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Abstract— Currently available model predictive control meth-
ods for linear parameter-varying systems assume that the
future behavior of the scheduling trajectory is unknown over
the prediction horizon. In this paper, an anticipative tube
MPC algorithm for polytopic linear parameter-varying systems
under full state feedback is developed. In contrast to existing
approaches, the method explicitly takes into account expected
future variations in the scheduling variable: its current value
is measured exactly, while the future values over the prediction
horizon are assumed to belong to a sequence of sets describing
expected deviations from a nominal trajectory. Through this
mechanism, the controller “anticipates” upon future changes
in the system dynamics. The algorithm constructs a tube
homothetic to a terminal set and employs gain scheduled vertex
control laws. A worst-case cost is minimized: the corresponding
optimization problem is a single linear program with complexity
linear in the prediction horizon. Numerical examples show the
validity of the approach.

I. INTRODUCTION

High-performance control of complex systems requires
advanced controllers which explicitly take into account the
nature of the process under control. Many systems exhibit
operating point-dependent behavior: e.g., the dynamics of
motion systems are often position- and velocity-dependent
while the dynamics of chemical processes can strongly depend
on temperature. The framework of linear parameter-varying
(LPV) systems provides a way to develop models for such
systems [1]. In an LPV system the dynamic relations between
input- and output signals are linear, but this linear dynamic
mapping is allowed to depend upon a time-varying and on-line
measurable scheduling variable θ. This variable can frequently
be thought of as representing the variations in the operating
point of the process. In addition, many practical systems are
subject to constraints on their inputs or states. Such systems
can be controlled using model predictive control (MPC). MPC
decides the current control input by solving on-line, at each
sampling instant, an optimization problem. A model predicts
the effect of the computed input on the future state evolution
of the system. There is a wide range of systems which can
be described by LPV models and which are also subject to
constraints, leading to a need to develop MPC solutions for
LPV systems. The main difficulty in LPV MPC is the fact
that future system states depend not only on the control input,
but also on the scheduling variable whose exact evolution is
not usually known in advance.
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In many currently available LPV MPC approaches, it is
assumed that the scheduling variable can vary arbitrarily
fast over its complete range. This is a very conservative
assumption: based on the characteristics of the system, much
more detailed information on its future trajectories is usually
available. A practical example are motion systems, where the
relevant scheduling variables often correspond to a position
which approximately tracks a pre-defined reference trajectory.
Most methods do not aim to include this kind of information,
while it can obviously help to reduce conservatism and
improve control performance. Sometimes, known bounds on
the rate of variation of the scheduling variable are assumed
and used. However, this is still a very limited way to represent
the anticipated behavior of the scheduling variable.

In the presence of uncertainty, the optimal predictive control
problem to be solved on-line is a min-max optimization
problem [2]. Since these problems are computationally
demanding, approximations have been proposed, e.g., [3],
[4], [5]. Other approaches aim to solve the underlying min-
max problem in an efficient way, e.g., using multi-parametric
programming [6], [7]. It can also be assumed that the
future scheduling trajectories are known exactly [8]: then,
only a simple nominal problem needs to be solved on-line.
Unfortunately, this assumption appears to be too restrictive
in applications where uncertainty can be significant.

The proposed setting in this paper does not require either
extreme assumption. We provide a means to include, in a
structured way, all available knowledge on possible scheduling
trajectories. At each time instant, it is assumed that the future
trajectory is contained within a sequence of sets: the so-
called scheduling tube. By allowing for this extra degree of
freedom in the design, we can include the extreme cases
of “completely unknown” and “completely known” future
scheduling as special cases. In this way, a predictive controller
can anticipate on future expected changes in the system
dynamics in a flexible manner.

