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Abstract

In this paper, linear parameter-varying (LPV) control is considered for a solu-
tion copolymerization reactor, which takes into account the time-varying nature
of the parameters of the process. The nonlinear model of the process is first con-
verted to an exact LPV model representation in the state-space form that has
a large number of scheduling variables and hence is not appropriate for control
design purposes due to the complexity of the LPV control synthesis problem.
To reduce such complexity, two approaches are proposed in this paper. First, an
approximate LPV representation with only one scheduling variable is obtained
by means of a parameter set mapping (PSM). The second approach is based
on reformulating the nonlinear model so that it provides an LPV model with
a fewer number of scheduling parameters but preserves the same input-output
behavior. Moreover, in the implementation of the LPV controllers synthesized
with the derived models, the unmeasurable scheduling variables are estimated
by an extended Kalman filter. Simulation results using the nonlinear model of
the copolymerization reactor are provided in order to illustrate the performance
of the proposed controllers in reducing the convergence time and the control
effort.
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1. Introduction

Controlling the operation of polymer reactors is a highly important task
that aims at maximizing the production rate and the product quality and also
minimizing the transition losses due to the high consumer demands, as well
as the tight market competition for producing different grades of polymers [1].
However, the control design task is nontrivial due to the nonlinear behavior of
polymer reactor systems which exhibit strong dependence on multiple operating
regimes [2], [3], [4]. Furthermore, polymer reactors exhibit unstable modes at
some operating points [5], as well as time-varying parameters that need to be
measured since a polymerization reactor switches through different operating
points depending on the needed polymer grades [4]. Due to the existence of
unmeasured disturbances influencing these systems, the development of a ro-
bust control strategy is highly desired. Several control approaches have been
investigated in the literature 3], |4]. For example, a classical PID controller is
developed in [6] without the need of an accurate dynamical model. However,
PID controllers are not adequate to cope with such complex systems, in which
strong interactions exist between the controlled variables. Hence, model predic-
tive control (MPC) based on simple process models has been proposed in 3] and
[7], where a rapid transition between two typical operating points is ensured.
A nonlinear controller has been designed and validated experimentally in [2],
which depends on online measurements of time-varying model parameters of a
nonlinear model of the process.

Generally speaking, optimal control techniques are preferred if a good pro-
cess model is available [1]. Moreover, adaptive control strategies can be ap-
plied in order to take the time-varying nature of the process into account,
provided that online measurements/estimations are available. In this paper,
linear parameter-varying (LPV) control techniques (see [§]) are considered to
control a free radical solution copolymerization reactor described in [6]. LPV
systems describe a class of nonlinear/time-varying systems that can be repre-
sented in terms of parametrized linear dynamics in which the model coefficients
depend on a number of measurable variables called scheduling variables [9],
[10](Ch.3). The LPV methods provide powerful tools for designing controllers
for nonlinear/time-varying plants [11]. The LPV controller synthesis tools ex-
tend the well-known methods of controlling linear time-invariant (LTT) systems
to control nonlinear systems with guaranteed stability and high performance
over a wide range of operation [12], [13], [14].

The design of LPV controllers often involves two major problems: the pres-
ence of several scheduling variables in the LPV model, as is the case in the
copolymerization reactor, and the conservatism arising from the overbounding
of the range of variation of the scheduling variables [15]. For the standard
LPV-H design approach with polytopic models [§], the number of linear ma-
trix inequalities (LMIs) to be solved increases exponentially with the number of
scheduling variables so the control synthesis problem becomes computationally



intractable |16]. On the other hand, overbounding the range of the scheduling
variables often renders the LPV model to include some behaviors that are not
exhibited by the original plant due to the dependence of the scheduling variables
on the physical variables, which results in conservatism.

In this paper, an LPV representation of the copolymerization reactor is
obtained through a transformation capturing the system nonlinearities in the
scheduling variables. However, due to the existence of different nonlinear terms
in the copolymerization reactor model, the obtained LPV model turns out to
have 15 scheduling variables. Two approaches are then introduced for coping
with the high number of scheduling variables. In the first approach, the number
of scheduling variables is reduced via the parameter set mapping (PSM) pro-
cedure based on principal component analysis (PCA) [15]. The parameter set
mapping is an effective way to reduce the conservatism in LPV modeling by
resizing the scheduling range such that the reduced model matches the original
system behavior as closely as possible [17], |[18]. The second method is a specific
model reduction approach aiming at reducing the complexity, as well as the
number of scheduling variables of the model while the input-output behavior of
the original system is preserved. This method is based on an alternative conver-
sion of the nonlinear model to an LPV form by truncating the state variables
that have no significant role in the state evolution.

Once the operating region and the resulting LPV models are determined, a
control design methodology is applied on each produced model. For the LPV-
PSM approach, LPV H., control synthesis, introduced in [§], is used to synthe-
size a controller for the reduced LPV model of the reactor. For the model based
on the second approach, a linear fractional transformation (LFT) based LPV
controller synthesis approach is used to synthesize a controller [19]. However,
the implementation of the designed LPV controllers requires the availability of
all the scheduling variables, some of which are not measurable in the copoly-
merization reactor model. Therefore, an extended Kalman filter (EKF) [20] is
designed for the nonlinear model of the copolymerization reactor in order to
estimate its state vector. The aim of this paper is to emphasize the capability
of the LPV controllers, designed on the basis of a reduced model, to provide
high performance control of the polymerization reactor by enhancing the set-
tling time of the output and reducing the control effort. A comparative study
on the designed LPV controllers highlights the compromise between the design
complexity and performance of the LPV controller on one hand, and the sta-
bility guarantee of the closed-loop with the nonlinear process on the other hand.

The paper is organized as follows. In Section 2, the nonlinear copoly-
merization reactor model is introduced. Then, an LPV representation of the
copolymerization reactor model is derived in Section 3. First, a parameter set
mapping-based method for reducing the scheduling variables is applied. Then,
an LPV representation of a specific model reduction approach for the process
is developed. In Section 4, an LPV controller is synthesized for each approach



produced model. Next, the estimation of state variables through the use of the
extended Kalman filter is detailed. In Section 5, the performance of the syn-
thesized EKF-based controllers is examined and discussions addressing different
aspects of both approaches are presented. Finally, Section 6 concludes the paper.

