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Abstract—In this paper, a new event-triggering mechanism is
proposed for the problem of fault detection (FD) in discrete-time
linear parameter-varying (LPV) systems. A parameter-dependent
event-based observer is designed as the residual generator, that
only uses the sensor and scheduling variables data that are
transmitted only when they are needed. Toward this goal, based
on the concept of input-to-state stability, a new formulation is
presented to satisfy the H–/H∞ performance measures and for
each performance index, sufficient conditions are given in terms
of linear matrix inequalities problems. It is shown that through
two event-triggered data transmission mechanisms, the amount of
data sent to the fault detection module is decreased significantly.
Simulation results demonstrate the effectiveness of the proposed
design methodology.

Index Terms—Fault detection; Linear parameter-varying sys-
tems (LPV); Event-triggered observer; Input-to-state stability;
Linear matrix inequality (LMI).

I. INTRODUCTION

Model-based fault detection and isolation (FDI) for dynamic
systems have been an important research area to ensure the
safety and reliability and have attracted considerable attention
during the last two decades [1]–[4]. The basic idea behind
model-based FDI is to design filters or state observers to build
a residual signal and then compare this signal with a predefined
threshold. An alarm is generated when the residual evaluation
function has a value larger than the threshold [5]. However,
the performance of an FDI system can be degraded due to
the effects of external disturbances. Hence, it is essential that
the fault detection modules are designed to be sensitive to
faults and, at the same time, robust to disturbances. The fault
detection filter design has been formulated as an H∞ filtering
problem in [6], where error between the reference residual and
the actual residual is minimized. The performance index H–

as a very appropriate measure to ensure a minimum sensitivity
of the designed fault detection module to a fault has been used
since the early 1990’s [7]–[9]. In [10], a state space solution
to the multi-objective H–/H∞ fault detection (FD) problem
has been given for linear time-invariant (LTI) systems. The
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H–/H∞ performance indices have been used to minimize
the sensitivity of the residual signal to disturbances while
maintaining a minimum level of sensitivity to faults. The use
of linear FDI methods can be extended to nonlinear systems
through linearization around an operating point [11]. However,
this approach is not successful for many dynamical systems
since the highly nonlinear dynamics or large operating range
may not allow a good linear approximation. Therefore, several
new approaches have been developed to cope with the problem
of FDI for nonlinear systems which can utilize the nonlinear
models [12], neural networks [13] and Takagi-Sugeno (TS)
fuzzy systems [14].

As an alternative modeling approach, the linear parameter-
varying (LPV) framework can be used to take advantage of the
simplicity of LTI control synthesis methods and, at the same
time, accurately capture the dynamics of nonlinear systems
[15]. Recently, the FDI of LPV systems has become an
attractive research area in the field of FDI [16]–[18]. In [18],
a new stable FD observer design method has been proposed
for LPV systems in a finite frequency domain. The H– fault
sensitivity condition in finite frequency domain is obtained by
generalized Kalman-Yakubovich-Popov (KYP) lemma and the
method of blocking matrix. Mixed H–/H∞ index framework
has been considered in fault detection (FD) observer design for
LPV systems in [19]. An FD observer under a mixed H–/H∞
framework for descriptor LPV systems has been presented
in [20] in order to minimize the effect of disturbances and
maximize the effect of faults on the residuals.

The advent of communication networks introduced the con-
cept of networked control systems (NCS). The huge benefits
of NCS including the low cost of installation, maintenance,
and high reliability has resulted in considerable attention in
this research field. However, utilizing communication net-
work causes some challenging issues. Limited communication
bandwidth can be considered as one of the most important
restrictions in NCS. Therefore, it is a trend toward reduction of
the data transmission in the design of control systems to mini-
mize the bandwidth and energy consumption. Recently, a new
approach called event-triggered control has been proposed,
in which sensing and actuation are done only when they are



necessary to maintain the desired operation. Event-triggering
scheme can be employed to reduce the communication among
sensors, control modules and actuators, and to significantly
reduce the usage of communication resources compared with
the implementation of periodic sampling in NCS. The orig-
inal idea of event-based control was proposed in [21]. In
the literature, several different event-triggering mechanisms
and control strategies are presented (see, e.g., [22]–[28]).
The benefits of event-triggering scheme can be capitalized
on fault detection and isolation in NCS to reduce the data
communication between sensors and fault detector modules. In
[29], the event-based fault detection for the networked systems
with communication delay and nonlinear perturbation has been
investigated. An FD framework for networked control systems
has been proposed in [30]. Then, the synthesis of FD filters un-
der any event-triggering mechanism is investigated. Recently,
the problem of event-triggered fault detection and isolation
filter design for discrete-time LTI systems was addressed
[31], [32] and the problem of event-triggered integrated fault
detection, isolation and control (E-IFDIC) for discrete-time
linear systems was investigated in [33]. Still, most of the prior
results on the event-based schemes have been obtained for
LTI or nonlinear models and only a few studies have focused
on LPV systems [34], [35]. However, particularly, to the best
of our knowledge, there is no study available on the event-
triggered fault detection of LPV systems.