The anticipative control problem remains subject to un-
certainty and we need a tractable method, trading off
performance for computational complexity. A state feedback
MPC algorithm for polytopic LPV systems in the anticipative
setting is proposed following the principles of tube MPC
(TMPC). TMPC was first utilized for the constrained control
of linear systems subject to bounded additive disturbances [9].
Although given somewhat less attention in the literature, the
basic ideas apply equally well to systems subject to parametric
uncertainty and LPV systems. Our method constructs a
tube homothetic to a terminal set and synthesizes on-line
a sequence of associated gain-scheduled vertex control laws.
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Homothetic TMPC algorithms for linear systems subject to
additive disturbances were developed, e.g., [10], [11]. In
[10] it is shown that the methodology is applicable to the
parametric uncertainty-case. An ellipsoidal TMPC for LPV
systems subject to bounded rates of parameter variation is
presented in [12]. Robust TMPC of linear systems subject
to parametric uncertainty was considered in [13]. A general
polyhedral TMPC framework was given in [14]. Many of the
aforementioned approaches fit into this framework.

We employ the setting of [14] to develop our anticipative
LPV MPC solution, so that strong feasibility and stability
guarantees are obtained. Attractive features of TMPC are
its use of arbitrary horizons such that we can anticipate on
scheduling variations any desired number of steps in advance,
and that it leads to efficient convex optimization problems.

The contributions of the paper are the following. The notion
of scheduling anticipation is introduced and applied for the
constrained state feedback control of polytopic LPV systems.
To this end, an anticipative parameterization of tube-based
LPV MPC is given. By allowing for time-varying uncertainty
sets, an extra degree of freedom is introduced into the design.
It is shown that the corresponding optimal control problem
can be cast as a linear program with linear complexity in the
prediction horizon N .

The remainder of the paper is organized as follows. First we
discuss preliminaries, including notation, the problem setup,
and a more detailed exposition of the anticipative control
concept. In Section III, our anticipative LPV MPC algorithm
is presented. Implementation details and examples are given
in Section IV.

II. PRELIMINARIES

We now introduce our notation, define the problem setup,
and introduce the anticipative control concept.

A. Notation

Let R+ and N denote the nonnegative real numbers and
the nonnegative integers including zero, respectively.
Define the index set N[a,b] with 0 ≤ a ≤ b as
N[a,b] := {i ∈ N | a ≤ i ≤ b}. The value of a signal
w : N→ Rnw at time k is written as w(k). The value of w
at time instant k+ i, predicted from information available up
to and including time k, is denoted by wi|k. Capital boldface
symbols, e.g. X, denote sequences of sets. The symbol
‖x‖ := ‖x‖∞ = maxi∈{1,...,n} |xi| denotes the infinity-norm
of a vector. For a set Y ⊆ Rn, a scalar α ∈ R and a vector
v ∈ Rn let αY = {αy | y ∈ Y }, v ⊕ Y = {y + v | y ∈ Y }
and let Co{Y } be the convex hull of Y . A vector with
elements all equal to one is denoted as 1. A convex and
compact set X ⊂ Rn which contains the origin in its
non-empty interior is called a PC-set. A set is a polyhedron
if it is an intersection of finitely many half-spaces; a polytope
is a compact polyhedron. The Hausdorff distance between
two nonempty sets X,Y ⊂ Rn is defined as dH (X,Y ) =
max

{
supx∈X infy∈Y ‖x− y‖, supy∈Y infx∈X ‖x− y‖

}
;

the Hausdorff distance to the origin is d0
H(X) =

dH (X, {0}) = supx∈X ‖x‖. For a vector x ∈ Rn, let

d0
H (x) = d0

H ({x}). A function σ : R+ → R+ is of class K
when it is continuous, strictly increasing, and σ(0) = 0.

