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Abstract— We propose a model predictive control approach
for non-linear systems based on linear parameter-varying
representations. The non-linear dynamics are assumed to be
embedded inside an LPV representation. Hence, the non-linear
MPC problem is replaced by an LPV MPC problem, which can
be solved through convex optimization. Doing so, the non-linear
system can be controlled efficiently and with strong guarantees
on feasibility and stability at the possible sacrifice of achievable
performance. In this paper, the LPV MPC problem is solved
using a tube-based approach, requiring the on-line solution
of a single linear- or quadratic program. The computational
properties of the approach are demonstrated on two examples.

I. INTRODUCTION

Many systems in engineering exhibit significant non-
linearities when controlled over a wide operating regime.
Because working with complex non-linear models is chal-
lenging, it is often useful to employ “simplifying” approaches
to model the non-linear system. One such way of modeling
the behavior of a non-linear system is by embedding it in a
linear parameter-varying (LPV) representation [1], [2], [3].
In an LPV system, the dynamical mapping between inputs
and outputs is linear while the mapping itself depends on
a time-varying and on-line measurable scheduling variable.
Thus, non-linearities in the original system can be represented
by variations in the scheduling signal.

In an LPV system, it is assumed that the scheduling variable
is an exogeneous signal that is independent from the states
or control inputs. This assumed freedom enables the use
of computationally efficient control design procedures. If an
LPV model is used to embed an underlying non-linear system
and the scheduling signal represents the non-linear behavior,
this introduces some conservatism. This is because, generally,
the solution set of the LPV embedding will be larger than that
of the original non-linear system. The true dependence of the
scheduling variable on the states or inputs can be described
by a so-called scheduling map, and such a map can be used
to bound all the possible behaviors of the scheduling variable
given knowledge of, e.g., the allowable state trajectories.

In general, non-linear MPC requires the on-line solution of
a non-convex optimization problem. If the non-linear model is
embedded in an LPV representation, however, an LPV MPC
strategy can be employed which only requires the solution of
convex programs. Although the optimization problems in LPV
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MPC often have more decision variables and constraints, they
can still be solved efficiently due to their convex structure.

In the MPC scheme of [4], which is based on LMI
optimization, it is assumed that the underlying non-linear
system can be represented by an LPV model obtained as a
family of linearized models around various operating points. It
is shown that if the optimization remains feasible, the closed
loop is asymptotically stable. However, because the family
of linearized models is not guaranteed to embed the true non-
linear dynamics, recursive feasibility can not be established
a-priori. In the method of [5], the non-linear dynamics are
embedded in a LPV representation with a discrete scheduling
set, effectively representing a collection of uncertain linear
models. Rate-of-variation (ROV) bounds on the state – and
hence, on the scheduling variable – are imposed in a way
reminiscent of classical gain scheduling [1]. The LMI-based
approach of [6] also imposes restrictions on the scheduling
ROV but does not require the scheduling set to be discrete.
The computational complexity of the method therein grows
exponentially in the prediction horizon.

In [7], an “iterative” MPC scheme is presented to control
non-linear systems embedded in an LPV representation.
Unlike the previously discussed approaches, knowledge of the
scheduling map is exploited in the prediction stage. Based
on an initial guess of the future scheduling trajectory, a
simple linear time-varying (LTV) MPC problem is solved.
The resulting optimal state- and input trajectories are used to
generated a new future predicted scheduling trajectory through
the scheduling map, and the procedure is iterated until the
predicted trajectories converge. This is computationally highly
efficient because at each time instant, only the solution of
a sequence of LTV MPC problems is required. The authors
demonstrated that it works well on some examples, but there
are no guarantees concerning convergence of the iterations.

In this paper, we develop a non-linear MPC based on
LPV embeddings, which integrates the explicit use of a
scheduling map from [7] into a tube-based LPV MPC
formulation. In this way, we trade achievable performance
for computational efficiency, without sacrificing guarantees
on recursive feasibility and stability. The future evolution of
the scheduling variable is assumed to belong to a sequence
of sets, which is a more general setup compared to assuming
just bounds on the rate of variation. The proposed method
requires the on-line solution of a single linear- or quadratic
program with a number of variables and constraints which
grows linearly in the prediction horizon.