In this paper, a novel event-triggering scheme is proposed
for the fault detection of discrete-time LPV systems to reduce
the data transmission between the sensors or the scheduling
variables and the FD module by designing two event genera-
tors. In fact, two event generator mechanisms are developed
to separately send the sensors and the scheduling variables
data to the FD module only when it is needed. The LMI
conditions and event triggering conditions are obtained based
on the concept of input-to-state stability. It is assumed that the
LPV system is subjected to faults and external disturbances.
Toward this goal, two performance indices of H– and H∞ are
considered in this study to assure the sensitivity of the fault
detection module to the fault and its robustness to external
disturbances, respectively. Therefore, the proposed strategy
can be interpreted as a multi-objective problem since two
different objectives must be satisfied simultaneously.

This paper is organized as follows. The problem statement is
presented in Section II . The main results are given in Section
III, where two event-triggering conditions and the procedure
for designing the fault detection module for discrete-time
LPV systems are addressed. In Section IV, properties and
performance of the proposed design approaches are studied
through a numerical example. The concluding remarks are
given in Section V.

Notation: In this paper, R,R+ and Z+ denote the set of
real numbers, the set of nonnegative real numbers and the
set of nonnegative integers, respectively. The ith element of
a real vector x is denoted by xi (subscripts are used for
denoting discrete time instants). We denote ||x||=

√
x>x and

||x||2=

√
∞∑
k=0

||x(k)||2 for x ∈ Rn. When a matrix P is

positive definite (including symmetry), we write P > 0. If it
is positive semi-definite, we use P ≥ 0. Similarly, for negative
definiteness and negative semi-definiteness, we use P < 0 and
P ≤ 0, respectively. By 0 and I , we denote the zero matrix
and the identity matrix of appropriate dimensions, respectively.
A star (?) in a matrix indicates a transposed quantity in the
symmetric position. A function β : R+ → R+ belongs to class
K if it is continuous, strictly increasing and β(0) = 0, and to
class K∞ if additionally β(k)→∞ as k →∞.

II. PROBLEM STATEMENT

Consider the discrete-time LPV system subjected to fault
and disturbance in the form of

x(k + 1) = A(θk)x(k) +B1ω(k) +B2f(k),

y(k) = Cx(k) +D1ω(k) +D2f(k), (1)

with state x(k) ∈ Rnx , output y(k) ∈ Rny , disturbance
ω(k) ∈ Rnω , fault f(k) ∈ Rnf , and θk ∈ Rnθ as the
scheduling variable vector. It is assumed that disturbance and
fault signal are `2 norm bounded. The variable θk is assumed
to lie in a compact set Θ ⊂ Rnθ for all k ∈ Z+. It is assumed
that an appropriate state or output feedback controller has been
implemented to guarantee the stability of the system, and the
residual generator is designed for the closed-loop systems. The
system matrix A(θk) ∈ Rnx×nx is assumed to depend on θk
and can be written in the polytopic form as

A(θk) =

n∑
j=1

ηj(θk)Aj , (2)

where ηj : Θ → R and the mapping η : Θ → Rn given by
η := [η1 ... ηn]

> is such that η(Θ) ∈ S with

S = {µ ∈ Rn|µj ≥ 0, j = 1, ..., n and
n∑
j=1

µj = 1}. (3)

Hence, for instance A(θk) lies for each θk ∈ Θ in the convex
hull Co{A1, ..., An} with n vertices. Note that, in this paper,
we use the shorthand ηj(θk) := ηj(k).

Remark 1. The systems matrix A(θk) in the LPV model (1)
can be represented as follows

A(θk) = A(0) +

nθ∑
l=1

Fl(θ
l
k)A(l), (4)

where A(l), l = 0, . . . , nθ, are constant matrices and
Fl(θ

l
k), l = 1, . . . , nθ are assumed to be Lipschitz functions of

the scheduling variables θlk where θ1
k, ..., θ

nθ
k are the elements

of the vector θk. Since each function Fl is assumed to be
Lipschitz, there exists a constant ζl such that for all θlk, θ̂

l
k ∈ Θ

we have

|Fl(θ
l
k)−Fl(θ̂

l
k)|≤ ζl|θlk − θ̂lk|. (5)



In case of affine LPV systems, state matrix depends affinely
on the parameter vector, and hence these functions can be
represented as Fl(θ

l
k) = θlk, l = 1, ..., nθ. Later, in this paper,

we use this representation to analyze the error A(θk)−A(θ̂k).