B. Problem setup

Consider the constrained LPV system, represented by the
following state-space equation

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k); x(0) = x0, (1)

where u : N → U ⊆ Rnu is the input, x : N → X ⊆ Rnx

is the state vector, and θ : N→ Θ ⊆ Rnθ is the scheduling
signal. The sets U and X are the input- and state constraint
sets, respectively, while Θ is the scheduling set. The matrices
A(·) and B(·) in (1) are real affine functions of θ, i.e.,

A(θ) = A0 +

nθ∑
i=1

θiAi, B(θ) = B0 +

nθ∑
i=1

θiBi. (2)

We consider the following standing assumptions.
Assumption 1: (i) The values x(k) and θ(k) are measur-

able for all k ∈ N. (ii) The sets X and U are polytopic
PC-sets. (iii) The set Θ is a polytope with q vertices, i.e.,
Θ = Co{θ̄j | j ∈ N[1,q]}.

With Θ as in Assumption 1 and with the affine dependency
(2), it follows that (1) is a so-called polytopic LPV system.

The goal of the anticipative LPV MPC algorithm under
development, is to stabilize the origin of (1). Additionally, it
is desired to equip the controller with the ability to anticipate
upon future expected variations of the scheduling variable.
This anticipative paradigm is formally introduced next.

C. Anticipative control

At each time instant k, a predictive controller must predict
the states of the system over a horizon of N steps into the
future. Thus, in the LPV case, the admissible values of the
scheduling variable for each time instant k + i, i ∈ N[0,N−1]

must be known. We use the following mechanism to capture
this knowledge. A sequence of subsets of the scheduling set Θ
is denoted by Θk =

{
Θ0|k, . . . ,ΘN−1|k

}
: such a sequence

can be interpreted as forming a tube around a “nominal” future
scheduling trajectory. For this reason, we refer to Θk as the
scheduling tube at time k. At each k, the scheduling tube is
constructed such that it contains the expected future variation
of the scheduling variable. Then it is assumed that, at each
instant k + i with i ∈ N[0,N−1] it holds that θ(k + i) ∈ Θi|k.
The construction is subject to some assumptions.

Assumption 2: (i) At any two successive time instants k
and k+ 1, the sequences Θk+1 and Θk are related such that
∀i ∈ N[0,N−2] : Θi|k+1 ⊆ Θi+1|k. (ii) It holds ∀(k, i) ∈
N× N[0,N−1] : Θi|k ⊆ Θ. (iii) All sets Θi|k are polytopes
with q vertices, i.e., Θi|k = Co{θ̄ji|k | j ∈ N[1,q]}.

The first assumption requires that the scheduling tube
predicted at time k + 1 must be contained inside of the tube
predicted at time k: this is essential for recursive feasibility.
Furthermore, the scheduling tube must be valid in the sense
that it can not leave the global scheduling set Θ. The last
assumption that all Θi|k are polytopes is required in the
mathematical derivations, but is not overly restrictive because
arbitrary bounded sets can always be over-approximated by
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Fig. 1. Example scheduling tubes for anticipative control: uncertainty
around nominal trajectory (top) and known bounds on ROV (bottom).

polytopes. The assumption that all sets have the same number
of vertices q is merely invoked for notational simplicity.

The sequence Θk can be constructed in several ways,
each corresponding to a different MPC scenario. Denote
θ0|k := θ(k). In this paper, we consider the following cases.

1) LPV-C (classical): Θ =
{
{θ0|k},Θ, . . . ,Θ

}
.

2) LPV-A (anticipative): Θ =
{
{θ0|k},Θ1|k, . . . ,ΘN−1|k

}
.

3) LPV-O (oracle): Θ =
{
{θ0|k}, {θ1|k}, . . . , {θN−1|k}

}
.

Important examples of knowledge on the future scheduling
trajectories that can be included in the LPV-A framework are
uncertainty around a nominal parameter trajectory or known
bounds on the rate of variation (ROV) of θ (Figure 1).

III. ANTICIPATIVE LPV TUBE MPC

The general formulation of anticipative LPV TMPC is
now given. To achieve the stabilization of (1) the algorithm
constructs, at each time instant k ∈ N, a so-called constraint
invariant tube. The definition of [14] is here extended for
systems of the form (1) and to include the anticipative
mechanism described in the previous section.

