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Abstract— In this paper, we present a method that utilizes
support vector machines (SVM) to identify linear parameter-
varying (LPV) auto-regressive exogenous input (ARX) models
corrupted by not only noise, but also uncertainties in the
LPV scheduling variables. The proposed method employs SVM
and takes advantage of the so-called ‘“kernel trick” to allow
for the identification of the LPV-ARX model structure solely
based on the input-output data. The objective function, as
defined in this paper, allows to consider uncertainties related
to the LPV scheduling parameters, and hence results in a
new formulation that provides a more accurate estimation of
the LPV model in the presence of scheduling uncertainties.
We further demonstrate the viability of the proposed LPV
identification method through numerical examples, where we
show that higher best fit rate (BFR) can be achieved under
realistic noise conditions using the proposed method compared
to the method initially proposed in [6].

I. INTRODUCTION

Identification of linear parameter-varying (LPV) systems
has attracted the attention of many researchers within the
control systems community (see [1] and many references
therein). The basic idea in identifying an LPV model is to
introduce a parametrization of the underlying dependency of
the model on the scheduling variables in terms of a priori
chosen set of basis functions. The very first works on LPV
system identification assumed a prior knowledge of the basis
functions and focused on the identification of the unknown
parameters [2], [3]. In those early works, the problem of find-
ing unknown parameters was simply formulated as a least-
squares (LS) problem. Making the assumption that the model
structure is known is sometimes valid since the LPV model
can be derived directly from the nonlinear system equations;
however, this is not always the case and hence additional
efforts must be devoted to identify the basis functions. Also,
inaccurate selection of the basis functions leads to structural
bias while over-parametrization results in a variance increase
of the estimates. To resolve the high computational load and
bias-variance trade-off arising from over-parameterizations
based techniques for least-squares based model estimation,
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a semi-parametric identification approach based on least-
squares support vector machines (LS-SVM) was introduced
for a class of nonlinear regression models [4], [5]. Some
recent works have been done to address a similar problem
for LPV model identification using LS-SVM [6], [7].

Support vector machines are supervised learning tools
originated in modern statistical learning theory that can effec-
tively provide a non-parametric estimation of the dependency
structure for linear regression based LPV models [16], [17].
The supervised learning method was originally proposed by
[15], [16] to rebuild the inherent functional relationships and
structures in the data [18]. This non-parametric functional
dependence estimation is more successful in coping with the
bias-variance trade-off than semi-parametric approaches like
dispersion functions methods [6]. Also, considering [y loss
functions in the LS-SVM approach gives a variation of the
original SVM method that presents an effective model struc-
ture learning in the LPV setting. Finding computationally
efficient and unique solution of the linear problem are the
advantages of these slightly different approaches like LS-
SVM over original SVM method. Hence our aim in this
work is to employ an effective variation of the LS-SVM
method combined with a cost function that focuses not only
on prediction error, but also weighs possible uncertainties in
the system variables.

Accurate knowledge of scheduling signals is a critical as-
sumption in both LPV system identification and LPV control
design. The previous works [6], [7] that use the kernel-based
SVM for “model learning” assumes the perfect knowledge
of the scheduling signal during the system identification
process. The questions that we address in this work are: (i)
how is the performance of the LPV system identification
procedure proposed in [6] affected in the presence of such
uncertainties? and (ii) how can we improve the LPV system
identification when such uncertainties exist? We will examine
the first question through simulation studies. Also, to address
the latter question, we model such uncertainties in LPV
parameters (that we refer to as “error in variables”) and
include them in the cost function associated with the under-
lying optimization problem. In conjunction with SVM, the
proposed objective function finds the LPV model structure
and the corresponding model coefficients in the presence of
error in the variables. This is done using the so-called kernel
trick approach instead of explicitly defining the feature maps
(i.e., basis functions) involved [6].

The rest of this paper is organized as follows: Section
IT describes the basic formulation for the LPV model iden-
tification problem studied here. Sections III presents the



proposed identification method (that we refer to as EIV-
SVM). Simulation results are shown in Section IV and
finally, concluding remarks will be made.