Previously, tube-based methods have been used to derive
efficient non-linear model predictive controllers based on
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linearization. In [8], [9] the non-linear dynamics are linearized
around a given feasible “seed” trajectory, and the arising
linearization errors are represented as additive perturbations.
Although both the proposed method and [8], [9] belong
to the class of tube-based policies, the linearized system
representation adopted in [8], [9] is fundamentally different
from the LPV embedding considered in the current paper.

The paper is organized as follows. Section II describes the
notation and problem setup. Section III discusses the proposed
MPC methodology, and in Section IV some corresponding
initialization strategies are given. Examples demonstrating
the properties of the algorithm are provided in Section V.

II. PRELIMINARIES

A. Notation

The set of nonnegative real numbers is denoted by R+

and N denotes the set of nonnegative integers including zero.
Define closed- and open index sets as N[a,b] = N ∩ [a, b]
and N[a,b) = N ∩ [a, b). The predicted value of a variable
z at time instant k + i given the information available at
time k is denoted by zi|k. A set X ⊂ Rn which is convex,
compact, and contains the origin in its non-empty interior
is called a PC-set. A subset of Rn is a polyhedron if it is
an intersection of finitely many half-spaces. A polytope is
a compact polyhedron and can equivalently be represented
as the convex hull of finitely many points in Rn. For a set
V ⊆ Rn and a scalar α ∈ R let αV = {αv | v ∈ V }, and
for a vector z ∈ Rn let z ⊕ V = {z + v | v ∈ V }. The
Hausdorff distance between a nonempty set X ⊂ Rn and
the origin is d0

H(X) = supx∈X ‖x‖. For a vector x ∈ Rn,
observe that d0

H({x}) = ‖x‖. A function f : R+ → R+ is of
class K∞ when it is continuous, strictly increasing, f(0) = 0,
and limξ→∞ f(ξ) =∞. The gauge function ψS : Rn → R+

of a given PC-set S ⊂ Rn is ψS(x) = inf{γ | x ∈ γS}. We
use the following generalized “set”-gauge function:

Definition 1: The set-gauge function ΨS : 2R
n → R+

corresponding to a PC-set S ⊂ Rn is

ΨS(X) := sup
x∈X

ψS(x) = inf {γ | X ⊆ γS} .

B. Problem setup

This paper considers non-linear systems

x(k + 1) = f (x(k), u(k)) , k ∈ N, x(0) = x0, (1)

that can be embedded1 in an LPV representation like

x(k + 1) = A (θ(k))x(k) +Bu(k), (2a)
θ(k) = T (x(k)) , (2b)

where u : N → U ⊆ Rnu is the control input and x : N →
X ⊆ Rnx is the state vector. The sets U and X are the input-
and state constraint sets, respectively. The scheduling signal
θ : N→ Θ ⊆ Rnθ is state-dependent through the scheduling

1A class of systems that can always be embedded in the required form is
x(k + 1) = f̃(x)x + Bu where f̃ : X→ Rnx is bounded on a compact
set X ⊂ Rnx . Conditions on when an embedding of the form (2) can be
constructed for an arbitrary continuous-time non-linear system can be found
in [10]. The discrete-time case is still a topic of ongoing research.

map T : X→ Θ. The set Θ is called the scheduling set. The
matrix A(θ) in (2) is assumed to be affine in θ, i.e.,

A(θ) = A0 +

nθ∑
i=1

θiAi (3)

where Ai, i ∈ N[0,nθ] are matrices of conformable dimensions.
We assume that the system satisfies the following assumptions,
which are standard in state-feedback MPC design:

Assumption 1: (i) The state vector x(k) can be measured
for all k ∈ N. (ii) X and U are PC-sets. (iii) The origin is an
equilibrium of (1), i.e., f(0, 0) = 0.

The representation (2) is an LPV embedding of (1), if it
satisfies the following definition.

