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LPV State-Space Identification via IO Methods and Efficient Model
Order Reduction in Comparison with Subspace Methods

Erik Schulz, Pepijn B. Cox, Roland Té6th and Herbert Werner

Abstract—In this paper, we introduce a procedure for global
identification of linear parameter-varying (LPV) discrete-time
state-space (SS) models with a static, affine dependency struc-
ture in a computationally efficient way. The aim is to develop
off-the-shelf LPV-SS estimation methods to make identification
practically accessible. The benefits of identifying a computa-
tional straightforward LPV input-output (I0) model - that has
an equivalent SS representation with static, affine dependency —
is combined with an LPV-SS model order reduction. To increase
practical relevance of the proposed scheme, in this paper,
we present a computational attractive model order reduction
scheme based on the LPV Ho-Kalman like realization scheme.
We analyze the computational complexity and scalability of
our method and compare its benefits to the PBSID,,,¢ scheme.
Two examples are provided to demonstrate that our introduced
approach performs similar to PBSIDopt in a numerical example
and outperforms the PBSID,,; on measurements of a real
world system, the air-path system of a gasoline engine.

I. INTRODUCTION

The LPV representation provides a framework to embed
a large variety of nonlinear and time-varying phenomena
of the underlying system. Accordingly, the LPV framework
makes systematic model based control design with non-
stationary and/or time-varying behavior possible, due to its
roots in the linear time-invariant (LTI) theory. Thus, in the
last two decades, the theory of LPV systems has developed
considerably [1] and LPV control has been applied to a
wide range of applications, e. g., in aerospace [2], automotive
industry [3] or robotics [4]. See [1] for an overview.

In general, synthesizing an LPV controller is based on an
LPV model in SS form with static, affine dependency on the
scheduling signal. Such a required model can be obtained by
identifying a global LPV model from measurements of the
system. Two classes of approaches for identification of LPV
systems are considered here, which have received attention
in the literature. The first is the identification of LPV-1O
models introduced in [5], [6], [7]. However, they need to
be transformed into a state-space form, where general 10 to
SS conversion introduces dynamic and rational dependencies
on the scheduling signal and/or results in non-minimal state
realization [7]. To attain an SS realization with static, affine
dependency, three different IO forms with specific dynamic
dependency structure were considered in [8], [9], which have
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a direct SS realization. In the second class of approach, this
problem is avoided altogether using LPV subspace identifi-
cation (SID) methods. Here a state-space representation with
an assumed dependency structure is directly obtained [10],
[11], [12], however, SID methods have a significant higher
computational load.

In this paper, we are interested in identifying LPV-SS
models with static and affine dependency in a computational
efficient way. Yet, the low complexity LPV-IO identification
method with a direct SS realization will generally result in
models with non-minimal state dimension, especially in the
multi-input multi-output (MIMO) case [8], [9]. Therefore, as
part of the identification procedure, a fast LPV model order
reduction scheme based on the Ho-Kalman like algorithm [8]
is presented in this paper. The computational load of the
original reduction scheme could be reduced tremendously as
an SS realization of the LPV model is available a-priori.
As an example will show, the resulting reduced LPV-SS
models attain similar prediction accuracy for equivalent state
order as the models from SID. Advantageously, the proposed
scheme scales significantly better compared to SID in a
computational sense, which increases attraction of this LPV-
IO identification even for moderate or large scale systems,
where subspace methods are not applicable due to their
computational complexity.

This paper is organized as follows: in Section II, the LPV-
SS model is introduced. Then, in Section III, the LPV-IO and
LPV-SID methods are presented together with differences
and similarities of both approaches. In Section IV, a fast,
computational attractive model order reduction scheme is
given. Next, in Section V two case studies are presented
followed by the conclusions in Section VI