II. IDENTIFICATION OF LPV INPUT/OUTPUT MODELS

We assume that the following SISO deffrence equation
defines the behaviour of the data generating system,

y(t) = Z a;(p(t))y(t — i) + > bi(p(D)ult — j) + e(t),
i=1 j=0

ey

where ¢ represents the discrete time, ¥ and u are the outputs
and inputs of the system, and e represents a white stochastic
noise process. We further assume that the coefficients a; and
b; are dependent on the time-varying scheduling variable(s)
p(t). Note that (1) defines an auto regressive with exogenous
input (ARX) dynamic structure. For identification of system
(1), we will adapt the same model structure where the orders
of n, and n; are assumed to be known. Commonly, in the
LPV system identification, when the number of coefficient
functions a; and b; is decided, then the dependence of the
coefficients on p(t) is parameterized as a linear combination
of a finite number of basis functions with static dependence
on p chosen a priori

a;(p(t)) = Zg ;i () i=1,..,n,

b)) =3 Byt (p(1) = v,

Na,Myg np,Ng

where {4 };%"7_, and {¢;,};"%_, are basis functions
of the system coefficients. As described earlier in the pa-
per, since improper selection of basis functions can cause
structural bias, best choice of these functions is crucial. Our
aim in this paper is to employ the so-called kernel trick in
order to avoid the difficulties arising from choosing basis
functions in a non-systematic way. As described later in the
paper, tuning the kernel function parameters has a significant
impact on the accuracy of the identified LPV model. In fact,
the bias-variance trade-off is tuned, which means achieving
a higher accuracy by tuning the parameters causes more
sensitivity to noise. We next describe all the coefficients
and basis functions in a compact LPV-ARX form and put
them in a matrix form. To do so, we first define x(t) as
an ng = ng + ny + 1 dimensional vector containing all the
outputs and inputs as

() = [y(t — 1) y(t —na) ult) u(t —ny)] "
and

[al . An, bo . bnb} =

[p] ¢1(p(t)) P, P, (P(1))]

where ¢;(p(t)) is a nonlinear vector map from the scheduling
signal space IP to an n g-dimensional space. p; is a parameter
in R"# . Theoretically, ny can be infinite, except in paramet-
ric LPV identification, where the number of basis functions is
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set a priori. Employing the aforementioned setup, the LPV-
ARX model of (1) can be written in a compact form as

y(t) = [p{ 21(p(1)) Py Py (D(1)] (1) + €(t),
y(t) =p' @ +e(t), )

where
® = [ (p(t))as (2) ny ()20, (8)]

III. LPV MODEL IDENTIFICATION USING LS-SVM

3

Least-squares (LS)-based algorithms have been widely
utilized for system identification of linear and nonlinear
systems in a regression form [9]. In addition, they have
been applied for LPV I/O model identification with linear
predictors using a priori specified parametrization of the
dependencies [10], [11]. With the use of LS-SVM for LPV
model identification, first proposed in [6], the dependence of
the basis functions on the LPV parameters is assumed to be
unspecified. The idea behind the work by Téth er al. [6],
[7] is that the time-varying coefficients of the LPV model
described in an input/output form can be estimated using the
so-called kernel trick method without assigning specific basis
functions. In fact, inherent nonlinearity of the coefficient
dependencies can be “learned” efficiently in a projected high-
dimensional feature space [6].

A. An LS-SVM Estimator under Uncertain/Noisy Scheduling

In this paper, we extend the work in [6], [7] to develop
an SVM-based identification method that can cope with
observation/measurement errors in the scheduling variable
p(t). To this purpose, we represent the LPV model in a
regression form that is appropriate within the SVM setting,
as follows

g

y(t) =Y o] di(p(t)) + Avy(p(t)]i(t) + e(t),

=1

“)

where Av; represents the uncertainties in the i*” coefficient
function caused by errors by, e.g., the measurement process.
The purity ratio of distillation columns that is used as
the scheduling parameter in the LPV identification of the
process, is an example of roughly measured scheduling
variables that always contain some observation/measurement
error. We note that Aw; is naturally different than the
environmental noise e(t) that is directly added to the system
output. The error-in-variable terms Aw;, captured in (4),
can negatively affect the LPV system identification since
the data collected from the system, ie., x;(t), are based
on noise-free scheduling trajectory actually influencing the
system, while the measured scheduling trajectory obtained
for the model identification purposes is noisy. To model the
impact of error in variables in the SVM formulation, we add
these uncertainties directly to the coefficient functions to be
identified as

y(t)

[a1—|—Aa1 ana—i-Aana bo—FAbo

by, + Aby,|x(t) + e(t).