Definition 2: Let Θ ⊆ Rnθ be compact. The representation
(2) is an LPV embedding of (1) on the open set X ⊂ Rnx ,
if for all signals x : N → X and u : N → U satisfying (1),
there exists a θ : N→ Θ such that (x, u, θ) satisfies (2a).

From the above definition it follows that if X ⊂ X , the
embedding is valid on the state constraint set X which is
compact by Assumption 1. The signal θ in Definition 2 is
not necessarily unique. The embedding is in general a “over-
approximation” of (1), in the sense that the set of trajectories
satisfying (2a) can be larger than the set of trajectories
satisfying (1). In this definition, the scheduling map T (·)
does not play a role, as the scheduling signal in an LPV
representation is considered free. Knowledge of T (·) can be
exploited to obtain refined sets of all possible scheduling
trajectories; this is what will be done in the MPC developed
in this paper. There is unfortunately no general approach
to construct an embedding for arbitrary non-linear systems,
and the choice of embedding is not unique. Methods of
constructing embeddings for relevant classes of systems can
be found in, e.g., [2], [3], [10]. An important property of
embeddings is the following.

Lemma 1: Suppose that there exists a control u : N→ U
such that all possible trajectories of (2a) are driven to the
origin. Then, the same control sequence drives the state
trajectory of (1) to the origin as well.

In this paper, a stabilizing MPC will be designed for
the representation (2), which by the above Lemma is then
guaranteed to stabilize (1). In the sequel, the map T (·) will
be applied to set-valued arguments X ⊆ X according to

T (X) := convh {T (x) | x ∈ X} . (4)

Furthermore, it must satisfy the following properties.
Assumption 2: (i) T : X → Θ is continuous, bounded,

and such that (4) maps compact sets into compact sets. (ii)
For any two compact convex sets X1, X2 ⊆ X such that
X1 ⊂ X2, it holds T (X1) ⊂ T (X2).

III. THE MPC APPROACH

We adopt a modified version of the setup proposed in [11]:
Definition 3: A tube is defined as

Tk :=
({
X0|k, . . . , XN |k

}
,
{

Π0|k, . . . ,ΠN−1|k
})

where Xi|k ⊆ Rnx , i ∈ N[0,N ] are sets (“cross sections”)
and Πi|k : Xi|k × Θi|k → U, i ∈ N[0,N−1] are control laws
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satisfying the condition ∀(x, θ) ∈ Xi|k × Θi|k : A(θ)x +
BΠi|k(x, θ) ∈ Xi+1|k and Xi|k ⊆ Xi|k.

In the considered setting, the role of the sequence

~Θk :=
{

Θ0|k, . . . ,ΘN−1|k
}

(5)

is to bound all possible behaviors of θi|k in the embedding
(2). Definition 3 allows for time-varying state constraints

~Xk :=
{
X0|k, . . . ,XN−1|k

}
(6)

and the basic approach in this work is to construct at each
time instant a state constraint sequence ~Xk, and generate
an associated scheduling sequence ~Θk by applying the
scheduling map T (·). So, the signal θ is still free, but all its
possible future trajectories are known to belong to ~Θk.

In [11], the state constraints were represented by a single
time-invariant set X. Furthermore, in Definition 3 it is required
that the cross sections Xi|k are fully included in the state
constraints, whereas [11] used the relaxed requirement that
only the realized trajectories need to satisfy the constraints.
Due to the relationship between ~Xk and ~Θk that exists in the
current work through T (·), the more restrictive condition of
Definition 3 is necessary for recursive feasibility. The MPC
optimization problem to be solved on-line is

V (x0|k, ~Θk, ~Xk) = min
d
JN (d)

subject to d ∈ DN (x0|k, ~Θk, ~Xk)
(7)

where d ∈ Rnd is a decision variable and where

JN (d) =

N−1∑
i=0

`p
(
Xi|k,Πi|k

)
+ F

(
XN |k

)
. (8)

The stage cost `p(·, ·) is designed to meet the user specified
performance objective and the terminal cost F (·) is designed
to achieve stability. The set DN (·, ·, ·) is characterized by