Definition 1: A constraint invariant tube for the con-
straints (X,U) ⊆ Rnx × Rnu is defined as Tk :=({
X0|k, . . . , XN |k

}
,
{

Π0|k, . . . ,ΠN−1|k
})

where Xi|k ⊆
Rnx , i ∈ N[0,N ] are sets and Πi|k : Xi|k × Θi|k → U, i ∈
N[0,N−1] are control laws satisfying the condition ∀(x, θ) ∈
Xi|k ×Θi|k : A(θ)x+BΠi|k(x, θ) ∈ Xi+1|k ∩ X.

Note that the tube cross sections Xi|k are not required to lie
in X, but the realized system trajectories are. The uncertainty
in transitions from one cross section to the next is dependent
on the scheduling tube Θk. As explained in the previous
section, by appropriate computation of this sequence we can
anticipate future scheduling variations. Before proceeding
with the development of the TMPC algorithm, an additional
assumption on the system (1) is made.

Assumption 3: The input matrix of (1) is not parameter-
varying, i.e., ∀θ ∈ Θ : B(θ) = B.

The above assumption is common in LPV control and is
essential to obtain a convex optimization problem when the
controllers in Definition 1 are dependent on θ [15].

Remark 1: A varying B-matrix can always be made
constant by adding a pre-integrator (or any other stable input
filter). This might, however, influence stabilizability [15].

A. Tube parameterization

The tubes of Definition 1 must be finitely parameterized
so that they can be constructed by solving on-line a tractable
optimization problem. We adopt the common homothetic
cross section parameterization [10], [11], [14]

Xi|k = zi|k ⊕ αi|kXf (3)

where Xf ⊂ Rnx is a polytopic PC-set selected off-line, and
zi|k ∈ Rnx and αi|k ∈ R+ are optimized on-line at each time
instant k. Later, conditions on Xf are given such that it can
be used as a terminal set to obtain recursive feasibility and
stability. Assume for now that Xf is the convex hull of qf
vertices as Xf = Co

{
v̄1, . . . , v̄qf

}
, so that for each cross

section Xi|k, i ∈ N[0,N ] we have Xi|k = Co
{
x̄1
i|k, . . . , x̄

qf
i|k
}

where ∀j ∈ N[1,qf ] : x̄ji|k = zi|k + αi|kv̄
j . The control laws

are parameterized as gain-scheduled vertex controllers, i.e.,

Πi|k(x, θ) =

qf∑
j=1

µji|k

q∑
l=1

λli|ku
(j,l)
i|k , (4)

where µi|k ∈ Rqf+ and λi|k ∈ Rq+ are such that
∑qf
j=1 µ

j
i|k =

1,
∑qf
j=1 µ

j
i|kx̄

j
i|k = x,

∑q
l=1 λ

l
i|k = 1, and

∑q
l=1 λ

l
i|kθ̄

l
i|k =

θ. At each prediction time instant k + i, the control action
u

(j,l)
i|k is associated with the j-th vertex of the cross section
Xi|k and the l-th vertex of Θi|k (see Assumption 2). The
values of µi|k and λi|k are never computed: guaranteeing the
existence of all control actions u(j,l)

i|k is sufficient.
Remark 2: We can remove the dependence of (4) on θ to

obtain a “robust” vertex control law. Then, Assumption 3
can be dropped. This preserves the anticipative nature, since
each controller Πi|k is still only required to be robust with
respect to the corresponding scheduling subset Θi|k.