The main concept of the event-triggered FD observer for
LPV systems is depicted in Figure 1. In this setting, to
detect an occurred fault, event generators are employed to
determine time instants kyi , k

θ
s(i, s = 0, 1, 2, ...) ∈ Z+, in

which information of the sensors (y(kyi )) and the scheduling
variable (θ̂k = θkθs ) are sent to the FD filter. The proposed
event-triggered framework is intended to reduce the data
transmission of the scheduling variables and the output signals.
To this aim, whenever a significant change occurs in the
scheduling variables or the output signals, the information is
sent to the FD filter in order to detect the occurred fault.

LPV System

θk

sensor Event Detector

Event Detector

y(k)

Fault Detection Filter
y(kyi )

θkθs

r(k)

Fig. 1: The schematic of event-triggered FD approach for an
LPV system.

III. MAIN RESULTS

In this section, a procedure is proposed for fault detection of
LPV systems, where event-triggering conditions along with a
parameter-dependent observer gain are designed such that the
occurred fault can be detected while a performance criterion
is satisfied. For the purpose of residual generation for the
LPV system (1), the following event-triggered FD observer
is proposed as

x̂(k + 1) = A(θ̂k)x̂(k) + L(θ̂k) (y(kyi )− ŷ(k)) ,

ŷ(k) = Cx̂(k), (6)
r(k) = y(kyi )− ŷ(k),

where the matrix L(θ̂k) =
∑n
j=1 ηj(θ̂k)Lj denotes the ob-

server gain to be designed, x̂(k) ∈ Rnx and ŷ(k) ∈ Rny
represent the state estimate and output estimate, respectively,
r(k) ∈ Rny is the residual signal, y(kyi ) denotes the last
measurement that is transmitted from the sensor to the residual
generation module, and θ̂k = θkθs is the last scheduling
variable sent to the residual generator module.

We define the estimation error as e(k) = x(k) − x̂(k),
the output measurement error in the interval of [kyi , k

y
i+1) as

ey(k) = y(kyi ) − y(k), and the scheduling variables error in
the interval of [kθs , k

θ
s+1) as eθ(k) = θ̂k − θk. It is assumed

that whenever a significant change between event generator
scheduling variable θ̂k and the system scheduling variable θk

reaches a chosen threshold δ1, i.e., ||eθ(k)||> δ1 with δ1 > 0,
a new sample of θk is sent through the network.

The closed-loop system can be represented as

e(k + 1) = x(k + 1)− x̂(k + 1),

=
(
A(θ̂k)− L(θ̂k)C

)
e(k) + ∆A(θk, θ̂k)x(k)+(

B1 − L(θ̂k)D1

)
ω(k) +

(
B2 − L(θ̂k)D2

)
f(k)

− L(θ̂k)ey(k),

where ∆A(θk, θ̂k) = A(θk) − A(θ̂k). By defining the aug-
mented signal ψ(k) =

[
e>(k) x>(k)

]>
and considering

(1), the following augmented LPV system representation is
obtained

ψ(k + 1) = Ă(θ̂k)ψ(k) + B̆1(θ̂k)ω(k) + B̆2(θ̂k)f(k)

+ L̆(θ̂k)ey(k),

r(k) = C̆1ψ(k) +D1ω(k) +D2f(k) + ey(k), (7)

y(k) = C̆2ψ(k) +D1ω(k) +D2f(k),

where

Ă(θ̂k) =

[
A(θ̂k)− L(θ̂k)C 0

0 A(θ̂k)

]
+ ∆̆A(θk, θ̂k),

B̆1(θ̂k) =

[
B1 − L(θ̂k)D1

B1

]
, B̆2(θ̂k) =

[
B2 − L(θ̂k)D2

B2

]
,

L̆(θ̂k) =

[
−L(θ̂k)

0

]
, ∆̆A(θk, θ̂k) =

[
0 ∆A(θk, θ̂k)
0 ∆A(θk, θ̂k)

]
,

C̆1 = [ C 0 ] , C̆2 = [ 0 C ] .

An upper bound of ||∆A(θk, θ̂k)|| can be found as

∆>A(θk, θ̂k)∆A(θk, θ̂k) ≤ σ̄2(∆A(θk, θ̂k))I, (8)

where σ̄ denotes the maximum singular value. From (4),
∆A(θk, θ̂k) can be written as

∆A(θk, θ̂k) =

nθ∑
l=1

(
Fl(θ

l
k)−Fl(θ̂

l
k)
)
A(l). (9)

Therefore, from (5), ||eθ(k)||≤ δ1 (|θlk−θ̂lk|≤ δ1, l = 1, ..., nθ)
and the using fact that σ̄(X1 + X2) ≤ σ̄(X1) + σ̄(X2) for
matrices X1 and X2, it follows that

σ̄
(

∆A(θk, θ̂k)
)
≤ δ1

nθ∑
l=1

ζlσ̄(A(l)), (10)

where ζl > 0 is the Lipschitz constant of the function Fl(θ
l
k).