DN (x, ~Θ, ~X) =
{
d ∈ Rnd

∣∣ x ∈ X0|k, XN |k ⊆ Xf ,

∀i ∈ N[0,N ] :
(
Xi|k,Πi|k

)
satisfies Def. 3

} (9)

where Xf is a terminal set designed to obtain recursive
feasibility as described later. In (7)-(9), the sets Xi|k and
controllers Πi|k are functions of the decision variable d, but
this dependency is omitted from the notation for brevity. The
set of feasible initial states corresponding to (7) is

XN
(
~Θ, ~X

)
=
{
x
∣∣∣ DN (x, ~Θ, ~X) 6= ∅

}
. (10)

In (7), it is desired to parameterize the cross-sections and
control laws, such that d is of finite dimension and DN (·, ·, ·)
can be described by finitely many constraints. This paper
considers “homothetic tubes”, as originally used in TMPC
for linear systems subject to additive disturbances [12], [13],
which are summarized in the following definition.

Definition 4: Let S = convh
{
s̄1, . . . , s̄qs

}
be a PC-

set, and let each Θi|k in ~Θk be a polytope Θi|k =

convh
{
θ̄1
i|k, . . . , θ̄

q
i|k

}
. A tube satisfying Definition 3 is

called a homothetic tube if for all i ∈ N[0,N ], Xi|k =
zi|k ⊕ αi|kS, and Πi|k are vertex controllers Πi|k(x, θ) =

∑qs
j=1 ζj

∑q
l=1 ηlu

(j,l)
i|k where (ζj , ηl) are convex multipliers

in the state- and scheduling spaces, respectively. Thus, each
pair

(
Xi|k,Πi|k

)
is fully and uniquely determined by the

parameters pi|k =
(
px
i|k, p

π
i|k
)

where px
i|k =

(
zi|k, αi|k

)
∈

Rnx × R+ and pπi|k =
(
u

(1,1)
i|k , . . . , u

(qs,q)
i|k

)
. In other words,

there exists a function P̄ (·) such that P̄
(
pi|k
)

=
(
Xi|k,Πi|k

)
.

From Definition 4, it follows that the vector of decision
variables d ∈ Rnd contains all parameters pi|k, i ∈ N[0,N ]

defining a tube of length N . Define r(2) := 2 and r(∞) := 1.
A stage cost function can be designed as

`p
(
Xi|k,Πi|k

)
= ‖Qzi|k‖r(p)p + P |αi|k|r(p)

+
1

qqs

qs∑
i=1

q∑
j=1

‖Rū(i,j)
i|k ‖

r(p)
p (11)

where we allow p ∈ {2,∞}, and where Q ∈ Rnq×nx , R ∈
Rnr×nu and the scalar P > 0 are tuning parameters. The
matrices (Q,R) must be of full column rank. This cost is
different from that in [11], where a worst-case objective was
minimized and where only the infinity-norm case was treated.

To guarantee recursive feasibility of (7), a terminal set
constraint XN |k ⊆ Xf is included in (9). The set Xf must
be designed to be controlled λ-contractive for (2), which in
the current setting must be understood as follows.

Definition 5: Let Xf and X̆ both be PC-sets such that
Xf ⊆ X̆ ⊆ X and let λ ∈ [0, 1). Then, Xf is controlled
λ-contractive for the system (2) if ∀(x, θ) ∈ Xf × T (X̆) :
∃u ∈ U : A(θ)x+Bu ∈ λXf .
Suppose that Xf is λ-contractive according to the above
definition. A suitable terminal cost F (·) to be used in (8) is

F
(
XN |k

)
=

ΨXf

(
XN |k

)
1− λ

max
X⊆Xf ,θ∈T (X̆)

`p (X,κ)

=
c

1− λ
ΨXf

(
XN |k

)
,

(12)

where the maximization is done with respect to sets X =
z ⊕ αS. The function ΨXf (·) is the set-gauge of Xf , as
specified in Definition 1, and κ : Xf × T

(
X̆
)
→ U is a

local set-induced controller that renders Xf λ-contractive.
The maximization over θ ∈ T (X̆) is necessary, because κ(·, ·)
depends on θ. As proven later in Theorem 1, this terminal
cost leads to asymptotic closed-loop stability. Because `p(·, ·)
is convex, (12) reduces to a finite-dimensional optimization
problem provided that T

(
X̆
)

is a polytope, as then `p(·, ·)
takes its maximum on one of the vertices of Xf × T (X̆).