Notation: The symmetric completion of a matrix is denoted by *, ker[ X de-
notes the null-space of a matrix X and diag(X,Y) represents a block diagonal
matrix with diagonal blocks XY .

2. Copolymerization reactor model

Copolymerization is the process of uniting two or more different monomers
together to produce a copolymer. In this study, two monomers are considered,
monomer A is methyl methacrylate (MMA) and monomer B is vinyl acetate
(VA). In addition, it is assumed that the solvent is benzene, the initiator is azo-
bisisobutyronitrile (AIBN), the chain transfer agent is acetaldehyde and the in-
hibitor is m-dinitrobenzene (m-DNB). These ingredients are continuously added
into a well-mixed tank (Fig. [I) where an inhibitor is considered as an impurity
and a coolant flows through the reactor jacket to remove the liberated heat via
polymerization. The polymer, solvent, unreacted monomers, initiator and chain
transfer agent compose the outflow of the reactor. The model of the solution
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Figure 1: Copolymerization reactor

copolymerization reactor is based on a free radical mechanism [G] described with



the differential equations given as follows [3]:
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where Ciy = T Qr = —, 0, = o C is the concentration (kmol/m?),
M is the mole-cular weight (kg/kmol), @ is the volumetric flow rate (m3/s), R
is the reaction rate (kmol/m?), S is the surface area (m?), T is the temperature
(K), U is the overall heat transfer coefficient (kJ/m?s K), V is the volume (m?),
t is the time (s), 6 is the residence time (s), A is the molar concentration of
monomer in polymer, p is the density (kg/m?), and t; is the j'" moment of
molecular weight distribution. The sub and superscripts a, b, i, s, t, z, r, j,
p, ¢ are related to monomer A, monomer B, initiator, solvent, chain transfer,
inhibitor, reactor, cooling jacket, dead polymer, and combination, respectively,
and the superscript (.) represents the free radical. The values of the constant
parameters are given in Table [l For more details on the kinetic and the ther-
modynamic parameters (such as kpaa and AHpaa,, respectively), as well as the
calculation of the reaction rates Ry (k = a,b,i,s,t,2), the free radial concentra-

tions C;, C;, and the moments 1*, )P, interested reader is referred to 6] (Egs.
(1)-(12), Egs. (31)-(36) and Table 7).

The inputs of the system () are the reactor flows F,, Fy, F, Fy, Fi, F,
and the temperature of the reactor jacket Tj. The important reactor output
variables for the product quality control are the reactor temperature Ty, the
polymer production rate Gyp;, the mole fraction of monomer A in the copolymer



Y.p, and the average molecular weight M. The output equations are

G(pi = (RaMa + Rbe)‘/rv

— _a
Yap = 3% (2)
Moy =%

The nonlinear model of the reactor (1) was derived in [6] from the first prin-
ciples of mass and energy balance and was validated on a real plant (see ],
[22], [23], [24] and [25]). Moreover, this model has been extensively used as a
benchmark for copolymerization process control in the literature (see, e.g., B],
[4], [7), [26] and references therein). The main challenge of this high fidelity
nonlinear copolymerization model is its volatile nonlinear behavior and exten-
sive operating range, which makes it a challenging and highly relevant (from the
practical perspective) application in industrial process control. In ﬂa], the de-
rived process control schemes have been successfully implemented and tested in
several real-world plants. Furthermore, as explained in m], the process model
is given realistic measured disturbances based on experience with an industrial
copolymerization process, thereby making the feedback control problem repre-
sentative of the challenges faced by industrial practitioners.

The control objective considered in this paper is to ensure a fast transition
between two steady-state operating points given in Table [2 while rejecting un-
measured input disturbance represented by F,. The first operating point, OP1,
given in ﬂa] was obtained for a monomer feed ratio F,/F}, = 0.2 while the second
one, OP2, was obtained by increasing the ratio by 0.25 keeping F}, constant. It
is worth mentioning that the solution copolymerization reactor is highly sensi-
tive to changes in the monomer feed ratios, i.c., F/Fy [3]. In order to achieve
this objective, the manipulated variables to control the four previously specified
output variables are chosen —based on the investigation in ﬂa]f to be F,, Fy,
Fy and Tj. For comparison purposes, the same control objective and associated
variables are considered whilst the other inputs are kept constant as F; = 0.18
(kg/h) and F, = 36 (kg/h) [3].

Table 1: Values for the constant parameters.

100.1 (kg/kmol)
86.09 (kg/kmol)

I, 16 (m9)
M,

M; 164 (kg/kmol)

M

M

M,

1 (m?)
6.0 x 1072 (kJ/m?sK)
2.01 (kJ/kgK)
879 (kJ/m?)
¢ 353.0203 (K)

78.11 (kg/kmol)
44.05 (kg/kmol)
168.11 (kg/kmol)

N o g<W»

For the operating points considered in Table 2] it has been shown in ﬂ] that



Table 2: Operating conditions.

OP1  OP2

Gpi (kg/h) 2335 249
Yap 0.56  0.64
ow (10° kg/kmol)  0.35  0.39
T, (K) 353.06 353.3

closing the temperature loop with a PI controller, i.e., assigning the manip-
ulated variable T} to only control T, yields a well-conditioned system, which
allows to fully exploit the compensation capabilities of multivariable controllers.
Furthermore, safety is another reason for the justification of closing the tem-
perature loop to prevent the reactor runaway. It is mentioned in [7] that a
well-conditioned control problem has been obtained and “by closing the tem-
perature loop, the complexity of the problem is not reduced, it is merely a
structured approach to the control design”. Consequently, the dynamics of T}
can be eliminated from the system (II), which reduces the number of states to
11.