Hence an upper bound of ||∆A(θk, θ̂k)|| can be found as
follows

∆>A(θk, θ̂k)∆A(θk, θ̂k) ≤ (δ1

nθ∑
l=1

ζlσ̄(A(l)))2Inx . (11)

In the following, the main results on the design of a fault
detection observer for the LPV system (1) are given. However,
first, the concept of ISS-Lyapunov function is reviewed for (7)
with f(k) = 0 and ω(k) = 0, ∀k ∈ Z+.



Definition 1. A function V : Rnψ × Rnθ → R+ is an input-
to-state stable (ISS)-Lyapunov function [36] for (7) (nψ =
2nx) if there exist K∞ function ρ1 and ρ2 such that for any
θ̂k, θ̂k+1 ∈ Θ, k ∈ Z+

ρ1(||ψ(k)||) ≤ V (ψ(k), θ̂k) ≤ ρ2(||ψ(k)||), (12)

and there exists a K∞ function %1 and K function κ1 which
satisfy

V (ψ(k + 1), θ̂k+1)− V (ψ(k), θ̂k) ≤
−%1(||ψ(k)||) + κ1(||ey(k)||). (13)

Considering a K∞ function %2, it follows that
−%1(||ψ(k)||) − %2(||y(k)||) + κ1(||ey(k)||) ≤
−%1(||ψ(k)||) + κ1(||ey(k)||), and hence a sufficient
condition to satisfy inequality (13) is as follows

V (ψ(k + 1), θ̂k+1)− V (ψ(k), θ̂k) ≤
−%1(||ψ(k)||)− %2(||y(k)||) + κ1(||ey(k)||). (14)

From inequality (14), the system represented by (7) is asymp-
totically stable for any ey(k) that satisfy

κ1(||ey(k)||) < %2||y(k)||. (15)

Consequently, the event instants, when such a violation
happens, are defined iteratively by

kyi+1 = min {k > kyi | κ1(||ey(k)||) > %2(||y(k)||)} ,
kθs+1 = min

{
k > kθs | (||eθ(k)||) > δ1

}
, (16)

with kθ0 = ky0 = 0. Therefore, in order to assure the asymptotic
stability of the closed-loop system with ω = 0 and f = 0, the
data y(k) and θk should be sent to the filter whenever the
inequalities in (16) are satisfied. Therefore, the problem under
investigation is to design the fault detection module (6) for
the LPV system (1) and the event instants (16) such that the
augmented system (7) is stable, the effect of disturbance on
the residual signal r(k) is minimized, and the effect of fault
on r(k) is maximized. More specifically, we are to design
the fault detector (6) and the event instants (16) such that the
augmented system (7) is stable, and the following performance
indices are satisfied:

i) sup
f=0,||ω||2 6=0

||r||2
||ω||2

< γ1 (H∞ performance)

ii) inf
ω=0,||f ||2 6=0

||r||2
||f ||2

> β (H– performance)

The performance index (i) is used to attenuate the effect of the
disturbance on the residual signal and the performance index
(ii) is used to guarantee a minimum level of sensitivity of the
residual to the fault signal.

A. H∞ performance

The following theorem gives a sufficient condition for the
design of the parameter-dependent observer gain L(θ̂k) and the
event-triggering condition to stabilize the augmented system
(7) with a guaranteed H∞ performance.

Theorem 1. The augmented system described by (7) with
θ̂k ∈ Θ, f(k) = 0 and k ∈ Z+ is stable and satisfies the
performance index (i) while the data is transmitted to the
residual generator at the event instants (16) if for a given
scalar δ1, there exist symmetric positive definite matrices
Pi ∈ Rnψ×nψ , matrices Gi ∈ Rnψ×nψ , Gi ∈ Rnψ×nψ and
positive scalars α1, α2, α3, ε1, γ, ζl such that

W(1,1)i − ε1A −C̆>1 W(1,3) W(1,4)i 0
? W(2,2) D1 W(2,4)i 0
? ? W(3,3) W(3,4)i 0
? ? ? W(4,4)ij Gi
? ? ? ? ε1Inψ

 > 0,

i, j = 1, . . . , n,
(17)

Moreover, the vertices of the observer gain are obtained
from Li = G−1

(1,1)iGi, i = 1, . . . , n, where A =

diag(0, 2(δ1
∑nθ
l=1 ζlσ̄(A(l)))2Inx) and

W(1,1)i = Pi − α1Inψ − C̆>1 C̆1 − α3C̆
>
2 C̆2,

W(1,3) = −C̆>1 D1 − α3C̆
>
2 D1, W(2,2) = (α2 − 1)Iny ,

W(1,4)i =

[
A>i G

>
(1,1)i − C

>G>i 0

A>i G
>
(1,2)i A>i G

>
(2,2)i

]
,

Gi =

[
G(1,1)i G(1,2)i

0 G(2,2)i

]
, W(2,4)i = [ −G>i 0 ] ,

W(3,3) = γ2
1Inω −D>1 D1 − α3D

>
1 D1,

W(3,4)i =
[
B>1 G

>
(1,1)i −D

>
1 G>i +B>1 G

>
(1,2)i B

>
1 G
>
(2,2)i

]
W(4,4)ij = Gi +G>i − Pj , Gi = G(1,1)iLi.