II. THE LPV STATE-SPACE MODEL

A discrete-time LPV model in state-space form has the
following representation

_[A®) | BO)] . [xrir = A(Or)zs + B(Or)u
)= [0(9) D(f))] ' { ka, = C’(HZ)II;JrD(QI;)uZ

where x;, € R™, y, € R™ and u; € R™ are the state,
output and input vectors, respectively. For brevity, the time
dependence is expressed by the index, e.g., y(k) = y,
or omitted completely if it is clear from the context. The
scheduling parameter vector 6, € P C R™ is time-varying
and online measurable where P is a compact set. The output
data collected can obtain additive colored noise, but, for
the sake of simplicity, the input and scheduling signals are
assumed to be measured noise free. The model matrices
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A(f) € Rm=*"=_ B(#) € R"=*" (C(#) € R"™*"= and
D(#) € R™*™ are the scheduling parameter-dependent
system, input, output and direct feedthrough matrices, re-
spectively. In this paper only affine parameter dependency is
considered, e. g., one can express the system matrices as:

AOr) = }julﬂ

where y1; = [1 6] is also denoted as scheduling parame-
ter vector and the superscript (1) indicates the I-th entry of the
scheduling vector ju, and local model matrix A®) € R"™» X"

ITII. LPV IDENTIFICATION METHODS

In general, LPV control synthesis methods require an
LPV-SS model with static and affine dependency on the
scheduling signal, i. e., require G(6). However, current state-
of-the-art subspace identification schemes have a significant
computational load [10, Algorithms 1 and 2]. To this end,
we introduce a simplified identification scheme based on
a low complexity IO structure that has a direct realization
in terms of a static, affine SS form. We will highlight
the computational benefits and stochastic efficiency of this
approach later.

A. LPV-I0 Identification with SS Realization

For IO identification, the data-generating system is as-
sumed to be in the following autoregressive moving average
with exogenous input (ARMAX) form:

A(qaek)yk = B(qaek)uk +C(q79k)€k7 (l)
which can be equivalently represented as
Ye = G(q, k) ur + H(q, Ok)ey
= A'(q,0%)B(q, 0k )ur + A'(q,00)C (g, Ok )er,  (2)

if the left inverse Af(q,0) of A(q,0)) exists, i.e.,
At(q,0:)A(q,0,) = I in the functional sense'. In (2),
G(q,0y) is referred to as the system model and H (g, 6;) as

the noise model. The matrix polynomials A(q, 0%), B(q, 0x),
C(q,0) in (1) — (2) are given as
A(q, 01) 71+Zal “O)g (3a)

B(q,0;) = b(()l) + ij(q_jﬁk)q_j, and (3b)
j=1
Clg,06) =T+ Y cj(a ™ 0k)g ™ (30

The noise vector e, € R™v is assumed to be zero mean white
and independent of past input, scheduling, and output data,
q is the forward time-shift operator, i.e., ¢~ 'y, = yr—1, and
I is the identity matrix.

Similar to the SS form, the matrix functions a; : P —
R™ X"y b+ P — R™*™ and ¢; : P — R™*" are
assumed to have an affine dependency on 6, e. g., a(0;—;) =

IThe left inverse is given as Af(q,0;) = which

can be shown based on telescopic sums.

Zf’io(I*A(q, ak))is

S ,u,(c)l ) where al(l) € R™*™  and bél) € RMy>nu,

Note that the 10 polynomials A(-), B(-), C(-) have a specific

dynamic dependency on the scheduling parameter vector 6,

where the time-shift coincides with the shift of the associated

output y, input u, or noise e, respectively. Therefore, this

input-output model is in the so called shifted form (SF) [8].
This shifted form has a direct SS realization

Th4+1 = A(@k)xk + B(Ok)uk + K(Hk)ek,
Y = C(F)k)xk + D(Gk)uk + e,

(4a)
(4b)
where K (0) € R™*"™ is the observer gain matrix and

the matrices A(-),...,D(-), K(-) have the following static,
affine dependency structure (in the case of n, = n, = n¢)

—a;(0) I 0 - 0
—a2(9) 0 :
A(e): : : . . o
O, 1(0) 0 -+ 0 T
—an, () 0 - o 0
bi(0)—ar (OB c1(0)—ay(0)
[B() K(0)]= : : ,
b1 (0) =, (005 e, (0)—an, (0)

C(6)= D(9) = b".