3. Linear parameter-varying modeling of the copolymerization reac-
tor

In this section, linear parameter-varying (LPV) representations of the non-
linear model of the copolymerization reactor are developed to hide the system
nonlinearities in the LPV scheduling variables. While other methods for LPV
modeling, like Jacobian linearization based approach or state transformation,
tend to describe only certain aspects of the original nonlinear behavior, the
direct transformation methods generate LPV models that can completely em-
bed in their solution sets the behavior of the original nonlinear model [18]. In
continuous time, the state-space representation of an LPV system with static
dependency is described as

{ x(t) = A(0(2))z(t) + B(0(t))u(?), (3)
y(t) = C(6(1))z(t) + D(6(t))u(?),

with the state vector z(t) € R"™, the input vector u(t) € R™, the output
vector y(t) € RP and the system matrices A, B, C and D being continuous
matrix functions of the scheduling variable vector 8(t) € R!. 8(t) depends on
a vector of measurable signals p(t) € R¥ in the modeled system, according to
0(t) = q(p(t)), where q is a bounded function. The variable 0(t) is defined
over a compact scheduling set Py C R! such that 8(t) : R! — Py and Py is often
considered as a polytope and defined as the convex hull given by the vertices
0y, such that

Py := Co{6y,,0y,,...,04.}, (4)



where L = 2! and Co{-} denotes a convex hull. The LPV representation (3] is
called affine in scheduling dependence if the state-space matrices depend affinely

on @ as
l

M(0) = My + Z 0; M, (5)

=1

where 6; is the i*" element of 6. Since @ can be expressed as a convex combi-
nation of L vertices 8y, the system can be represented by a linear combination
of LTI models at the vertices. The resulting LPV representation is thus called
polytopic where each matrix is represented as

L
Q(0) = a:iQ(6y,), (6)

i=1
such that Zle o; =1 with o; > 0.

8.1. Full LPV model of the copolymerization reactor

Eliminating the dynamics of T, from (I results in a nonlinear model with
the state vector = [C, Ct, C; Cs Cy Cy Ao A 08 15 5] T, the output vector y =
[Gpi Yap My ] T and the full input vector w = [F, F, F} Fs Fy F,]T. The nonlinear
model () can be represented in the LPV form () with the state-space matrices
as

[—01—6. 0 0 0 0 0 00 0 0 0]
0 —61—-063 0 0 0 0 00 0 0 0
0 0 —61—0s 0 0 0 00 0 0 0
0 0 0 —61—65 0 0 00 0 0 0
0 0 0 0 —6—0 0 00 0 0 0
A(9) = 0 0 0 0 0 —6:-6: 0 0 0 0 0 [,

0> 0 0 0 0 0 -6 0 0 0 0
0 03 0 0 0 0 0 -6 0 0 0
08 o 0 0 0 0 0 0 —6: 0 0
610 011 0 0 0 0 0 0 0 —6: 0
| 612 013 0 0 0 0 0 0 0 0 —6 |
A{;Vr 0 0

0 7% 0 0 0 0

0 0 5% 0 0 0

0 0 0 57 0 0

0 0 0 0 54 0 0 0 0000 0 000614

B@O=|0 0 0 0 0 |.CO)= 0 0 000005000 0 |,D(0) = Osxe.

o o 0o o o 0 MoVi2 My, V630000 0 000 0
0 0 0 0 0 0

0o 0 0 0 0 0

0O 0 0 0 0 0
Lo o0 0 0 0 0 |

(7)

The scheduling variable @(t) € R, as defined in the Appendix, is a vector
of complicated functions that depend on the input and the state vectors used
to construct the measured signals in p(t) as
} T

p:[FanEFsFtFZOaObCiOSCtOzTr/\aAbwl (8)



The scheduling set Py can be defined by obtaining bounds on 6 based on
operational limits of p, which can be computed according to the operating
region defined in Table [2] as follows: First, one chooses an initial range for the
inputs and refers to such range as the input range. Then, a set of grid points
is produced for the input range; these points can then be used to generate a
set of operating points by computing the corresponding steady-state values of
the state vector of ([I), such that the operating points defined in Table [ are
covered. Finally, the bounds of 8, and hence, Py (see {@])) can be defined. The
input range can be redefined after the control synthesis step according to the
closed-loop operation. It turns out that for the operating region (Table 2), the
input range

18 < F, <225 kg/h,
87 < Fy, <93 kg/h,

1< F, < 4kg/h, (9)
F, = 0.18 kg/h,
F, = 36 kg/h

is sufficient to define Py. In the following the full LPV model is referred to as
Ma.

Using the full LPV model My could be too complex for LPV control synthe-
sis to achieve a specific desired control performance due to the large number of
scheduling variables I = 15. Based on the observations reported in [16], the large
number of scheduling variables renders the synthesis problem intractable due to
the large number of underlying matrix inequalities [8] or decision variables [19].
Furthermore, even if rendered tractable in the linear fractional transformation
(LFT) framework, the necessary structural constraints, e.g., defining structure
for so-called multipliers or scalings commonly used in LFT synthesis framework
[19], may render the resulting control performance overly conservative. Finally,
online controller implementation may turn out to be excessively costly. There-
fore, the number of scheduling variables is reduced by means of two different
techniques described in the following sections. In the first method, the param-
eter set mapping (PSM) method results in an approximate LPV model with
reduced number of scheduling variables, whereas, in the second one, reformu-
lating the nonlinear model allows to reduce the number of scheduling variables
while preserving the input-output behavior of the initial process.

3.2.  Reduced LPV modeling via parameter set mapping

The parameter set mapping can allow to develop an approximate LPV model
of the original LPV model with fewer scheduling variables. For LPV models with
affine dependence on the scheduling variables, PSM exploits the correlation of
the variables and neglects the “less significant” directions in the mapped space.
Hence, it allows to obtain a lower dimension and tighter range of variation of the
scheduling variables and possibly reduce the conservatism of the overall model-
ing concept. The PSM can allow a trade-off between the number of scheduling
variables and the desired model accuracy [15, [18].



For the sake of completeness, the PSM procedure is reviewed next. Given
the LPV model (@]), the LPV model reduction problem is to find a mapping
o(t) = h(0(t)), h : RE — R™, where m < [, such that an approximation of
the LPV model (@]) is obtained as

{iPSM(t) = 4(¢(t))wPSM(t) + é(d)(t))u(t)? (10)
y(t) = C(¢(t))zpsm(t) + D(o(t))u(?).