Proof. Assume that %1(||ψ(k)||) = α1ψ
>(k)ψ(k),

κ1(||ey(k)||) = α2e
>
y (k)ey(k), %2(||y(k)||) = α3y

>(k)y(k).
Consider the Lyapunov function as V (ψ(k), θ̂k) =
ψ>(k)P (θ̂k)ψ(k). To ensure the H∞ performance and
the ISS condition w.r.t. ey(k), the following inequality should
be satisfied

V (ψ(k + 1), θ̂k+1)− V (ψ(k), θ̂k) <

− α1ψ
>(k)ψ(k)− r>(k)r(k)+ (18)

γ2ω>(k)ω(k)− α3y
>(k)y(k) + α2e

>
y (k)ey(k),

and it follows from (7) with f = 0 that(
Ă(θ̂k)ψ(k) + B̆1(θ̂k)ω(k) + L̆(θ̂k)ey(k)

)>
P (θ̂k+1)(

Ă(θ̂k)ψ(k) + B̆1(θ̂k)ω(k) + L̆(θ̂k)ey(k)
)

− ψ>(k)P (θ̂k)ψ(k) < −α1ψ
>(k)ψ(k)− r>(k)r(k)+

γ2ω>(k)ω(k)− α3y
>(k)y(k) + α2e

>
y (k)ey(k).

Substituting r(k) and y(k) from (7), the above inequality can
be rewritten as[

ψ>(k) e>y (k) ω>(k)
]
W (θ̂k, ϑk)

[
ψ(k)
ey(k)
ω(k)

]
> 0, (19)



where ϑk = θ̂k+1 and η(ϑk) ∈ S in (3) and

W (θ̂k, ϑk) =

[
W11 W12 W13
? W22 W23
? ? W33

]
,

with

W11 = P (θ̂k)− α1Inψ − Ă>(θ̂k)P (ϑk)Ă(θ̂k)

− C̆>1 C̆1 − α3C̆
>
2 C̆2,

W12 = −Ă>(θ̂k)P (ϑk)L̆(θ̂k)− C̆>1 ,
W13 = −Ă>(θ̂k)P (ϑk)B̆1(θ̂k)− C̆>1 D1 − α3C̆

>
2 D1,

W22 =W(2,2) − L̆>(θ̂k)P (ϑk)L̆(θ̂k),

W23 = −L̆>(θ̂k)P (ϑk)B̆1(θ̂k)−D1,

W33 = γ2
1Inω − B̆>1 (θ̂k)P (ϑk)B̆1(θ̂k)

−D>1 D1 − α3D
>
1 D1.

The inequality (19) is equivalent to M(θ̂k, ϑk) > 0 and hence W(1,1)(θ̂k) −C̆>1 W(1,3)
? W(2,2) D1

? ? W(3,3)

−
 Ă>(θ̂k)
L̆>(θ̂k)
B̆>1 (θ̂k)

P (ϑk)
[
Ă(θ̂k) L̆(θ̂k) B̆1(θ̂k)

]
> 0, (20)

with

W(1,1)(θ̂k) = P (θ̂k)− α1Inψ − C̆>1 C̆1 − α3C̆
>
2 C̆2,

W(1,3) = −C̆>1 D1 − α3C̆
>
2 D1, W(2,2) = (α2 − 1)Iny ,

W(3,3) = γ2
1Inω −D>1 D1 − α3D

>
1 D1.

and by using Schur complement [37], it follows that
W(1,1)(θ̂k) −C̆>1 W(1,3) Ă

>(θ̂k)

? W(2,2) D1 L̆>(θ̂k)

? ? W(3,3) B̆
>
1 (θ̂k)

? ? ? P−1(ϑk)

 > 0. (21)

Multiplying (21) by diag
(
I, I, I,G(θ̂k)

)
from left and

by diag
(
I, I, I,G>(θ̂k)

)
from right, where G(θ̂k) is an

invertible matrix with appropriate dimension written in the
polytopic form as

G(θ̂k) =

[
G(1,1)(θ̂k) G(1,2)(θ̂k)

0 G(2,2)(θ̂k)

]
=

n∑
i=1

ηi(θ̂k)

[
G(1,1)i G(1,2)i

0 G(2,2)i

]
, (22)

it follows that
W(1,1)(θ̂k) −C̆>1 W(1,3) Ă>(θ̂k)G>(θ̂k)

? W(2,2) D1 L̆>(θ̂k)G>(θ̂k)

? ? W(3,3) B̆>1 (θ̂k)G>(θ̂k)

? ? ? G(θ̂k)P−1(ϑk)G>(θ̂k)

 > 0.