This state-space model has a static parameter dependency,
where due to space limitations, the time index k of the
scheduling parameter is omitted. Two other IO forms which
have a direct SS realization with static, affine parameter
dependency are known, the augmented form (AF) and the
observability form (OF) [8], [9]. However, these three sim-
plified SS representations come, most likely, at the cost of
a non-minimal state dimension and can only represent a
subset of the behaviors associated to the full SS model G(6).
In this paper, only the SF is presented since it attains the
highest accuracy on the identification examples considered
in Section V, see [9] for a detailed comparison.

The state order n, of the resulting SS model (4) depends
on multiples of the number of outputs. More specifically,
the order is of n, = max(ng,np, n.)n,. For example, for
a system with a single input n,, = 1 and four outputs
n, = 4, the state-space representation acquires order 4,
8 and 12 with increasing values of n, from 1, 2 and 3,
respectively. To find a more economical sized approximation
of the SS model, one could compute a set of maximally
independent rows of [A, B] [8]; however, these symbolic
computations are cumbersome. Therefore, in this paper, we
present a fast model order reduction technique for SS models
in Section IV.

When examining the SF, it might seem that it can only
capture a very restrictive set of behaviors. However, in
[8, Sec. IV.D] it was suggested that in the LPV modeling
framework there exists a trade-off between allowing more
complex dependency structures with smaller state order or
simplified dependency structures with increased state order
n,. For example, allowing the parameterization of (3) to

[[ 0 --.- ()]7
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depend rationally on the scheduling signal with low state
order n, versus affine parameterization (3) with higher state
order n,. See [8, Sec. IV.D] for the in-depth treatment and
methods to construct these transition matrices, however, a
general theorem proving that there always exists such a
transformation is not reported in the literature. In this paper,
we will not fully develop these symbolic methods, but we
provide an example.
Example 1 (Eliminating dynamic dependency): Assume

the following IO representation defined LPV system

Uk = —Okyp—1 +up + (1 + O )up—1 , ®)
has the following state-minimal realization

Tpt1 = —OpTr + Ug Yr = Opxr +u, . (6)

By introducing an additional state, the following static, affine
dependency structure can be found

Tpy1 = _gk (1—59'“) :|fk+ { 1 }um (72)
Yo =] =0k (140k) | & +up. (7b)

Eq. (7) clearly has static affine dependency on the scheduling
signal. Hence, dynamic dependency is eliminated by intro-
ducing an additional state. Note that there exists no state
transformation matrix which can form (6) into a first order SS
representation with static, affine dependency. We will verify
this claim later on. |

The model (1) is estimated by applying the prediction error
method (PEM) framework with an ¢y cost function. This
non-linear in the parameter problem is solved by applying
the iterative pseudo linear regression [13, Algorithm 3]. First
(1) is reformulated in the one-step-ahead predictor

Urik—1 = (1 — A(q, 0r))yr + B(q, Or)ur,

+ (]' - C(qv ek))élm (8)
where ¢ is the estimated noise sequence € = Y — Yr|x—1-
The algorithm consists of two steps which are performed
until convergence: 1) solve the least squares (LS) problem
with éx = yr — Y x—1 known from the previous iteration and
2) update é;. The highlighted ARMAX model identification
method finds a consistent estimate, if the data-generating
system coincides with the model set. In this case, a consistent
estimate of the process G(q,0) and noise H(q,6) model
can be found. When the noise model is not of interest or
no priori information is known, then an output error (OE)
model can be used instead. The same consistency result can
be shown for OE identification as in the LTI case. Hence, the
process model G(g, 0) is consistently identified, however, it
has often a higher parameter variance. Moreover, the noise
model H(q,#) and, therefore, K () in (4) are not identified.