The use of PSM procedure for LPV model reduction involves the following steps
(15, [18]:

1. Obtain typical trajectories of the scheduling variables, from either mea-
surements or simulations that cover the expected range of system operation.
These trajectories are collected in a matrix @ € R by sampling the schedul-
ing variables at time instants t = kT, (k = 0,1,..., N — 1) with N > [, or by
determining steady-state values of the scheduling variables related to a gridded
operating regime.

2. In order to weight the elements of ® equally, a normalization is required.
The rows ®; of the data matrix ® are normalized such that

Or = N(©;), with 6! =0, of=,/Var{®P} =1,

where N denotes row-wise scaling to achieve zero mean data with one standard
deviation, ©} is the sample mean value of ®} and o} is the sample standard
deviation of ®}. The normalized data matrix @ € RN s given by:

e" = N (). (11)

3. The PCA method is then applied to the normalized matrix @™ in (I
in order to find a mapped parameter set with most significant information con-
tained in the data. Singular value decomposition (SVD) is used to deduce an
orthogonal set of basis vectors to @™ such that

e" = Uz, V" = U, ®, (12)

where the first m significant singular values are selected in g, and the unitary
matrix Uy € R*™ represents the basis of the significant column space of 2.

4. The key idea of using PSM as proposed in [1§] is to apply the normalized
mapping Us to determine a parameter function that defines the reduced LPV
representation. More specifically, the reduced scheduling variable ¢(t) will be
defined via

®=UO" & ¢(t) =UN(0(t)). (13)

Thus, the mappings A, E, C’, D in (I0) are related to the new scheduling vari-
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ables O(t) by [19],

Ao(t) é(qb(t))} _ [A(é(t» B(O(®)) "
C(o(t)) D(o(t)) C(6(t)) D(O(t)) ]
where the vector O(t) is defined by
(t) = N7 (Uso(t)), (15)

and N =1 denotes row-wise rescaling. Each element of é(t) is determined as
0i(t) = ©i+0; (Usp(t)),, where ©; and o, represent the mean and the standard
deviation of the rows of the data matrix ®, respectively. Since the LPV model
@) is affine in 0, each matrix in (I4)) is described as

!
Q(#(t) =Q(O() = Qo+ >_ Qibi(t), (16)
=1
which leads to
Q(o(t)) = Qo + zl:ézl Qi 0; + zézll Qioi (Ush(t)),

=Qo + Z Qi0:+>7, Z Qioi (Us); ; &;(t)
i=1 i=1 (17)

. Qo R Qj
=Qo +>7, Q; ¢;(t)
where (Us), ; represents the (4,4)* component of the matrix Us. This proves
that the reduced model is also affine in the reduced scheduling variable ¢(t).

)th

At any given time, the mapped vector ¢(t) is computed from (I3)), which is
used to generate the scheduling variable (t) from (I5) and then implemented
in the original LPV model @]). This leads to a reduced LPV model that depends
on the new scheduling variable 8(t) [18].

Next, the PSM technique is applied to the LPV model My. Here the matrix
O is defined based on steady-state values of the scheduling variables correspond-

ing to grid points in the scheduling signal range that had been used to define
Py. Then, ¥y from (I2) is obtained as

3 = diag (14.23, 12.2, 6.01, 1.36, 0.58, 0.27, 0.08, 0.03, 0.01,
5x107%, 2x 1072, 107, 6 x 1074, 1075, 107°). (18)
According to the scheduling dimension considered, the matrix Uy is calculated

from ([Z) and then used for the online calculation of ¢(¢) in (I3) and 8(t) in
(@E). For the transition from OP1 to OP2 as shown in Table [2 the reduced

11



LPV model provided by the PSM method is simulated with various scheduling
dimensions m = 1,2, 3, since the first three singular values of the matrix Xg
in (I8)) are the most significant ones. The end result of this simplification is
a projection matrix which projects the old measured variables to a new set of
variables. Therefore, unlike the balanced truncation method in the LTT case, it
is not possible to explicitly deduce which variables have been neglected. PSM
projects the scheduling variables range of an LPV model to another set with
smaller dimension, which results in an LPV representation with a reduced num-
ber of the scheduling variables. The best fit rate (BFR) of the state evolution
between the original state vector x obtained from (IJ) and the state vector of
the scheduling dimension reduced LPV model xpgn obtained from (I0) is cal-
culated as

BFR = 100% x max (1 - W,O), (19)

|z — |2

where Z is the sample mean of &, and ||.||2 is the £2 norm. The relative accuracy,
which is an indicator of the quality of the reduced LPV model by PSM, is defined
as

where o; denotes the i*! singular value of the matrix 3¢ in (I8]) and is presented
in Table Despite its low accuracy, the reduced LPV model with schedul-
ing dimension of m = 1 is considered for synthesizing LPV controller for the
copolymerization reactor as it yields minimal complexity. Furthermore, the
LPV controller designed based on the reduced LPV model with m = 1 shows
a better closed-loop performance in terms of the lower convergence time and
less overshoots of the outputs compared to the reduced models with scheduling
dimensions of m = 2 and m = 3. As discussed in ﬂﬁ], the potential benefit of
a tighter set of scheduling variables might not necessarily complicate the con-
troller synthesis and may even lead to a better closed-loop performance. In the
sequel, this reduced model is referred to as Myg. The new scheduling variable
¢(t) is defined in a new scheduling set P, C R™, which is the convex hull of
the vertices ¢y, as in {).

Table 3: Accuracy and BFR corresponding to the LPV models with reduced scheduling di-
mensions.