The proposed MPC approach is summarized in Algorithm 1,
and Theorem 1 gives the main result concerning its properties:

Theorem 1: Let Xf satisfy Definition 5, let F (·) be as
in (12), and in Definition 4 set S = Xf . Then, Algo-
rithm 1 has the following properties: (i) It is recursively
feasible, i.e., if DN

(
x0|0, ~Θ0, ~X0

)
6= ∅ then ∀k ∈ N[1,∞) :

DN
(
x0|k, ~Θk, ~Xk

)
6= ∅. (ii) The state of the controlled system

reaches X̆ in N steps or less, i.e., ∃k? ∈ N[0,N ] such that
∀k ≥ k? : x(k) ∈ X̆. (iii) The origin is asymptotically
closed-loop attractive, i.e., x(k)→ 0 as k →∞.

Proof: See the Appendix.
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Algorithm 1 The MPC algorithm.

Require: a given sequence ~X0

1: k ← 0
2: loop

3: ∀i ∈ N[0,N−1] : Θi|k ←

{
{T
(
x0|k

)
}, i = 0,

T
(
Xi|k

)
, i > 0.

4: Solve optimization (7)
5: if feasible then
6: Apply u(k) = Π?

0|k
(
x0|k, θ0|k

)
= u?0|k

7: ∀i ∈ N[0,N−1] :Xi|k+1←

{
Xi+1|k, i < N − 1,

X̆, i = N − 1.
8: k ← k + 1
9: else

10: abort
11: end if
12: end loop

Remark 1: If the sets in ~Θk are polytopes, then (7) can be
formulated as a linear- or quadratic program along the lines
discussed in [11]. This problem has a number of variables and
constraints that grows linearly in N . If X is a polytope, then
T (X) is compact by Assumption 2, but it is not necessarily a
polytope. It is therefore assumed from now on that if this is the
case, each non-polytopic set Θi|k = T (Xi|k) can be replaced
by a polytopic outer-approximation. Such approximations can
be found, e.g., using interval arithmetic [14].

IV. INITIALIZATION PROCEDURES

In the preceding section it was shown that the constructed
MPC is recursively feasible and stabilizes (2) – and hence
the non-linear system (1). For this result, it was necessary to
assume that a feasible solution exists at k = 0. Hence, an ini-
tialization procedure is necessary to construct a sequence ~X0

which achieves this initial feasibility. This section discusses
two different possible initialization schemes.

A. Bounded rate of variation

Let δ ∈ Rnx
+ denote a bound on the rate of variation (ROV)

of the state variable and define

∆(δ) =
{
x ∈ Rnx

∣∣ ∀i ∈ N[1,nx] : |xi| ≤ δi
}
. (13)

Then, the initial constraint sequence ~X can be computed as

∀i ∈ N[0,N ] : Xi|0 =

{
{x0|0}, i = 0,(
Xi−1|0 ⊕∆(δ)

)
∩ X, i > 0.

(14)

Using a ROV bound is simple, but might be conservative. A
different initialization is proposed in the next subsection.

B. Initial feasible trajectory

Suppose that a feasible initial state- and input trajectory

T̃0 =
({
x̃0|0, x̃1|0, . . . , x̃N |0

}
,
{
ũ0|0, . . . , ũN−1|0

})
is known where x̃N |k ∈ Xf and where for all i ∈ N[0,N−1]:
x̃i|0 ∈ X, ũi|0 ∈ U, and x̃i+1|0 = A

(
T (x̃i|0)

)
x̃i|0 + Bũi|0.