We define corresponding tube parameters as

pXi|k =
(
αi|k, zi|k

)
, pΠ

i|k =
(
u

(1,1)
i|k , . . . , u

(qf ,q)

i|k

)
(5)

where each set
(
pXi|k, p

Π
i|k
)

fully characterizes an associated
tube cross section Xi|k and control law Πi|k. A cost function

JN (dk) =

N−1∑
i=0

`
(
pXi|k, p

Π
i|k

)
+ Vf

(
pXN |k

)
(6)

is minimized where `(·, ·) is the stage cost and Vf (·) is the
terminal cost. Denote the current measured state as x0|k :=
x(k). The general form of the optimization problem is

V (x0|k) = min
dk

∑N−1
i=0 `

(
pXi|k, p

Π
i|k
)

+ Vf
(
pXN |k

)
s.t. X0 = {x0|k}, XN |k ⊆ Xf ,

∀i ∈ N[0,N−1] : ∀x ∈ Xi|k, ∀θ ∈ Θi|k :

A(θ)x+BΠi|k(x, θ) ∈ Xi+1|k ∩ X,

(7)

where dk =
((
pX0|k, . . . , p

X
N |k
)
,
(
pΠ

0|k, . . . , p
Π
N−1|k

))
is the

decision variable of dimension (N + 1) (nx + 1) +Nnuqfq.
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By selecting the cost functions and terminal constraint
appropriately, (7) is an LP as shown in Section IV. It is
stressed that because θ(k) is measured exactly, Π0|k(x, θ) :=
u0|k. After solving (7), we set u(k) = u0|k and repeat the
optimization at the next sample in the receding horizon control
(RHC) fashion. A worst-case linear stage cost

`
(
pXi|k, p

Π
i|k

)
= max

(x,θ)∈Xi|k×Θi|k
‖Qx‖+ ‖RΠi|k(x, θ)‖

= max
(j,l)∈N[1,qf ]×N[1,q]

∥∥Qx̄ji|k∥∥+
∥∥Ru(j,l)

i|k
∥∥ (8)

is used where Q ∈ Rnx×nx and R ∈ Rnu×nu are tuning
parameters, and the last equality holds by convexity of the
infinity norm and the finite parameterizations of Xi|k and
Θi|k. Thus, solving (7) amounts to solving an approximation
of the true min-max problem, where suboptimality results
from the choice of a fixed cross section shape Xf . The
following technical property is satisfied by the stage cost.

Lemma 1: There exist σ1, σ2 ∈ K and an a ∈ R+ such
that σ1

(
d0
H

(
Xi|k

))
≤ `
(
pXi|k, p

Π
i|k
)
≤ σ2

(
d0
H

(
Xi|k

))
+ a.

Proof: The proof of Lemma 3 in [14] applies.

B. Feasibility and stability

In this section, we discuss the computation of the terminal
set Xf and terminal cost Vf (·) such that recursive feasibility
and asymptotic stability are obtained. The set Xf is computed
as a controlled ρ-contractive set for the system (1).

Definition 2: Let ρ ∈ [0, 1). A PC-set X ⊆ X is called
controlled ρ-contractive for (1) if ∀x ∈ X,∀θ ∈ Θ : ∃u ∈
U such that (A(θ)x+B(θ)u) ∈ ρX .

If Xf is a ρ-contractive polytope, there exists an asymp-
totically stabilizing controller of the form (4) defined on Xf .
Since the cross sections are homothetic to Xf it is implicitly
guaranteed that the MPC can always recover this controller
in its on-line optimization, as formally stated next.

Lemma 2: Let Xf be a ρ-contractive set for (1) and
suppose Assumption 2 holds. Then (7) is recursively feasible.

Proof: By definition of Xf , there exists a control law
Πf : Xf × Θ → U such that ∀γ ∈ [0, 1] : ∀(x, θ) ∈
γXf × Θ : A(θ)x + BγΠf (x, θ) ∈ γρXf . This controller
Πf is defined by pΠ

f =
(
u

(1,1)
f , . . . , u

(qf ,q)
f

)
and Xf by

pXf = (1, 0). If (7) is feasible at time k, then ∃γ ∈
[0, 1] : XN |k ⊆ γXf . In this lemma, letting γ = 1 is
sufficient but we keep it as a variable to facilitate the
upcoming proof of Theorem 1. Let d?k =

((
pX0|k, . . . , p

X
N |k
)
,(

pΠ
0|k, . . . , p

Π
N−1|k

))
be the optimal solution to (7) at time k.