B. LPV Subspace Identification

In LPV subspace identification methods, the following
innovation form of the to be identified system is considered,
e.g., see [10],

Ny
Tpy1 = Z/"Ll(gl) (A(l)xk + BWuy, + K(l)ek> , (92)
=1

yr = Cxp + Dug + e, - (9b)

For SID, the number of past time increments p (past window)
and future time increments f have to be chosen a-priori’
under the condition n, < fn, < pn,. The past and future
window indirectly provide the order of the identified IO
model from which an SS model is realized. In this paper,
the LPV PBSIDgp¢ subspace identification algorithm from
the PBSID toolbox is used [10].

C. Comparing both Identification Methods

Subspace identification with the innovation form (9) as-
sumes a white noise innovation error e; on the states and
output signals, respectively. Finding the convolution the state
equation in terms of u, y or u, e leads to an infinite-order
IO autoregressive with exogenous input (ARX) or moving
average with exogenous input (MAX) model, depending if
the state-space model is considered in innovation form as in
(9) or in predictor form [14], [15]. So, the IO model in (1) is
not equal to the innovation form and they have different rep-
resentation capabilities. However, the ARX or MAX models
in SID come with an exponential growing parameterization.
To reduce the complexity, we have a specific dynamic depen-
dency structure with a significant smaller amount of param-
eters of the IO polynomials A(-), B(-), C(+) in (3) compared
to the high order ARX or MAX parameterizations in SID
at the cost of limited representation capabilities. Hence, we
assume that the dominant dynamics of the underlying system
can be captured with this simplified ARMAX model. If
one would increase the model complexity of the ARMAX
model to include different dynamic dependency structures,
it can coincide with the ARX and MAX models in SID at
a certain point. Yet, one should realize that the IO model
in (1) has different representation capabilities compared to
the fully parameterized innovation form. How the simplified
ARMAX structure (1) and the ARX or MAX model in SID
exactly concur is for future research. Alternatively, we might
get even a lower order IO model, if an LPV Box-Jenkins
(BJ) representation is used. However, the direct realization
of the BJ to SS results, in general, in unwanted dynamic and
rational dependencies in the SS form [7].

In the MIMO case, the SS model representations have
parsimonious parameterization compared to IO models, as
shared dynamics among the outputs can be represented by a
lower order subspace. As a tool to obtain an appropriate state
dimension, in subspace identification, the model order n, can
be chosen by the user or it can be specified automatically,
which will be achieved by a singular value decomposition
(SVD) and detecting a gap in the singular values (see [12,
Step 4 of Algorithms 1 and 2]). This can also be viewed as
a model order reduction scheme directly performed on the
identified IO model. However, we will show that in the LPV
case, due to the complexity of subspace estimation, it can still
be favorable from a computational point of view to estimate
the simplified 1O structure (2) with direct SS realization and
apply model order reduction to get an accurate, low order
estimate.

2Best identification results in the examples in Section V are obtained if
f is chosen as p or p — 1.
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IV. MODEL ORDER REDUCTION

In this section, a model order reduction scheme is pre-
sented to find the state-minimal realization of (1) and is able
to apply model order truncation.

In the literature, many model order reduction schemes are
known, e. g., see [16]. From the LTI approximate approaches,
the coprime factor [17], optimal Hankel norm and balanced
truncation [18], [19], and Ho-Kalman like realization [8]
methods are extended to the LPV case. In this paper, we
are focusing on system identification where identification
of unstable systems is common. Model order reduction of
unstable systems via standard balanced realization methods
is impossible, as quadratic stabilizability and detectability
of the system is required. Coprime factorization and the
Ho-Kalman like realization are capable to deal with both
stable and unstable models, however, both methods are
accompanied by a significant computational load in the LPV
case [8], [17]. Therefore, in the following, we will present a
low complexity scheme based on the ideas of [8] to obtain the
state-minimal realization or to apply model order reduction.