Using the basis function formulation of the model coeffi-
cients, we have

y(t) = [p{ $1(p(t)) + Avi ... py ¢, (p(1))
+ Avp, Jz(t) +e(t) (5

yt) =p'® 4+ AV z(t) + e(t),

where ® was defined by (3) and the error in variables are
lumped into a vector AV defined by

AVT =[Avy ... Auvy,].

Note that AV is considered to be stochastic with E{AV'} =
0.

B. SVM Regression with Error in Variables

To characterize an estimate for the model presented in (4),
we propose the following cost function

J(p,e,AV)z%H AV ][, + Zpl pi,  (6)

which is inspired by the standard cost function used in the
total least-squares (TLS) method, that can cope with both
error-in-variables and measurement noise [12], [13], [14]. In
the cost function above, 7 is the regularization parameter.
We then expand the matrices and the Frobenius norm and
assign different weights (regularization parameters) to AV
and e resulting in

N ng N
J(p, e, AV) = N ; ; Av]' () Aw;(t % ; e(t

+ % Zp?m.
=1

where ~; and 7, expresses the trade-off between te l3-loss
(prediction error) and ls-coefficient deviation and regular-
ization in this multi-objective cost function. Note that Awv;
decouples from e(t) due to its correlation with vy in (6).

C. Constrained Optimization Problem

The optimization problem described earlier in this section
is solved using the Lagrangian method considering the LPV
model in the regression form as the problem constraint. The
overall objective is now to solve the following problem

N ng
_n
min J(p,e, AV) Av; (t) Av,(t
(R, T PD

N Ng
V2 1
7262(75) + §ZpiTpi
=1 i=1

st y(t Z Pi (bz + Av;(p(t ))]xz(t) +e(t).
i=1

The error function variables can be determined by setting the
Lagrangian for this constrained optimization problem as

(pve AV a) = (p,e,AV)—

zatz P 61(p(1)) + Dy (p(0)) )i (1) + () — ()],

Where ay’s are the Lagrangian multipliers. We then employ
the Karush-Kuhn-Tucker (KKT) condition to find the saddle
point of L which under the zero-duality gap corresponds also
to the optimum of J,

OL Qy
aTvi =0 — A’Ui(t) = %xi(t)
oL _ Qe
Do) 0 — et)= o
oL "9
oy =0 P Zat@(t)%(t)
oL ng T
o =0 — e(t)=yt) - Z[Pz di(t) + Avi(t)]xi(t).
i=1

®)

Substituting the obtained variables back into (8) results in

Z{ZO‘J‘rz (4)]#i(t) oy xz }:Ez +

—1
Vo Ot

By collecting the related terms together, we have

ZZaJ i (1)@7 (7)s (t)ars () +7  evges () (2)

i=1 t=1

[Q]M

+yta, (9)

where we then define
[ = Z[Q];t = 2551( )¢ ()i ()i (t). (10)

i=1 i=1

that can allow us to write (9) in the matrix form considering
the discrete time instants ¢ = 1,..., N. This leads to the

following expression
= (@47 diag(> 22(1), ) S22 (N) + 75 e

i=1 i=1

(11)

Writing the first term of (11) in the kernel form as in [6]
yields a systematic way to cope with the basis functions
complexity. In fact, this new formulation is based on the
kernel trick that estimates the inner product of the feature
maps in a lower dimensional space without any need to
directly define these functions. The elements of the matrix
Q are defined by