Note that pX0|k =
(
α0|k, z0|k

)
=
(
0, x0|k

)
. Then, under As-

sumption 2, a feasible solution at time k+ 1 can be explicitly
given as d◦k+1 =

((
pX0|k+1, p

X
2|k, . . . , pN−1|k, γp

X
f , γρp

X
f

)
,(

pΠ
1|k, . . . , p

Π
N−1|k, γp

Π
f

))
where pX0|k+1 =

(
0, x0|k+1

)
. By

construction x0|k+1 ∈ z1|k ⊕ α1|kXf : thus the controller
defined by pΠ

1|k is feasible at k + 1 and steers x0|k+1 into
X1|k+1 ⊆ X2|k. Hence d◦k+1 is feasible at time k + 1.

We now give a terminal cost function

Vf (pXN |k) =
¯̀
f

1− ρΨf

(
pXN |k

)
(9)

where ¯̀
f ∈ R+ is a constant, and

Ψf

(
pXN |k

)
= inf

{
γ > 0 | XN |k ⊆ γXf

}
(10)

is a kind of “gauge” function measuring “how far” XN |k is
pushed inside of Xf . The constant ¯̀

f is computed as follows.
First, construct the control actions ∀j ∈ N[1,qf ],∀l ∈ N[1,q]:

u
(j,l)
f = arg min

u∈U

∥∥Qv̄j∥∥+
∥∥Ru∥∥ s.t. A(θ̄l)v̄j +Bu ∈ ρXf

which fully parameterize a feasible asymptotically stabilizing
local controller Πf : Xf ×Θ→ U. Let ¯̀

f be the maximum
possible cost associated with this controller, i.e.,

¯̀
f = max

j∈N[1,qf ],l∈N[1,q]

∥∥Qv̄j∥∥+
∥∥Ru(j,l)

f

∥∥.
Then, the constant ¯̀

f upper bounds any stage cost
`
(
pXN |k, p

Π
N |k
)

that might result during on-line optimization.
The main result of this section can now be stated.

Theorem 1: Let the conditions of Lemma 2 be satisfied
and define Vf (·) as (9). Then, the TMPC defined by (7) is
asymptotically stabilizing.

Proof: Consider the optimal solution d?k and the sub-
optimal feasible solution d◦k+1 constructed in Lemma 2. By
definition of Vf (·), we can take γ = Ψf

(
pXN |k

)
. Substituting

d?k and d◦k+1 in (6) and computing the difference between
the value functions at times k and k + 1 yields

∆Vk = V
(
x0|k+1

)
− V

(
x0|k

)
≤ JN

(
d◦k+1

)
− JN

(
d?k
)

= `
(
pX0|k+1, p

Π
1|k
)

+

N−1∑
i=2

`
(
pXi|k, p

Π
i|k
)
−
N−1∑
i=0

`
(
pXi|k, p

Π
i|k
)

+ γ ¯̀
f + γρVf

(
pXf
)
− Vf

(
pXN |k

)
.

Observe that (i) X0|k+1 = {x0|k+1} ∈ X1|k, so
`
(
pX0|k+1, p

Π
1|k
)
≤ `

(
pX1|k, p

Π
1|k
)

and that (ii) by definition,
Ψf

(
pXf
)

= 1. Cancelling the terms in the sums, substituting
the values of Vf (·) and γ, and using these two facts gives
that ∆Vk ≤ γ ¯̀

f − `
(
pX0|k, p

Π
0|k
)

+ γρVf
(
pXf
)
− Vf

(
pXN |k

)
=

−`
(
pX0|k, p

Π
0|k
)
≤ −σ1

(
‖x0|k‖

)
where the last inequality

follows from Lemma 1. Hence the value function is monoton-
ically decreasing with a rate proportional ‖x0|k‖. Finally note
that convergence of V

(
x0|k

)
to zero implies convergence of

x(k) to the origin, proving asymptotic stability.