To start, as in [8], based on the state-space matrices given
in (4), define the matrices

My = [BW B K1)
My, = [AD M, At My 4]
and the j-step extended reachability matrix

Rj = [Ml Mj] S anx((nu-l-ny)z:f;:l nﬁ) (11

K™ (10a)

(10b)

Similarly, define

Ni=CW, (12)
N = [N AT (Ne_1 A)T] . (12b)

to build the i-step extended observability matrix
= [N NT]T e RO+ m))xna (13

Consequently, the extended Hankel matrix is given by
i = OiRj c R(ny(l—i-z’,‘;:Z n,’j)) X ((nu+n,y) i, nﬁ) (14)

A realization of the SS can be found by applying the SVD on
the extended Hankel matrix (14), which reveals underlying
model order. A state-minimal realization can be obtained by
selecting all non-zero singular values [20], which amount
is ng, i.e., rank(H,,n,) = ng [20, Theorem 2] (if the
system 1is state-minimal, then ng = n,). A lower order
approximation of the SS representation (4) can be found by
selecting only the first n; < ng singular values [8]. The
LPV-SS representation G(6) is called state-minimal, if there
exists no other LPV-SS representation G'(6) with n’, < ng
and has equivalent 10 behavior (see [20, Theorem 1] for
details). Hence, we define state-minimality w.r.t. the class
of SS models with static, affine dependency structure.

In subspace identification, the (extended) Hankel matrix
is the key ingredient to find a realization of the state or the
state-space matrices [10], [21]. As a downside of using (14)
directly, the size of the extended Hankel matrix increases
exponentially with ¢ and j leading easily to numerical

limitations of the Ho-Kalman technique. In case the extended
Hankel matrix is constructed from an estimated model, ¢ and
J need to be chosen large enough such that rank(#;;) > nq,
where it is often preferable to choose higher ¢ and j for a
more accurate reduced model [22].

To overcome this numerical problem, a bases reduced
algorithm was proposed recently [21]. The idea is to select
only the non repetitive parts of the extended Hankel matrix,
which will reduce the computational load. The reduced basis
results in smaller sized sub-Hankel matrices on which matrix
decompositions are performed. Unfortunately, due to the
structure of O; and R; for (4) there are no obvious bases
that can always be avoided. Hence, there should be an
automated method of selecting bases until certain condition
holds. However, how to do this selection in a computationally
efficient and automated manner is still an open question.

Therefore, in this paper, we will decrease the computa-
tional load to obtain the SVD of the full Hankel matrix
significantly by applying QR decompositions on the observ-
ability and reachability matrix. More specifically, compute
the following two QR decompositions O; = QpRp» and
R;'— = QrRr. Consequently, a SVD of only R@R;E €
R™=*"= ig required

Hij = O;R; = QoRoRRQk = QoUEV Q.  (15)
Opposed to the LPV Ho-Kalman like scheme, we will find
then a realization by finding the static projection matrix and
also avoid the computation of the shifted Hankel matrix.

Lemma 1 (Fast Ho-Kalman reduction scheme): Choose 1%
and j large enough such that rank(O;) = ng and
rank(R;) = ng, respectively Perform the following de-
compositions O; = QoRo, R; = QrRr, and RORR =
USVT. Then a realization of the state-space matrices is
found by

AD =7t AOT, BW =1tB®, (16)
c® =cW®r, KW =1tg® A7)

where [ =1,...,n, and the projection matrix is
T = RRV,,Snf, TP =%.2UlRo, (18

where U,,, V,, denotes the first n columns of the matrices U,
V', respectively, ¥,, denotes the upper n by n matrix of X,
and 1 < ngz < ng. In (18), T is the left pseudo inverse of
the projection matrix T, i.e., T1T = I,,. ]

Proof: In the Ho-Kalman like scheme the shifted
matrix is chosen as:

Hi =0, [AD A (I, ©R;),  (19)
where the block-wise Kronecker product © is defined as
(In, ®R;) = [In, ® My I, @ M;] . (20)
In our scheme, the observablhty and reachablhty matrices
are taken (9 QoU, Enz and R = E;‘{I V—r QR Then,

Oi %ij I"u @'R;r)
= 5. 2UL Q6QoRe[AV ... Alm].