Then, by defining some tolerance δ ∈ Rnx
+ , the initial state

constraint sets can be computed according to the relationship

∀i ∈ N[0,N ] : Xi|0 =

{
{x0|0}, i = 0,(
x̃i|0 ⊕∆(δ)

)
∩ X, i > 0,

(15)

with ∆(·) as in (13). In comparison to the bounded ROV
initialization discussed earlier, this approach is generally
more likely to yield a feasible solution to (7), but the
assumed availability of the initially feasible trajectory T̃0 can
be considered a disadvantage (note that linearization-based
approaches [8], [9] also presume the knowledge of such a
trajectory). If ~X0 is constructed according to (15) with δ = 0,
then (7) is always feasible at k = 0. Due to the constraint
update Step 7 of Algorithm 1, a value of δ = 0 however means
that the controller can never deviate from the initial trajectory,
leading to poor robustness against unmodeled perturbations.

The trajectory T̃0 can be obtained by solving a non-linear
MPC problem. This could be computationally expensive, but
this problem only needs to be solved once at the first sample.
An efficient approach that can be used to generate an initial
trajectory is [7]. The method [7] is not guaranteed to converge
to a solution, but if it converges, the result can be used to
initialize the MPC proposed in this paper which subsequently
guarantees recursive feasibility and stability.

V. NUMERICAL EXAMPLES

In this section, the properties of the approach are demon-
strated on two numerical examples. All non-linear MPC
problems were solved to optimality using the SQP method
implemented in fmincon in MATLAB 2016b with its
default settings. The linear- and quadratic programs of the
proposed LPV-based MPC solution were solved by Gurobi
6.5. Everything was executed on a PC with a 3.6 GHz Intel
Core i7-4790 processor and 8 GB RAM, running Arch Linux.

A. Example 1

This example considers a controlled Van der Pol oscillator
described by q̈(t) = µ

(
1− q2

)
q̇(t) − q(t) + u(t). An

equivalent LPV form of this non-linear model is

ẋ(t) =

[
0 1
−1 µ (1− θ)

]
x(t) +

[
0
1

]
u(t)

θ(t) = T (x(t)) =
([

1 0
]
x(t)

)2
with the state vector x =

[
q q̇

]>
. The model that will be

used for control and simulation is an Euler-discretized version
of the above continuous-time LPV representation and is

x(k + 1) =

[
1 τ
−τ 1 + τµ (1− θ)

]
x(k) +

[
0
τ

]
u(k)

θ(k) = T (x(k)) =
([

1 0
]
x(k)

)2
.

The used damping parameter is µ = 2 and the sampling time
is τ = 0.1. The scheduling map is not affine, however it is
convex and exact upper- and lower bounds on T (X) can be
obtained easily for polytopes X ⊆ X. In this example, the
stage cost was of the quadratic type (p = 2) with Q = I ,
R = 0.1 and P = 15, and the prediction horizon was N = 10.
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Fig. 1. Phase plot of closed-loop trajectory in Example 1 with terminal set
(green), set X̆ (dashed grey), and estimated domains of attraction.

Case Mean Min Max Std.dev.
NMPC (fmincon) 48 34 74 13
TMPC (proposed) 10 9.1 12 1.0

TABLE I
COMPUTATION TIMES PER SAMPLE IN EXAMPLE 1 (VALUES IN MS).

The state constraints are X = {x | ‖x‖∞ ≤ 1}, the input
constraint is U = {u | |u| ≤ 1}, and the set X̆ was chosen to
be X̆ = 0.5X. Associated with this X̆, a 0.96-contractive set
Xf satisfying Definition 5 was computed using the standard
reachable set-iteration approach.

The simulation results are shown in Figure 1. For this
example, no special initialization of ~X0 was necessary: the
method already works well with Xi|0 = X for all i. The
same terminal set and terminal cost (12) was used in both the
proposed tube-based and in the non-linear MPC. In Figure 1,
it can be seen that the obtained closed-loop trajectories are
comparable. The computation time per sample of the proposed
method was lower than that of fmincon, as summarized in
Table I. The greater efficiency comes at the cost of a slightly
reduced domain of attraction XN (·, ·), as visible in Figure 1.