IV. IMPLEMENTATION

We show the linear program that is solved on-line to realize
the TMPC presented in Section III and give two numerical
examples to demonstrate its properties.

A. The linear program

Let all relevant polytopes be represented as

Xf = {x ∈ Rnx | Hfx ≤ hf} = Co
{
v̄1, . . . , v̄qf

}
,

U = {u ∈ Rnu | Huu ≤ hu} ,X = {x ∈ Rnx | Hxx ≤ hx} ,
where Hf ∈ Rrf×nx , Hu ∈ Rru×nu and Hx ∈ Rrx×nx .
With our selected parameterizations and cost functions, the
optimization problem (7) is the following linear program:
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min
dk,νk,µk,γN|k

∑N−1
i=0

(
µi|k + νi|k

)
+

¯̀
f

1−ργN |k

s.t. α0|k = 0, z0|k = x0|k, 0 ≤ γN |k ≤ 1,

∀i ∈ N[0,N−1], ∀j ∈ N[1,qf ], ∀l ∈ N[1,q] :

Hf

(
zN |k + αN |kv̄

j
)
≤ γN |khf ,

−µi|k1 ≤ Q
(
zi|k + αi|kv̄

j
)
≤ µi|k1,

−νi|k1 ≤ u(j,l)
i|k ≤ νi|k1,

Huu
(j,l)
i|k ≤ hu,

Hf

(
A
(
θ̄li|k
)(
zi|k + αi|kv̄

j
)

+Bu
(j,l)
i|k
)

≤ Hfzi+1|k + αi+1|khf ,

Hx

(
A
(
θ̄li|k
)(
zi|k + αi|kv̄

j
)

+Bu
(j,l)
i|k
)
≤hx,

where νk =
(
ν0|k, . . . , νN−1|k

)
and µk =(

µ0|k, . . . , µN−1|k
)

are slack variables of dimension
N introduced to minimize the infinity-norms in (8).
The scalar variable γN |k corresponds to (10). There
are N(nx + qfqnu + 3) + nx + 2 decision variables,
Nqf (2nx + rfq+ rxq+2nuq+ ruq)+ qfrf linear inequality
constraints, and nx + 1 equality constraints.

Remark 3: Although linear in N , the number of variables
and constraints directly depends on the complexity of Xf

which must be ρ-contractive. The complexity of such sets
grows rapidly in the state dimension and it is impossible to
reliably compute them for systems with more than a few
states. Note that almost all TMPC approaches use invariant
sets as tube cross sections. Methods based on low-complexity
invariant polytopes, e.g., [16], are typically conservative due
to the restricted shapes and degrees of freedom.

B. Numerical example 1

The method is now demonstrated on a simple academic
example. Consider a system of the form (1) where

A0 =

[
1 1
0 1

]
, A1 =

[
0 0.5
−0.8 0

]
,

A2 =

[
0.15 0

0 −0.15

]
, B =

[
0
1

]
,

and with Θ =
{
θ ∈ R2 | ‖θ‖ ≤ 1

}
, U = {u ∈ R | |u| ≤ 4},

and X =
{
x ∈ R2 | |x1| ≤ 7, |x2| ≤ 8

}
. This model has q =

4 vertices. The set Xf was computed as the maximal 0.95-
contractive set for the system using the software [17] and has
10 vertices. In the simulations that follow, N = 5, Q = I , and
R = 1. A nominal scheduling trajectory θ̃(k) was computed
(Figure 2). Then 50 random scheduling realizations were
generated in a tube around the nominal trajectory, such that

θ(k) ∈ θ̃(k)⊕ {δ | ‖δ‖ ≤ 0.2} (11)

for all k ∈ N. For each of the realizations, four different
closed-loop scenarios of 20 samples were executed to compare
the different approaches considered in Section II-C.