Accuracy (%) BFR (%)

m=1 55 77.8
m =2 90.1 82.4
m=3 99.4 96.5

3.83. LPV modeling based on the reformulated nonlinear model

The LPV model Mg derived in the previous section provides an approxima-
tion of the original nonlinear model. Therefore, the stability and performance

12



guarantees are rendered void if the designed controller, based on such approx-
imate model, is implemented on the original plant. In some cases, a posteriori
analysis should be performed on the full model to assess — and if applicable to
recover — these guarantees, see [27] and [28] for more details. To avoid such
analysis, next, the representation of the nonlinear model (D) is reformulated in
order to produce, for control synthesis, a reduced complexity LPV model, in
terms of the number of scheduling variables, that can preserve the same input-
output behavior of the nonlinear model in a prespecified range of operation.
Consequently, at the expense of some conservatism, controllers based on such
model guarantee stability and performance when implemented on the original
plant. Again, the nonlinear model () is considered after closing the tempera-
ture loop. The idea of reformulating the nonlinear model is based on truncating
those states that do not explicitly affect the outputs of the model. Using (2I),
it can be seen that the three outputs of the model are directly affected by the
states Cy, Cp, \a, 2. Therefore, the remaining states of the original model can
be truncated, and hence, the following reduced model can be obtained

d Fa Esz (Fa+Fb+Ft)
—(Cy = —6,C — Cy— —F+—2C,,
dt R VAT TP Vp *
d Fb Esz (Fa+Fb+Ft)
—C}y, = =050 — Cy, — ———=C
FTd 3 b+MbV Vo b Vo b) 0)
g)\ _HC_RSZ)\ _(Fa+Fb+Ft))\
dt a — U2La Vp a Vp as
d ~ Esz (Fa+Fb+Ft)
— g = 012C, — — L,
dtl/fz 12 Vp1/12 Vp ()
with the outputs in (2), where
~ 012C, + 0
010 = 012Ca + 015Ch (21)

Ca ’

and Fis, = F} + F5 + F,, which is assumed to be a constant parameterﬁ as it
is composed of non-manipulated variables. Due to the variations of Fi, Fy and
F, during operation, these three reactor flows are considered to be unmeasured
disturbances. In (2I), C, = 0 is prohibitive@ since it is meaningless to have
zero concentration of polymer A, and hence, (2I]) remains bounded in the op-
erational regime. The reformulated nonlinear model [20) with ([2)) depends on
the variables 65, 03, 512, 013 and 615 which are functions of all states of the
system. In simulation, the reformulated nonlinear model (20) should receive all
the truncated states from the system to be able to compute 6, 63, 612, 613 and
015, see Figure 2l In this sense, the reformulated model can preserve the same
input-output behavior of the original one. Note that an LPV controller based

11t is possible to consider Fig, time-varying at the expense of increasing model complexity.

012Ca+013Ch
Ch

2Tt is possible to consider f13 = instead (as Cp, = 0 is also prohibitive).
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on such reformulated model should receive all the states of the system in order

to compute the scheduling variable 6.

P G(pi
. Original |y,
NL Model My
F, | - _T
Fy|—— [Ci Cs Cy Gy Ty My 9o 1]
; [0 2o ]
_|Reformulated Y]z
NL Model M,,

Figure 2: Open-loop simulation of the reformulated nonlinear model

Now, an exact LPV representation for (Il) with (@) can be written in the

form (B]) where the state matrices are given by

[— (6, + ) 0 ; 0 0
0 — (65 + Vz) 0 0
A(8) = i ,
( ) 6‘2 0 _Z‘}chk 0
) F‘iSZ
i 012 0 0 —vy
L1 _ Ca _Ca _Ca
M.V _V 4 1%
o’ Lo _d (22)
B(g) — (‘)/p MbVO Vp (\)/p ,
_ 2 _ 2 _ 2
L Vp Vp Vp
(M VO MyVOs 0 0
c(0) = 0 0 05 0|, D =0,
| 0 0 0 64

where >, Fj, = Fis; + Fa + Fy, + Fe. Note that for the representation @2),
the functions 65, 03, 612, 615,614 and the states C,, Cy, 12 define the scheduling
variables, resulting in a total of 8 scheduling variables. Next, this dimension is
further reduced by introducing a new input vector

1 _ Ca _Ca
u M,V _ Vp Vv
uo | = _COw 1 _ G
21 = Vp M,V Vp
u3 % %
P p

Ca
—V—'; Fy (23)
_ Y2 F,

Vp

The transformation matrix € in (23)) is non-singular for all values of C,, C}, and
1o in the specified operating range. Then, a new constant matrix B for the
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LPV model can be introduced as

: (24)

o oo
o o= O
= O O O

in terms of the new input vector ([23)) considered for the model. Moreover, the
new set of outputs is defined as
y1 = Gpi,
Y2 = Yap/b15 = Yap(Xa + Ap), (25)
Yys = Mpw/914 = Mpw1/)1,

and hence, the new C matrix for the model can be introduced as

M.V, M,Vé; 0 0
c@o=| o 0o 1 0. (26)
0 0 0 1

Introducing the new inputs and outputs results in the LPV representation (B]) of
relatively low complexity for the nonlinear model. The new state-space matrices
in terms of the scheduling variable ¢ are given by

r ESZ
_(<1+ Vp) 0 . 0 0
0 —(Go+Ee2) 0 0
A()= Ve . ;
(©) G 0 —(g5+5) 0
0 0 ez
L <3 Vp (27)
B in [24),
[MVG MyVE 0 0
c)=| o0 0 1 0|,andD=0,
| 0 0 01

where ¢ = 03, (o = 03, (3 = b1, (4 = Fo + F, + F, and ¢y, - -+, (4 are the
elements of the entries of the scheduling vector ¢. Taking into consideration
23) and (28), the LPV representation [B]) with ([27) has the same input-output
map as that of the nonlinear model () as long as the LPV model receives the
truncated states from the nonlinear model as shown in Figure 2l Note that (;
are functions of the preserved variables collected in p as described by (8). Based
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on the input range defined in (@), the bounds of ¢ are

0.1618 < ¢; <0.1771,
0.4823 < (2 < 0.5861,
0.0170 < ¢5 < 0.0202,
2.6124 < (4 < 4.0512,

(28)

which can be used to define a new compact parameter set P¢. In the sequel, the
LPV model B) with (27) is referred to as M.