(23)

Since
(
P−1/2(ϑk)G>(θ̂k)− P 1/2(ϑk)

)>(
P−1/2(ϑk)G>(θ̂k)− P 1/2(ϑk)

)
≥ 0, it follows that

G(θ̂k)P−1(ϑk)G>(θ̂k) ≥ G(θ̂k) +G>(θ̂k)− P (ϑk). (24)

Then, the inequality (23) can be written as
W(1,1)(θ̂k) −C̆>1 W(1,3) W(1,4)(θ̂k)

? W(2,2) D1 W(2,4)(θ̂k)

? ? W(3,3) W(3,4)(θ̂k)

? ? ? W(4,4)(θ̂k, ϑk)

+

M>∆ (θ̂k, θk)MG(θ̂k) +M>G (θ̂k)M∆(θ̂k, θk) > 0, (25)

where

W(1,4)(θ̂k) =

[ W̄(1,4) 0

A>(θ̂k)G>(1,2)(θ̂k)A>(θ̂k)G>(2,2)(θ̂k)

]
,

W̄(1,4) = A>(θ̂k)G>(1,1)(θ̂k)− C>G>(θ̂k),

W(2,4)(θ̂k) =
[
−G>(θ̂k) 0

]
,G(θ̂k) = G(1,1)(θ̂k)L(θ̂k),

W(3,4)(θ̂k) =
[
W̄(3,4)(θ̂k) B>1 G

>
(2,2)(θ̂k)

]
,

W̄(3,4)(θ̂k) = B>1 G
>
(1,1)(θ̂k)−D>1 G>(θ̂k)

+B>1 G
>
(1,2)(θ̂k),

W(4,4)(θ̂k, ϑk) = G(θ̂k) +G>(θ̂k)− P (ϑk),

M∆(θ̂k, θk) =
[

∆̆A(θ̂k, θk) 0 0 0
]
,

MG(θ̂k) =
[

0 0 0 G>(θ̂k)
]
.

Since (
ε1M∆(θ̂k, θk) +MG(θ̂k)

)>
(
ε1M∆(θ̂k, θk) +MG(θ̂k)

)
≥ 0

with a positive scaler ε1 it follows that

M>∆ (θ̂k, θk)MG(θ̂k) +M>G (θ̂k)M∆(θ̂k, θk) ≥ (26)

−ε1M>∆ (θ̂k, θk)M∆(θ̂k, θk)− ε−1
1 M>G (θ̂k)MG(θ̂k).

Therefore, the inequality (25) is satisfied if
W(1,1)(θ̂k) −C̆>1 W(1,3) W(1,4)(θ̂k)

? W(2,2) D1 W(2,4)(θ̂k)

? ? W(3,3) W(3,4)(θ̂k)

? ? ? W(4,4)(θ̂k, ϑk)

 (27)

− ε1M>∆ (θ̂k, θk)M∆(θ̂k, θk)− ε−1
1 M>G (θ̂k)MG(θ̂k) > 0.

From inequality (11) and using Schur complement, the above
inequality is satisfied if

W(1,1)(θ̂k)
−ε1A

−C̆>1 W(1,3) W(1,4)(θ̂k) 0

? W(2,2) D1 W(2,4)(θ̂k) 0

? ? W(3,3) W(3,4)(θ̂k) 0

? ? ? W(4,4)(θ̂k, ϑk)G(θ̂k)
? ? ? ? ε1Inψ

 > 0,

(28)



where A = diag(0, 2(δ1

nθ∑
l=1

ζlσ̄(A(l)))2Inx). Now, using (2)

and (3), inequality (17) can be directly obtained from (28) and
hence the proof is completed.

Remark 2. In case of affine LPV systems, we have ζl = 1,
l = 1, . . . , nθ, and hence, from (11) the upper bound for
σ̄
(

∆A(θk, θ̂k)
)

can be obtained as follows

σ̄
(

∆A(θk, θ̂k)
)
≤ δ1

nθ∑
l=1

σ̄(A(l)). (29)

B. H− performance

The following theorem gives the LMI conditions to ensure
that the performance index (ii) is met.

Theorem 2. Consider the augmented system described by
(7) with θ̂k ∈ Θ, ω(k) = 0 and k ∈ Z+. The performance
index (ii) is satisfied with the data transmitted to the residual
generator at the event instants (16) if for a given scalar δ1,
there exist symmetric positive definite matrices P

′

i ∈ Rnψ×nψ ,
matrices G

′

i ∈ Rnψ×nψ , Gi ∈ Rnψ×nψ and positive scalars
α1, α2, α3, ε2, β, ζl such that
H(1,1)i − ε2A C̆>1 H(1,3) H(1,4)i 0

? H(2,2) D2 H(2,4)i 0
? ? H(3,3) H(3,4)i 0

? ? ? H(4,4)ij G
′

i
? ? ? ? ε2Inψ

 > 0,

i, j = 1, . . . , n,
(30)

