dimensionality reduction of the
scheduling variables in LPV representations. Reducing the
number of scheduling variables is a problem of paramount
importance, since it directly translates to the reduction in
computational complexity for LPV controller design. Though
parameters mapped into feature space cannot be systemati-
cally mapped back to the scheduling region as in the case of
linear PCA, they can still be estimated efficiently using an
iterative update rule derived in this paper. While an iterative
approach to estimation is not as quick and straightforward
as projecting the parameters on an eigenvector space, the
improvement in dimensionality reduction makes it a worthy
trade-off. Results in this paper provide encouraging insights
into the use of kernel PCA for LPV model reduction.
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