The resulted low complexity LPV model, M¢, in terms of the dynamical or-
der and scheduling dimension guarantees the stability and desired performance
for the original nonlinear model. However, losing the dynamical effects of the
truncated states in M, might limit the achievable performance of such con-
trollers without affecting the closed-loop stability, provided that all the schedul-
ing variables are confined within their prespecified bounds (see Section [A.2)).

4. LPV control synthesis

In this section, the control synthesis approaches proposed in [8] and [19] are
utilized to design LPV controllers based on My and M¢, respectively. The LPV
model My has just one scheduling variable, whereas M, has 4 scheduling vari-
ables, which is relatively large. Therefore, the linear fractional transformation
(LFT) gain-scheduling approach [19] is adopted to design the LPV controller
for M. This approach provides a versatile LPV controller synthesis framework
capable of handling plants with relatively large number of scheduling variables
while maintaining low implementation complexity through affinely scheduled
controllers in the case of plants with affine parameter-dependency [16], as is the
case in the copolymerization reactor. With both My and M¢, the LPV con-
trollers are designed with a fixed Lyapunov function using an ., loop-shaping
approach based on the gain-scheduled LPV synthesis. In order to implement
both controllers in reality, the elements of the signal vector p () should be
available to compute 6. Since some of these elements are difficult to measure,
the procedure adopted to estimate them is introduced later in this section.

4.1. LPV control synthesis based on Mgy

The mapped parameter set Py obtained via (I3) allows defining a set of 2™
LTI models, based on which an LPV-H, controller is synthesized by means of
the MATLAB Robust Control toolbox command hinfgs []]. This results in a
polytopic LPV controller K4 with the state-space representation

{0 = 400N+ B0 29)
u(t) = Ce(@(t))ze(t) + De((t) e (t).

where x is the state vector of the controller and the matrix functions A¢, Be, C¢
and D, are affine in ¢(t); ICy is scheduled with respect to the reduced scheduling
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variable ¢(t) according to ([29). Note that the controller can still receive the
information of T, via the functions shown in ([34)) in the Appendix.

The control design objective is to stabilize the closed-loop system in the op-
erating range defined in Table 2] with a fast tracking capability and disturbance
rejection taking into consideration the control input constraints as [3]

o
IN

)

IN
oy
SIS

<18

o

kg/h,

ot
S

o o
IN A
ElicRelelle

IN
2|;

)

317.754 <T; < 388.366 K.

A standard mixed sensitivity loop-shaping approach is adopted to meet the
design objectives. The following weighting filters are selected:

5.352x1072  4.645x107¢  3.043x1072

$+7.49%x1073" 54+6.46 x 10767 s4+5.18 x 107) ’
7.585s+197  90.775+9587 9.862s5+11.37

5+2.597x 1047 s+1.056 x 105" s+1153 )

Wg = diag (

Wks = diag (

The sensitivity weighting filter Wy is responsible for tuning the closed-loop
bandwidth and ensuring almost zero steady-state error. The required band-
width has been inferred from the set of 2™ LTI models of the form (I4) after
freezing the mapped parameter set Py. On the other hand, the complementary
sensitivity weighting filter Wkg has been adjusted to impose an upper bound
on the control sensitivity in order to restrict the control effort and reduce the
output overshoot. The generalized plant is shown in Fig. Bl

I
r—
I
I

Figure 3: Generalized plant interconnected with the LPV controller.

The complexity of the LPV model via PSM procedure is ideally reduced
into one scheduling variable, which allows a minimal design complexity for the
deduced LPV controllers and can yield high performance. However, these syn-
thesized controllers may not guarantee the achieved closed-loop stability and
performance once they are tested with the full nonlinear model of the copoly-
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merization reactor since they are designed based on an approximation of the
nonlinear model.

4.2. LPYV control synthesis based on M

In the following, an LPV-LFT gain-scheduling controller is designed based
on M, which can provide the same input-output behavior as the full nonlinear
model in a prespecified operating regime. The H, loop-shaping approach based
on the gain-scheduling LPV synthesis results of [19] requires the formulation of
M in an LFT form as

A(C) B(C)} [A Bu] [BC] .
= + I'(I — D¢l C¢ D¢y 30
[C(C) D) T|Cy Dya| T|Dye| T «)7 [Cc Deu)  (30)
where I' = diag(¢11r,, -+ ,CneIr,.. ) is a parameter matrix that includes all

the scheduling variables provided that (I — D¢eT)™" exists for all ¢ € P,
i.e., the well-posedness condition. For parameter-affine LPV models, D¢¢ = 0.
Moreover, for the derived LPV model of the copolymerization reactor, one has
Dy, =0, T = diag(¢1,- - ,¢a) € R*%. Since both the plant and the con-
troller correspond to time-varying systems, the Ho, norm is interpreted in terms
of the induced Ls-gain.

To meet the control design objectives, the closed-loop system is shaped using
weighting filter matrices for the sensitivity Wg and the complementary sensi-
tivity Wks channels, (see Fig. B)) as

. 8.326 x 1072 1.088x 1071 1.193x 1071
Wg = diag , , ,
$4+9.019x10~47 s+1.008 x 1073’ s+1.084 x 10>
) 16425+3.885x 10* 641.754+6.205x 10* 1679s+1243
WKS = d1ag y y
$+2.367 x 104 $49.67 x 104 5+740.5

It is worth noting that these weighting filter matrices are different from the
ones obtained in the first approach since they are tuned with different reduced
LPV models My and M. Given Wg and Wxkg, an LEFT representation of the
generalized plant is obtained as

A Bp(€) B A B, B, B¢
ép(C) ﬁpp(C) ﬁpu(() = C~Yp [)pp Dpu + DPC P[CYC DCp Dcu]‘
é(C) f)yp(C 15(0 C~"y Dyp [)yu EyC

Then, a linear matriz inequality (LMI) condition for the existence of a gain-
scheduled Ho controller in an LFT form |19] based on the so-called multipliers is
employed. In order to synthesize an affinely gain-scheduled controller such that
the scheduling block T' of the plant is copied to the controller, the multipliers
are chosen according to |28§].
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The parameter-dependent state-space model matrices of the affinely sched-
uled controller K¢ are then computed by

49 B0 & B [E]re . o

which is a 10*" order 3 x 3 LPV controller for the problem under study. In
terms of the control implementation, the LPV controller ([BII) requires relatively
low online computation as it only needs to update the controller state-space
matrices at each time instant given the value of the I' block; see [16] for more
details about the implementation complexity of LPV controllers.