(In, ® RgQrQrVi,Sn)

:TT[A(l) _A(n,l)]([nu@T), (21)
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Hence, the construction of the AW matrices is proven. Recall
that OV is constructed from the first n, columns of the
Hankel matrix, i.e., H1; = CVR;. Therefore, C() is

HiRE = CORRI =cWT=CW . (22

Hence, the construction of C) s provided. Similar
argument can be made for the construction of BO),
KO and is therefore omitted. Finalizing, we show
that 77T = I,,. Note that U] U = [I,, 0],
VnTi_V = [Ini O} for any n; (orthogonality prop-
erty). Hence, T'T = ,2U] RoREV,,Sn? =
Sn? (Lo, 0|8 [L, 0] Sn2 =1,,. n

Note that in the original LPV Ho-Kalman like method the
shifted Hankel matrix (19) is constructed from R ;_; [8, Eq.
(51a)] and we apply R ;. However, this modification does not
change the realization in any way. Besides, note that C'!) for
2 <1 < ny, is absent, because the shifted SS form (4) has
a parameter independent C' matrix function. However, for
general SS model reduction, adding C®) is straightforward
by extending A; (12a) with C) and then CW = C(OT in
Lemma 1.

Additionally, note that Lemma 1 only requires the Rp
and Ry matrices, which are efficiently computed by a UDU
decomposition of O, 0; = USDoUp € R”””mland
RjRjT = UxDrUr € R"™*" where Ro = D3Uo

and Rgp = D%UR, respectively. The pre-decomposition
of the observability and reachability matrix is useful from
two view-points. Firstly, it avoids construction of the ex-
ponentially growing Hankel matrix and shifted Hankel
matrix. Secondly, the UDU factorization is computation-
ally cheaper then the SVD [23] and Lemma 1 performs
the SVD on a much smaller sized matrix, i.e., per-
forms the SVD on RoRjy € R"™*" and not H,;; €
R(ny(1+22=2 nﬁ)) X ((nu+n,y) 2'17;:1 nﬁ)

Theoretical global error bounds between the original and
model order reduced representation have not been developed
yet (as known in the LTI case [16]) and remain objectives for
future research. However, approximate error bounds can be
computed using the p-test in the Enhanced linear fractional
transformation toolbox [24].

The highlighted scheme is a modified version of the Ho-
Kalman scheme in [8], which is proven to provide a state-
minimal representation [20, Corollary 1] if n; = ng. Hence,
lets verify our claim of state-minimality of the representation
(7) in Example 1.

Example 1 (cont’d): Lets verify if (7) is a state-minimal
static, affine representation. See that

wm_1]01 2 _| —1 1 @ _ |1
A{oo}"“{o ol B =1 |

cW=[0 1], cW=]-1 1],
which provides the following structural matrices

1 1 0

R = [ 10 0 } , rank(Rq) = 2,
0 -1 0 0 0o 111"

0 = [ 1 1 0 -1 0 -1 ] ,  rank(O0p) =2,

T

0O 0 0 -1 0 O
HH = 0 -1 0 0 0 1 s rank(?—[ll) = 2.
0 0 0 0 0 O

Hence, direct application of [20, Theorem 1] and
rank(#11) = 2 it is concluded that (7) is a state-minimal
static affine representation. ]

Next, we will highlight an example where Lemma 1 is
applied to find a state-minimal realization.

Example 2 (Shared dynamics): The following shifted 10
form is identified

[ 1461 0 Op—2  Or_2
Yp = { 0 1 } Y1+ [ Oy —Ops } Yk—2+
1461 1
{ 1 1401 ] Up-1 - (23)

Using the direct realization (4), the state-space form has
a state dimension of 4. The extended observability matrix
and reachability matrix will not be displayed because of
space limitations, however, it is straightforward to compute
rank(Ry4) = 3, rank(O4) = 4, and rank(H44) = 3. Hence,
the realized system is not span-reachable of order 4 ([20,
Theorem 2]). Therefore, the minimal state dimension for
the static, affine representation is n, = 3 [20, Corollary 1]
and a state-minimal representation can be found by applying
the (fast) Ho-Kalman realization. The provided model order
reduction scheme returns the (numerically rounded) system
matrices:

[1.17 0.15 —0.37 [ 0.64  0.06 ]
AM=]-0.06 094 013 |, BWY=|-033 —0.68],

| 053 047 —0.11 | 016 —0.26

[1.14 —0.49 0.36 [0.70  0.70 ]
A®=| 005 -046 -048|, B@P=|-1.01 -1.01|,

|—0.21 043  0.32 |—0.09 —0.09]
C(l)_'1.26 —0.19  0.80

[-019 —1.00 -1.29/ 0

Computational complexity

The amount of unknown parameters is
Nunknowns = Mgy (Mg + M) + Ny (1 4+ nymy)

in the SF model (3). The parameterization is clearly linear
in all design variables, except in the output dimension n,,
which it is quadratic. The model is identified with an iterative
LS method. To the authors experience, only few iterations
are need to be taken before convergence. To compute the
approximate model order, two UDU factorizations are per-
formed on O O; € R " and R]-R;r € R™*"= where a
UDU factorization needs n2 /3 flops [23, Algorithm 4.2.2].
Subsequently, the SVD is performed on ROR;E € RMax"e
where a SVD needs 21ni [23, Fig. 8.6.1]. To compare, the
PBSIDopt method [10] has

p
Nunknowns = Ny | Nu + (ny + nu) E nZL ’
J=1
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which is linear in n,, quadratic in n,, and exponential in
n, (with p such that n,p > n,)?. Advantageously, the
PBSIDgpt only needs one LS step. To estimate the state
sequence, a SVD is performed on the matrix I'PKPZ €
R"vP*N 110, Eq. (15)] with 4N?n,p+8N (nyp)*+9(n,p)?
flops*. Hence, we can conclude that our proposed estimation
scheme scales significantly better w.r.t. the design parame-
ters.

V. EXAMPLES

In this section a numerical and an experimental example
are presented. The best fit rate (BFR), see [7, Definition 2.4],
of the identified models using validation data is computed.

A. Numerical Example

A fourth order LPV MIMO plant in the form of (9)
introduced in [11] is tested with two inputs, three outputs
and three scheduling parameters. For the estimation and
validation data, the input, scheduling parameter, and noise
signals are designed as in [11], with an averaged signal-
to-noise ratio of about 20dB. The validation outputs are
simulated without noise, in order to evaluate the simulated
output of the identified model. The identification results are
shown in Fig. 1 in terms of BFR versus model order.

To find the best LPV model for each order, in SID, both
parameter dependent and independent input and observer
gain matrices are considered, i.e., B(u) = B and K(u) =
K, respectively. Also, for each past window p < 6 different
models of order up to pn, are identified. Further settings
(e. g., regularization) are chosen as suggested in the PBSID
toolbox documentation. Then, in Fig. 1 only the best results
are plotted, i.e., the highest mean fit for a given order.
In the IO identification case, first an ARX model is fitted
(n. = 0) as in [9] with all combinations of n, and n; with
ny < ng < 6. Since the model order depends only on n,n,,
the same model order is obtained for different n;, < n, and
again the best results are plotted in Fig. 1. Furthermore,
ARMAX models are identified using the 10 method with
PEM, see Section III. Now, also the order n. is varied again
with the limitation n. < n,. Hence, we identify various 10
models with the iterative algorithm with equivalent model
order and we only display the model with the highest BFR.
Fig. 1 shows that this method outperforms the (non-iterative)
SID for high model orders.

Using IO identification, it is not possible to identify a
model of the same order as that of the original plant without
performing model reduction. Applying Lemma 1 to each one
of the identified ARMAX models results in LPV models of
any order up to 18. Then by choosing the best BFR for
a given model order over all ARMAX and order reduced
models, the purple line denoted by ARMAX H,;; is obtained.
Hence, it is clear that our proposed ARMAX method has

3Using the Kernel method, Nynknowns can be limited to ny N, however,
regularization is required for this ill-conditioned matrix. Hence, additional
steps are necessary to obtain an appropriate regularization parameter [10,
Sec. 5.3].