Moreover, the vertices of the observer gain are obtained
from Li = G−1

(1,1)iGi, i = 1, . . . , n, where A =

diag(0, 2(δ1
∑nθ
l=1 ζlσ̄(A(l)))2Inx) and

H(1,1)i = P
′

i − α1Inψ + C̆>1 C̆1 − α3C̆
>
2 C̆2,

H(1,3) = C̆>1 D2 − α3C̆
>
2 D2, H(2,2) = (α2 + 1)Iny ,

H(1,4)i =

[
A>i G

>
(1,1)i − C

>G>i 0

A>i G
′>
(1,2)i A>i G

′>
(2,2)i

]
,

G′i =

[
G(1,1)i G

′

(1,2)i

0 G
′

(2,2)i

]
,H(2,4)i = [ −G>i 0 ] ,

H(3,3) = −β2Inf +D>2 D2 − α3D
>
2 D2,

H(3,4)i =
[
B>2 G

>
(1,1)i −D

>
2 G>i +B>2 G

′>
(1,2)iB

>
2 G

′>
(2,2)i

]
,

H(4,4)ij = G′i +G
′>
i − P

′

j , Gi = G(1,1)iLi.

Proof. Consider the Lyapunov function V (ψ(k), θ̂k) =
ψ>(k)P ′(θ̂k)ψ(k). To ensure the H– performance, the fol-
lowing inequality should be satisfied

V (ψ(k + 1), θ̂k+1)− V (ψ(k), θ̂k) <

− α1ψ
>(k)ψ(k) + r>(k)r(k)−

β2f>(k)f(k)− α3y
>(k)y(k) + α2e

>
y (k)ey(k). (31)

The rest of the proof is similar to that of Theorem 1 and is
omitted for the sake of brevity.

In order to simultaneously guarantee the stability of the
augmented system and the performance indices (i) and (ii),
the following algorithm can be employed to design the event-
triggered fault detection observer for LPV systems.

Algorithm 1. For the given constants λ1 to λ4, a feasible
solution for the problem of event-triggered fault detection
observer design for LPV systems can be obtained by solving
the following convex optimization problem

min
Pi>0,P

′
i>0,Gi,G

′
i,Gi,∀i∈{1,...,n}

λ1γ − λ2β + λ3α2 − λ4α3

(32)
subject to (17) and (30).

Here, a procedure has been proposed for the co-design of
a parameter-dependent observer gain and the event-triggering
conditions for the corresponding fault detection observer of
LPV systems.

Remark 3. The values of λ1 to λ4 in Algorithm 1 can be
selected by the designer to emphasize how much the objectives
are important related to each other. The values of λ1 and
λ2 are used to determine the disturbance attenuation and
sensitivity of the residual signal to the fault signal. To reduce
the data transmission between the sensor event detector and
fault detection module, larger values for λ3 and smaller values
for λ4 should be chosen.

C. Residual evaluation criterion

Following the construction of the residual signal r(k), the
final step is to determine a threshold Jth and an evaluation
function Jr(k). Various evaluation functions can be consid-
ered. In this work, upper and lower threshold values are
selected as

Juth = sup
f=0,ω

r(k), J lth = inf
f=0,ω

r(k). (33)

Considering the evaluation function as Jr(k) = r(k), the
occurrence of a fault can then be detected by using the
following decision logic:

If r(k) > Juth or r(k) < J lth ⇒ f(k) 6= 0. (34)

IV. SIMULATION RESULTS

We consider a numerical example of an LPV system with
a sensor fault that is described by the following state-space
matrices

A(θk) =

[
0.02 1 0

0 0.1 0
0 0 0.1 + θk

]
, B1 =

[
1
0
1

]
, B2 =

[
0
0
0

]
,

C = [ 1 0 0 ] , D1 = 0.1, D2 = 1,

with θk ∈ [0, 0.5]. The fault signal is simulated as a rectangular
pulse with amplitude of 0.5 that is presented from k = 10 to
k = 30 in the sensor. The disturbance signal injected to the
system is chosen as a band-limited white noise with the power
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Fig. 2: Residual signal r(k).
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Fig. 3: Inter-event interval of the scheduling variable event
detector.

of 0.001. Using Algorithm 1 with λ1 = λ3 = λ2 = λ4 = 1
and choosing δ1 = 0.04, the design parameters are obtained
as β = 0.27, γ = 3.2, α2 = 24.72 and α3 = 0.24. Also,
the thresholds corresponding to the healthy operation of the
system are obtained as Juth = 0.21 and J lth = −0.1. Figure 2
shows the residual signal r(k) that demonstrates that the fault
signal f(k) is readily detected using the proposed FD method.
The inter-event intervals are shown in figures 3 and 4. The
value of each stem shows the length of the time period between
that event and the previous one which demonstrates a reduction
of data transmission to 61.28% for scheduling variable and to
68.32% for the sensor data.