It is important to point out that the implementation of LPV controllers Ky
and K¢ based on the designed LPV models requires the possibility of measuring
or estimating p chosen in () at every time instant. Therefore, the next section
is dedicated to design an extended Kalman filter in order to estimate p.

4.3. An extended Kalman filter to estimate p

The availability of the vector p is required at each sampling time instant
in order to compute the scheduling variable 8 and consequently ¢ or ¢ for
the controller Ky or ¢. In the copolymerization reactor model, the flow rate
and composition of the feed Fj, (k = a,b,i s, t,z) are measured along with
the reactor temperature T, [4, 126, [29]. On other hand, the molecular weight is
measured online using a capillary viscometer as described in |4], and the copoly-
mer product composition is measured using nuclear magnetic resonance (NMR)
spectroscopy. As discussed in [4], the on-line measurements of polymer archi-
tecture such as composition and molecular weight may be simply unavailable.
Moreover, the choice of sampling frequency depends on the requirements for
good quality control and the need to minimize analytical costs. Usually, when
the reactor residence time is much shorter than the sampling frequency, integral
control is appropriate. In other cases, the sampling time introduced by the pe-
riodic analysis of polymer concentration, polymer composition, and molecular
weight may not be long enough so the incorporation of online state estimators
of polymer properties is necessary [4].

As a result of the above analysis, the elements of p that must be estimated
are pt = [C,, Oy, Ci, Cs, Ci, Cy,y Aa, Ab, ¥1]. Consequently, the estimation
of the state vector for the copolymerization reactor model () is required. In
[26], the same copolymerization reactor model as (Il) was used to develop an
extended discrete-time Kalman filter for state estimation. For more realistic
study, an additive disturbance is added to the measurements. In this paper, a
continuous-time extended Kalman filter is applied for the nonlinear model of
the copolymerization reactor (Il) which can be written as

&(t) = f(z(t), u(t)) +w(t),

y(8) = h(x(®) + o(t). (32)
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where f(x(t),u(t)) and h(x(t)) are nonlinear functions and w(t) and v(t)
are the process and observation noises assumed to be zero mean Gaussian noises
with covariance R(t) and Q(t), respectively. The extended Kalman filter is im-
plemented as follows:

Initialization step:

ift(to) = E[w(to)}, P(to) = Var [ilt(to)]
Prediction and update steps:

B(t) = F(@(®), u(®) + K®)(y(t) — h(3(2))),

P(t) = F(t)P(t) + P()F(t)" — K@) H(t)P(t) + R(?),
K(t) = PH@®)' Q)

ry - 2 w
0Ty )
oh
H(t) - % a(t) ’

where P(t) is the covariance estimate and K (t) is the Kalman filter gain.

5. Implementation of the EKF-based LPV controllers

The control design objectives that are considered in this paper are the same
as those in [3]. Tt is basically required to examine the effect of the transition
from OP1 to OP2 as shown in Table 2 for each of the four output variables.
The designed controllers have been simulated with the nonlinear model of the
copolymerization reactor (Il). For the output 7}, a tuned PI controller is con-
sidered based on the design procedure discussed in |6]; this is justified as the
change of T} from OP1 to OP2 is very small. In order to compute the state-
space matrices of the controllers via (29)) and (3I)) at each sampling instant, the
estimation of p®t, which is the unmeasurable part of p, is obtained by means
of the extended Kalman filter (33)). The measurement noises added to the out-
put signals are equal to 3% of the operating point except for T}, for which the
added noise is 1% [30] (see Fig. H). A comparative analysis of the closed-loop
performance is done between the LPV controllers synthesized for both modeling
approaches and the model predictive controller (MPC) developed in [3].

5.1. Implementation with the LPV controller K4

The state vector is estimated by the extended Kalman filter for the nonlin-
ear model of the copolymerization reactor (). The highly accurate estimation
of the most important state variables is shown in Figure Bl The resulting in-
put flow rates and the estimated outputs during the transition from OP1 to
OP2 with the controller K4 are shown in Figures [Bal and [6bl The real outputs
(without noise) coincide with the estimated ones as seen in Figure A fast
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40
t [h]

Figure 4: Real (blue line) and noisy (red line) output measurements.

convergence of the temperature 7} is achieved. The production rate Gp;, the
polymer composition Y,, and the molecular weight M, take almost 9 hours to
reach their steady states. This result emphasizes the importance of PCA in re-
ducing the model complexity for developing a controller, as well as in providing
enhanced closed-loop performance.

It is important to note that the target of the controller Ky is to get Yy, to
reach 0.64 as shown in Figure It reached 0.636 that is equivalent to 0.6% of
error, which is acceptable. The reason is that the controller K, designed based
on a mixed sensitivity loop-shaping approach cannot provide a pure integral
action that does achieve zero steady state error. A steady-state error up to
+1% could be considered to be reasonable. Hence, such an objective in terms
of the shaping filters was used during the control synthesis.

5.2. Implementation with the LPV controller K¢

The implementation of the LPV controller K¢ on the full nonlinear model
of the plant is shown in Figures [Bal and [60] which illustrate the input and the
closed-loop output responses, respectively, during the transition from OP1 to
OP2. As observed in B], the production rate Gp; and the temperature 7}, show
faster response in comparison with the polymer composition Y, and the molec-
ular weight M. ; however, all outputs require less than 10 hours to reach the
steady-state values without violating the input constraints.