B. Example 2

Consider a non-linear system similar to [1, Example 4]

ẋ1 = sin (ωx1) + x2, ẋ2 = x1x2 + u

which, after Euler discretization, admits a representation

x(k + 1) =

([
1 τ
0 1

]
+ θ1(k)

[
τ 0
0 0

]
+ θ2(k)

[
0 0
0 τ

])
x(k)

+

[
0
1

]
u, θ(k) =

[
sinc (ωx1(k))

x1(k)

]
,

where

sinc (x) :=

{
1, x = 0,
sin(πx)
πx , x 6= 0.

In this example, the polytopic outer-approximations of T (·)
(see Remark 1) were computed by densely gridding the state
constraint sets, evaluating the sinc-function on the grid to
approximate its minimum- and maximum values, and adding
a small tolerance to account for possible approximation errors.
Here, such an approach is tractable because the sinc-term

0 0.5 1 1.5 2
-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 2. Phase plot of closed-loop trajectory in Example 2 with terminal set
(green) and set X̆ (dashed grey).
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Fig. 3. Closed-loop state- and input trajectories in Example 2.

is only dependent on the first state variable x1. The tuning
parameters are Q = diag{1, 0.1}, R = 1, P = 5, and N =
10. The state constraints are X = {x | −1.5 ≤ x1 ≤ 3,−3 ≤
x2 ≤ 1.5}, the input constraint is U = {u | −1 ≤ u ≤ 2}, and
the set X̆ was chosen to be X̆ = 0.30X. A 0.95-contractive
set Xf satisfying Definition 5 was computed.

A simulation result for the initial state x0 =
[
2 −1

]>
is shown in Figures 2-3 and Table II. In this example, the
performance of using a quadratic (p = 2) cost is compared to
that achieved with a infinity-norm based cost (p =∞). The
ROV-bound initialization was used with δ =

[
0.40 0.40

]>
.

Note that for small systems, explicit LPV MPC could also
be a computationally viable alternative to non-linear MPC
[15]. However, in explicit MPC the controller is computed
off-line, so it can not handle the time-varying constraints and
scheduling sets of (5)-(6). This makes a direct comparison
to the proposed approach difficult.

Case Mean Min Max Std.dev.
NMPC (fmincon, p = 2) 89 68 135 21
TMPC (proposed, p = 2) 12 11 14 1.1
TMPC (proposed, p =∞) 12 7.2 16 1.6

TABLE II
COMPUTATION TIMES PER SAMPLE IN EXAMPLE 2 (VALUES IN MS).
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APPENDIX

The proof of Theorem 1 given in this Appendix builds
on the results presented in [16]. Adaptations are made to
accommodate the state-dependent scheduling map (2b), the
specialized notion of λ-contractive set from Definition 5, and
the different stage cost (11). Because Xf is λ-contractive in
the sense of Definition 5, there exists a controller κ : Xf ×
T
(
X̆
)
→ U with corresponding local set-valued dynamics

X(k + 1) = G (X(k)|κ)

=
{
A(θ)x+Bκ(x, θ) | x ∈ X(k), θ ∈ T (X̆)

}
(16)

for which it holds

∀X ⊆ Xf : ΨXf (G (X|κ)) ≤ λΨXf (X) . (17)

The next non-restrictive assumption on κ(·, ·) can be made.
Assumption 3: The local controller κ : Xf × T

(
X̆
)

is (i)
continuous and (ii) positively homogeneous in the sense that
∀α ∈ [0, 1] : κ(αx, θ) = ακ(x, θ).
The following three auxiliary lemmas are necessary. Their
proofs are omitted for lack of space.