V. CONCLUSION

In this paper, the problem of event-triggered fault detection
for discrete-time LPV systems is addressed. A parameter-
dependent observer has been designed as a residual gener-
ator such that the information about the output signals and
the scheduling variables are provided to the fault detection
module only at triggering time instants. A multi-objective
design formulation has been presented to satisfy the H–/H∞
performance indices, for which sufficient conditions have been
obtained in the form of LMIs. The simulation results illustrate
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Fig. 4: Inter-event interval of the sensor event detector.

that the proposed fault detection approach and the event-
triggering conditions are successful in detecting faults and at
the same time reducing the amount of data sent to the fault
detection module.

REFERENCES

[1] R. Martinez-Guerra and J. L. Mata-Machuca, Fault Detection and
Diagnosis in Nonlinear Systems. Springer International Publishing,
2014.

[2] P. Frank and X. Ding, “Survey of robust residual generation and
evaluation methods in observer-based fault detection systems,” Journal
of Process Control, vol. 7, no. 6, pp. 403 – 424, 1997.

[3] M. R. Davoodi, A. Golabi, H. Talebi, and H. Momeni, “Simultaneous
fault detection and control design for switched linear systems based on
dynamic observer,” Optimal Control Applications and Methods, vol. 34,
no. 1, pp. 35–52, 2013.

[4] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri,
“A review of process fault detection and diagnosis: Part I: Quantitative
model-based methods,” Computers and Chemical Engineering, vol. 27,
no. 3, pp. 293 – 311, 2003.

[5] S. X. Ding, Model-Based Fault Diagnosis Techniques. Springer-Verlag
London, 2013.

[6] S. X. Ding, Z. Maiying, T. Bingyong, and P. Zhang, “An LMI approach
to the design of fault detection filter for time-delay LTI systems with
unknown inputs,” in Proceedings of the American Control Conference,
vol. 3, 2001, pp. 2137–2142.

[7] I. M. Jaimoukha, Z. Li, and V. Papakos, “A matrix factorization solution
to the H∞/H– fault detection problem,” Automatica, vol. 42, no. 11,
pp. 1907–1912, 2006.

[8] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy,” Automatica, vol. 26, no. 3, pp. 459 –
474, 1990.

[9] M. Hou and R. Patton, “An LMI approach to H∞/H– fault detection
observers,” in UKACC International Conference on Control, vol. 1,
1996, pp. 305–310.

[10] Z. Li, E. Mazars, Z. Zhang, and I. M. Jaimoukha, “State-space solu-
tion to the H∞/H– fault-detection problem,” International Journal of
Robust and Nonlinear Control, vol. 22, no. 3, pp. 282–299, 2012.

[11] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems. Kluwer Academic Publishers, 1999, vol. 3.

[12] J. Bokor and Z. Szab, “Fault detection and isolation in nonlinear
systems,” Annual Reviews in Control, vol. 33, no. 2, pp. 113 – 123,
2009.

[13] B. Samanta, “Gear fault detection using artificial neural networks and
support vector machines with genetic algorithms,” Mechanical Systems
and Signal Processing, vol. 18, no. 3, pp. 625 – 644, 2004.

[14] H. Li, Y. Gao, L. Wu, and H. Lam, “Fault detection for T-S fuzzy
time-delay systems: Delta operator and input-output methods,” IEEE
Transactions on Cybernetics, vol. 45, no. 2, pp. 229–241, Feb 2015.



[15] J. Shamma, “An overview of LPV systems,” in Control of Linear
Parameter Varying Systems with Applications, J. Mohammadpour and
C. W. Scherer, Eds. Springer US, 2012, pp. 3–26.

[16] M. M. Seron and J. A. D. Don, “Robust fault estimation and compen-
sation for LPV systems under actuator and sensor faults,” Automatica,
vol. 52, pp. 294 – 301, 2015.

[17] B. Kulcsar and M. Verhaegen, “Robust inversion based fault estima-
tion for discrete-time LPV systems,” IEEE Transactions on Automatic
Control, vol. 57, no. 6, pp. 1581–1586, June 2012.

[18] D. Henry, J. Cieslak, A. Zolghadri, and D. Efimov, “H∞/H– LPV
solutions for fault detection of aircraft actuator faults: Bridging the
gap between theory and practice,” International Journal of Robust and
Nonlinear Control, vol. 25, no. 5, pp. 649–672, 2015.

[19] X. Wei and M. Verhaegen, “Mixed H∞/H– fault detection observer
design for LPV systems,” in 47th IEEE Conference on Decision and
Control, Dec 2008, pp. 1073–1078.

[20] F. L. Estrada, J. Ponsart, D. Theilliol, and C. Astorga-Zaragoza, “Robust
H∞/H– fault detection observer design for descriptor-LPV systems
with unmeasurable gain scheduling functions,” International Journal of
Control, vol. 88, no. 11, pp. 2380–2391, 2015.
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