Next, the results of our comparative study of the performance of the con-
trollers synthesized for both approaches and the MPC controller proposed in B]
are reported. As shown in Tabled] Ky provides a better performance than the
controller K¢ and the MPC controller. The convergence time of Ky is the lowest
and, unlike the other two methods, the outputs Y,,, My and T; in Fig. do
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Figure 5: Estimated state variables during the transition from OP1 to OP2: actual (blue line)
and estimated (red dashed line).
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Figure 6: (a) Manipulated variables, and (b) closed-loop response: reference (solid black line)
with Ky (blue dashed line) and IC¢ (red dash-dotted line) during the transition from OP1 to

OP2.

not exhibit any overshoot. On the other hand, the input flow rates of K¢ and
those of Ky in Figure[6al do not saturate and the overshoots are less than those
shown in [3]. The improvement brought by Cy4 in the output settling time and
the input quality has a significant impact on the industrial process of polymer
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production.

Table 4: Closed-loop performance of the LPV controllers and MPC.

Ky Ko MPC

Convergence time (h) 9 10 15
F, 17 155 50
B, 0.5 4 11
Fi ~ ~0 18
T; ~ 60 0.5
G 44 34 64
Yo 0 ~0 0
M 0 0.7 0
T, 0 ~0 ~0

Input overshoots (%)

Output overshoots(%)

o]

Finally, the effect of an unmeasured disturbance is examined while taking
into consideration the presence of an inhibitor flow in the fresh feed during the
transition from OP1 to OP2, i.e., F, # 0. The capability of the LPV controllers
is demonstrated for an inhibitor disturbance of 4 parts per thousand (mole basis)
during the period (1.5-3.0 h) as in [3]. Unlike the MPC controller developed
in [3], Ky and K¢ (Figure [Ta)) prevent the saturation of the input flow rates.
Also, these controllers reject the disturbance effect without showing aggressive
response as illustrated in Figure Furthermore, with Ky, no oscillations are
observed and the convergence interval (around 10 hours) is slower than the case
without disturbance; however, it remains faster than the response of K¢ that
takes 30 hours to reach the desired values, as well as the response of MPC
controller in [3] which takes more than 15 hours to converge. In addition, in 3],
the convergence time of the polymer composition Y, is longer than 30 hours.

It is worth to mention that the synthesis complexity of Ky is much lower
than that of K¢ as the scheduling dimension of the former is one, whereas
it is 4 with the latter. This reduces the complexity of K4 and demonstrates
the improvement of its achieved performance. On the other hand, Xy cannot
guarantee closed-loop stability (theoretically) when it is implemented on the
nonlinear process as it is based on the approximate model My. However, given
the exact state estimation, a theoretical stability can be guaranteed with K¢
for all { € P¢ as it is designed based on the exact model M. A trade-off is
illustrated between the design complexity and performance of the LPV controller
on one hand, and the stability guarantee of the closed-loop with the nonlinear
process on other hand.

6. Conclusions

In this paper, two different approaches are proposed to reduce the large num-
ber of scheduling variables in the LPV model of the copolymerization reactor.
In the first approach, the parameter set mapping based on principal component
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Figure 7: (a) Manipulated variables, and (b) closed-loop response: reference (solid black line)
with Ky (blue dashed line) and IC¢ (red dash-dotted line) during the transition from OP1 to
OP2 in the presence of a disturbance.

analysis has been employed to reduce the number of scheduling variables result-
ing from LPV modeling. In the second approach, a low complexity LPV model
has been derived by reformulating the representation of the nonlinear model.
Based on the developed LPV models, an LPV controller has been designed for
the LPV model obtained with each of the approaches. An extended Kalman
filter is designed to estimate the unmeasurable state variables. The performance
of the extended Kalman filter-based controllers applied to the original nonlin-
ear model has been compared for a transition between two operating points of
the copolymerization reactor. The LPV controller K4, based on one scheduling
dimension LPV model, has shown a better disturbance rejection without either
output oscillation or input saturation. This enhancement in the closed-loop
performance is due to the low conservatism of the design by the PSM approach.
However, the inability to guarantee the closed-loop stability with the nonlinear
reactor model remains the main drawback of the PSM procedure. The stability
is, however, guaranteed with the LPV controller ¢ which is designed based on
state truncated model, but its design is more complicated with four scheduling
variables. A trade-off is illustrated by the low complexity and good perfor-
mance on one hand, and the stability guarantee of the closed-loop system with
the nonlinear model of the reactor on other hand.
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7. Appendix

The scheduling variables 61, ..., 815 in the LPV representation of the copoly-
merization reactor in (B]) are defined as

0, = gi = h(Fa By B Fs By F),

Ry,
27 = Cr (k=a,b,i,8,t,2) = fo_7(Ca, Cp, C, 0y, Th),

1

98 = 5 ( Caa(q/}O ) + kcabUJS-UJS' + LN/’S) /C = fg(ca; Ob,Ci, OS?Ct7CZ’Tr)7
1

b0 = 5 (Ko (U5)* + Lat) /Cb = fo(Ca, O, Ci, G, Cr, Co, T),

910 _ ( Cddwo wl + deb(wO wl ) + Llwi‘) /C = flO(Ca,CbuCi7csuctch7Tl‘)7

911 = (keab (5 wl )+ kebn g U7 + Laty") /Cb = f11(Ca, O, C1, G, Cr, Gy, T1),

= (Keaa ((03)% + 05 08) + Keab (290 + 955 ) + Livs) /C
fl (Cd7 Cb7 Cn C:aa Cta Czu T, )

013 = (Kcab(V3U0) + kevb (V1) + g ¥8") + Laph") /Cy
- f13(Oa;Ob;Oi7087Ct;OZ;Tr)7

14 = ip = fua(¥Y),
Y1
b15 = )\aTl)\b = f15(Xa; Ab).
(34)
An example of representing the dynamics of the first state ( "‘) in the LPV
form is shown as follows:

400 _ Gt _ KO o
k
“mnho S G
01
_ <(kpaa + kxaa) 92(03” Ob7 Ci; OZ) + Cb(kpab + kxab) g2(Oa; Ob7 Ci; OZ)> C
gl(Cavcb) Ca gl(Caacb) N

02
= M v F — (01 +02)C,
(35)
where the kinetic parameters k are function of T, (see |6]) and ¢1(Ca, Cy) and
92(Ca, Cp, Cy, C,) are nonlinear functions.
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