Lemma 2: The terminal cost F (·) defined in (12) satisfies:
(i) ∃sF , sF ∈ K∞ such that ∀X ⊆ Xf : sF

(
d0
H (X)

)
≤

F (X) ≤ sF
(
d0
H (X)

)
, and (ii) ∀X ⊆ Xf : F (G (X|κ))−

F (X) ≤ −`p (X,κ) for p ∈ {2,∞}.
Lemma 3: Assume that Q,R are full-rank matrices. Let

Π : X×Θ→ U be any controller. Define Ω :=
{
z ⊕ αS |

(α, z) ∈ R+×Rnx
}

. The stage cost (11) satisfies ∃s` ∈ K∞ :
∀X ∈ Ω : s`

(
d0
H

(
X
))
≤ `p

(
X,Π

)
for p ∈ {2,∞}.

Lemma 4: Let
(
~X, ~Θ

)
be given sequences according to

(6)-(5). There exist K∞-functions sV , sV such that for all
x ∈ XN

(
~X, ~Θ

)
it holds sV (‖x‖) ≤ V

(
x, ~X, ~Θ

)
≤ sV (‖x‖).

The main result can now be proven.
Proof of Theorem 1: (i) Suppose that

(7) is feasible at time k and let T?
k =({

X0|k, . . . , XN |k
}
,
{

Π0|k, . . . ,ΠN−1|k
})

be the tube
resulting from the optimal solution of (7) at time k, which
satisfies the state constraints ~Xk by construction, i.e.,
∀i ∈ N[0,N−1] : Xi|k ⊆ Xi|k. Furthermore, XN |k ⊆ X̆ which
follows from XN |k ⊆ Xf and Xf ⊆ X̆ (see Definition 5).
After applying Π0|k to the system, at time k + 1 a tube

T◦k+1 =
({
X◦0|k+1, . . . , X

◦
N |k+1

}
,
{

Π◦0|k+1, . . . ,Π
◦
N−1|k+1

})
=
({
X1|k, X2|k, . . . , XN−1|k, Xf , G (Xf |κ)

}
,{

Π1|k, . . . ,ΠN−1|k, κ
})

can be constructed. Because of Step 7 of Algorithm 1, to be
feasible this must satisfy ∀i ∈ N[0,N−2] : X◦i|k+1 ⊆ Xi+1|k

and X◦N−1|k ⊆ X̆: this holds by construction. Through the
definition of ~Θk+1 in Step 3 of Algorithm 1 it is guaranteed
that for all i ∈ N[0,N−2], the controllers Π◦i|k+1 = Πi+1|k map
X◦i|k+1 into X◦i+1|k+1. Since X◦N−1|k+1 = Xf ⊆ X̆ we have
ΘN−1|k+1 ⊆ T

(
X̆
)

and therefore Π◦N−1|k+1(·, ·) = κ(·, ·)
maps X◦N |k+1 = Xf into G (Xf |κ) ⊆ λXf according to
(16)-(17). Thus T◦k+1 is feasible at k + 1. Since (7) only

optimizes over parameterized tubes satisfying Definition 4,
there must additionally exist parameters

(
pf |k, pf |k+1

)
such

that P̄
(
pf |k

)
= (Xf , κ) and P̄

(
pf |k+1

)
= (G (Xf |κ) , ∗)

where ∗ is an irrelevant quantity. This is guaranteed by the
choice that S = Xf , and so DN

(
x0|k+1, ~Θk+1, ~Xk+1

)
6= ∅.

(ii) Given recursive feasibility, this property is satisfied by
construction of Step 7 in Algorithm 1.

(iii) Based on the feasible but non-optimal T◦k+1 derived
above and on Lemmas 2-3, the value function V (·, ·, ·) can
be shown to be decreasing along closed-loop trajectories:

V
(
x0|k+1, ~Θk+1, ~Xk+1

)
− V

(
x0|k, ~Θk, ~Xk

)
≤ `p (Xf ,Πf ) + Fk+1

(
Gf |k

(
Xf |k

))
− Fk

(
XN |k

)
+

N−1∑
i=1

`p
(
Xi|k,Πi|k

)
−
N−1∑
i=0

`p
(
Xi|k,Πi|k

)
≤ −`p

(
X0|k,Π0|k

)
≤ −s`

(
d0
H

(
X0|k

))
.

With Lemma 4 this implies that V (·, ·, ·) is a Lyapunov
function for the closed-loop system [17, Theorem 2].
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