[0, = 2i(5)o (4)i(t)zs(t)
= i(1){@7 (7). di(t))i(t)
= i (§) (K" (p(5), p(t)): (1)
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where K is a positive definite kernel function that satisfies
Mercer’s conditions in the inner product {¢;(j), ¢;(t)) space
without explicitly calculating the mapping. In fact, the kernel
trick only requires the calculation of the modified inner
product using every pair of data points and the kernel func-
tion’s value instead of knowing the basis functions. Although,
choosing the most appropriate kernel highly depends on the
problem at hand and fine tuning of its parameters can easily
become a tedious and cumbersome task, the choice of a
particular kernel can be very intuitive and straightforward
depending on what kind of information we are expecting
to extract from the data. Among various possible choices
for kernel functions, the use of radial basis function (RBF),
polynomial, and sigmoid function is appealing due to their
ability to represent the nonlinearities in different types of data
[15]. In this paper, we use the above three kernel functions
and their performance is compared in the next section. The
following equation represents the RBF kernel function

Ip(j) —p(t)||§)7

27 (12

K'(p(5), p(t)) = exp (—
where o; is an adjustable parameter. The polynomial kernels
are represented by

13)

where adjustable parameters are the slope ¢ and the poly-
nomial degree d. Finally, the implemented sigmoid kernel
function is
i . T .
K'(p(7),p(t)) = tanh (Ap(t) p(7) +B), ~ (14)
where A and [ are the tuning parameters.
After substitution of the chosen kernel function into Eq.
(11), the solution to this linear equation is given by

ng

Z:c

Using the obtained expression for o and the kernel trick
approach, coefficients of the LPV-ARX model estimate are
calculated as

g
a=(Q +fyf1diag(z z3(1), )+ n) Y.

i=1

0
P

05 1 ] 05 0 05 1

LPV system coefficients corrupted by noise

ai(-) = pi ¢i() + Awi(t Zam (b(1),7) + Sraa(0),
t=1
bi() = p) $i() + Avy(t Zaw] >>+%wj<t>

where N is the number of the measurements.

IV. SIMULATION RESULTS

In order to evaluate the efficiency of the proposed LS-
SVM-based LPV model identification method (that we
hereby refer to as “EIV-SVM”) when the LPV parameters
are corrupted by noise, we apply it to the example in [6]. The
following LPV model, in an input/output form is considered:

1

y(t) = a1 (p(t)y(t — 1)) + Y bip(t))ult — i) + eo(t),
=0 (15)
where p(t) € [—1 1]. To generate data for identifying the

system described by (15), N = 1500 samples of data points
have been simulated using u(t) = sin(5t), p(t) = sin(%)
and independent and identically distributed (i.i.d.) e with
eo ~ U(—1,1). We also assume that instead of p(¢) only
p*(t) = p(t)+w(t) is available to be measured in the system
where w is also i.i.d. and w(t) ~ 1 x U(—1,1) where n
is a coefficient to control the noise level in the scheduling
variable. In the following example, 1 is assigned 0.05 and
0.1 for the first and second cases, respectively. It should be
noted that to avoid clipping of the distribution of 7 here p*(t)
is allowed to deviate from [—1 1].

The coefficients of the LPV system above are considered
to have the following nonlinear dependencies on the schedul-
ing variable

105 if p(t) > 0.5
bo(p(t)) = ¢ p(t) if —0.5<p(t)<0.5
—0.5 if p(t) < —0.5
bi(p(t)) = —0.2 x p}
a1 (p(t)) = 0.1 x STP(0)

m2p(t)
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TABLE I
THE MSE AND BFR OF THE EIV-SVM AND LS-BASED SVM METHODS OVER 100 RUNS

LS-SVM (RBF)

EIV-SVM (RBF)

EIV-SVM (polynomial) EIV-SVM (sigmoid)

Noise Level MSE BFR MSE
Case 1 Mean  5.4905e-04  0.8326  4.9695e-04
Std 7.4846e-06  0.0031  6.9000e-06
Case 11 Mean  7.7970e-04  0.7660  6.2417e-04
Std 7.3813e-05  0.0068  5.2667e-05

0.1 T T T 0.6

BFR MSE BFR MSE BFR
0.8867  5.4534e-04 0.8785 6.1577e-04  0.8723
0.0032  6.5217e-06 0.0035 7.1842e-6  0.0042
0.8128 6.6442¢-4 0.8046 7.1246e-4  0.8026
0.0056  6.3196e-4 0.0064 5.9834e-6  0.0062
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Comparison of LPV model identification using the proposed method in this paper and that in [6]: LS and EIV-SVM, respectively, represent the

LS-SVM based method in [6], and the LS-SVM based method proposed in this paper to cope with the error in variables.