4With the estimated state sequence, an additional LS step is executed to
estimate the system matrices. We will disregard this step in our analysis.
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Fig. 1. Identification results on fourth order MIMO example with averaged

fit using IO identification with ARX and ARMAX model structures as well
as SID, where the model order reduction scheme is applied to the identified
ARMAX models

l (k)

iy (k) — — pim(F)

u(k) LPV Model y(k)

uiv(k) —> > mfa(k)

Fig. 2. Air-Path system identified in this Section with unknown scheduling
parameter vector

similar performance to PBSIDgp¢ on this particular example
while keeping computational complexity low.

B. Air-Path

In internal combustion engines the number of actuators,
e. g., throttle, intake, and outlet valves, increases to improve
the efficiency and the dynamic torque generation. The gen-
erated torque depends directly on the amount of fresh air
myg, in the cylinder, where the air-path denotes the flow
path that the air is taking from the environment into the
cylinder and which can be influenced by the throttle and
inlet valve. In order to control this system, the idea is to
synthesize an LPV controller, thus an LPV model of the air-
path is required. In Fig. 2, the setup for the identification is
shown schematically, which is similar to this considered in
[9]. The actuators (inputs) to control the fresh air entering
the cylinder are the throttle valve position uy, and the intake
valve position uj,. The controlled outputs are the amount
of fresh air inside the cylinder my, and the intake manifold
pressure pi,. Measurements were obtained from a test rig at
TIAV GmbH. In contrast to [9], the measurements are taken
with a time-varying engine speed neng. These time variations
make identification more complex to the setting in [9]. The
measurements were sampled at 0.01 s and different candidate
parameters for the scheduling parameters were chosen and
assessed, since it is unknown which scheduling signal should
be used. The following scheduling signal is used pu' =
[1 Neng Uty pim], obtaining the most accurate models,
and the identification results are shown in Fig. 3.

For model orders up to three, SID gives better results
compared to the IO identification using ARX and ARMAX
model structures. However, the accuracy of the models
obtained by LPV-IO identification, in contrast to SID, is
increasing with the model order, i.e., past window p or

3580



S
a7
=
§ ARX
p= —eo— ARMAX
40 —o— ARMAX H; j N
SID
| T T |
2 4 6 8 10 12

Model Order n,,
Fig. 3. Identification results on the air-path system of a gasoline engine with
averaged fit using LPV-IO methods (ARX and ARMAX model structures)
and also the LPV-SID method, where the model order reduction scheme is
applied to the identified ARMAX models

filter order n,, respectively. Furthermore, reducing the model
order of the ARMAX models leads even to superior BFRs
for low orders compared to SID. Besides, the BFR of the
identified LPV SID models is inferior to the results shown in
[9]. However, this originates from engine speed 7eng, Which
is here time-varying while it is kept constant in [9].

VI. CONCLUSION

In this paper, a procedure is presented to identify LPV-SS
models with static and affine dependency on the scheduling
signal in a computational efficient manner. To this end, an
LPV ARMAX model is identified with a specific dynamic
dependency on the scheduling parameters, which has a direct
LPV-SS representation with static, affine parameter depen-
dency. The model complexity is reduced by allowing a dif-
ferent parameterization with respect to LPV-SID algorithms.
However, in the MIMO case, this LPV-SS model will most
likely result in a non-minimal state representation. Therefore,
a novel, fast model order reduction scheme is suggested
based on the Ho-Kalman algorithm to obtain a low order
model. It is shown that the computational complexity of this
Ho-Kalman like scheme is reduced tremendously compared
to the original scheme. Comparable steps are conducted in
state-of-the-art LPV-SID methods, but we showed that it
is computationally more intensive and our method scales
better w.r.t. number of samples, the input, scheduling, and
output dimensions. Two examples are included to compare
the proposed method with the PBSIDopt algorithm. In
the first numerical toy example, it has been shown that
the proposed IO scheme and PBSIDgp¢ are comparable in
performance. The second example was the estimation of a
real-life model of the air-path of a gasoline engine, where
the proposed method clearly outperforms SID. Hence, the
proposed two step scheme is a step forward in making LPV-
SS identification schemes practically applicable, due to its
low computational complexity.
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