We illustrate two sets of simulation results. First, we compare
the accuracy of the LPV model identification approach in this
paper with that in [6] considering an RBF kernel function
for both cases. As described earlier, in addition to a white
Gaussian noise added to the system output with signal to
noise ratio of 30dB, another white Gaussian noise is directly
added to the scheduling parameter that affects the three LPV
model coefficients, as depicted in Figure 1. The results of
one run of simulations using the noisy scheduling parameter
p*(t) are illustrated in Figure 2. As observed from the three
subplots, the proposed method in this paper outperforms the
LS-SVM method in [6] in identifying the three parameter-
varying coefficients by, by and a;. It is noted that the
hyperparameters 1, 2, used for the model learning have
been tuned with a trial-and-error.

In the second set of simulation results, we compare the
three kernel functions described in the previous section to
evaluate the performance of the proposed SVM-based model
identification approach in the presence of error in variable. To
examine the accuracy of the proposed identification method
and compare it with the previous work of Té6th et al. [6], we
consider two error measures of mean square error (MSE) and
best fit rate (BFR) defined as

N

MSE = 7 3 (0(0) - 300
BPR = max{0,1 — 120 =90) Iz

Iy(®) =72
where ¢ is the mean of the output in the validation data set,
y(t), and §(t) is the simulated output. Similar to the first
simulation, measurements are corrupted by white Gaussian
noise and also a white Gaussian noise directly added to
the scheduling variable that affects the three LPV model

coefficients (as shown in Figure 1). The comparative analysis
is done for two different noise levels added to the scheduling
parameter p(t). In the two cases examined, noise signals are
generated by U (—1,1) multiplied by 0.05 (case I) and 0.1
(case II), respectively. A Monte-Carlo simulation study is
performed for a numerical illustration of the identification
algorithms through changing random white Gaussian noise in
the scheduling variable. In addition, we employ three kernels
described in the previous section to evaluate the performance
of the proposed SVM-based model identification approach.
The regularization parameters are selected through trial and
error as y; = 1200 and 2 = 6000. Also, the parameters
associated with each one of the three kernel functions were
tuned by cross-validation.

The results of 100 runs are analyzed and the mean and
standard variations of the BFR and MSE values are shown
in Table I indicating that the proposed EIV-SVM method
of this paper leads to a better approximation of the LPV
model coefficients. In addition, the subplots in Figure 3
illustrate the estimates of the three LPV model coefficients
as a function of the LPV parameter p(t) for three kernel
functions with the proposed EIV-SVM method. We note that
the same error in variable approach, as in the first set of
simulations, is considered here. Also, the presented results
in Table I and Figure 3 indicate that the RBF kernel (with
the tuned parameters 0; = o2 = o3 = 0.5) outperforms
the other two kernels due to its capability to characterize
nonlinearities in the collected data from the LPV model.

To summarize the simulation results, the plots demonstrate
that, in the presence of noise in the scheduling variables, the
proposed EIV-SVM method exhibits an improved capability
of identify the structure of the coefficient functions compared
to the LS-SVM method proposed first in [6]. The Monte-
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LPV system, the RBF kernel outperforms the other two kernel functions in terms of accurately calculating the coefficient functions.

Carlo simulation results also showed that the proposed EIV-
SVM method not only increases the BFR of the estimated
output, but also lowers the standard deviation.

CONCLUDING REMARKS

We presented in this paper new results on the extension
of LS-SVM as a powerful machine learning tool for model
identification of LPV systems in input/output form. The
problem was formulated in a way to yield a solution that can
handle errors in the scheduling variables. The cost function
we defined in the SVM setting included an additional term
associated with the errors in variables. This allowed the
kernel-based identification method to partially compensate
for the error in p to avoid misestimating of the system
parameters and lead to a set of new expressions (compared
to [6]) for LPV model coefficients by changing the basis
functions.
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