The TMPC algorithm was also compared to an LP
implementation of the full min-max problem along the lines
of [18]: it aims to minimize the same cost (6) and employs the
same terminal constraint- and cost, but at each time instant

0 5 10 15

~ 3 1

-1

0

1

t [samples]
0 5 10 15

~ 3 2

-1

0

1

Fig. 2. Nominal scheduling trajectory and scheduling tube for Example 1.

considers an exact prediction tree instead of using fixed-shape
tube cross sections. Thus it has exponential complexity in N .

The LPV-A scenario accounts explicitly for the uncertainty
structure of (11), while the LPV-O scenario assumes that the
exact future realized scheduling trajectory is known. Hence,
the LPV-O case represents the limit of achievable performance.
The scheduling trajectory sometimes jumps between its upper-
and lower bounds: hence, only considering an ROV bound
would not be better than assuming arbitrarily fast variation.
All simulations used the same initial state x0 = [7 − 3]

>,
so the comparison is focused on the effect of including
the anticipative scheduling information. After running each
simulation, the total achieved cost

Jsim =

∞∑
k=0

‖Qx(k)‖+ ‖Ru(k)‖ (12)

was computed. For all scenarios (TMPC LPV-C, TMPC LPV-
A, TMPC LPV-O, and min-max LPV-A) the results were
then averaged over the 50 simulations with independently
generated scheduling trajectories according to (11). The
corresponding domains of attraction were estimated by
evaluating the controllers on a dense grid of the state space:
their volumes were computed and averaged. This averaging
step is necessary because the feasible set of an LPV predictive
controller generally depends on the initial value (and in the
anticipative case, on the future trajectory) of the scheduling
variable. The simulation results are summarized in Table I.
A representative example of the domains of attraction –
corresponding to one of the simulations – is given in Figure 3.
It is observed from the table that explicitly including the

knowledge of the scheduling tube structure (11) improves the
overall control performance measured in terms of the cost
(12). Furthermore, significantly larger domains of attraction
are obtained. As expected, the min-max solution outperforms
the tube approach: the difference however is very small and
comes at the expense of exponential complexity. In Table II
the average times to solve the LP at each sampling instant are
compared for the anticipative tube- and min-max algorithms.
Although competitive for small N , the complexity of the
min-max optimization quickly explodes while the load of the
TMPC remains reasonable. The simulations were carried out
on a 3.6 GHz Intel Core i7-4790 with 8 GB RAM, running
Arch Linux, and using the Gurobi 6.0 LP solver.
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Scenario Avg. cost Avg. feas. vol.
TMPC LPV-C 20.23 61.33
TMPC LPV-A 18.79 108.1
TMPC LPV-O 18.72 117.7
Min-max LPV-A 18.78 108.4

TABLE I
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1.

N TMPC LPV-A Min-max LPV-A
3 7 2
4 11 6
5 16 27
6 21 143
7 26 1096

TABLE II
MEAN SOLUTION TIMES OF THE LINEAR PROGRAMS IN MS.

x1

-6 -4 -2 0 2 4 6

x
2

-5

0

5

Fig. 3. Domains of attraction corresponding to one scheduling trajectory
in Example 1. From the inside out: Xf (solid green), TMPC LPV-C (blue),
TMPC LPV-A (red), min-max LPV-A (yellow), TMPC LPV-O (purple).

C. Numerical example 2

Additionally, the approach is demonstrated on an example
from literature. The system considered here is the same as
[12], which in turn is based on the angular positioning system
from [19] but with the extra assumption that the uncertain
parameter is measurable. The system is of the form (1) where

A0 =

[
1 0.1
0 1

]
, A1 =

[
0 0
0 −0.1

]
, B =

[
0

0.0787

]
and with Θ = {θ ∈ R | 0.1 ≤ θ ≤ 10} and U =
{u ∈ R | −2 ≤ u ≤ 2}. There is no state constraint. For
this system, a bound on the scheduling ROV is given as
|θ(k + 1) − θ(k)| ≤ 2. This type of information can be
included in our general anticipative setting. The terminal set
Xf is computed as the maximum 0.99-contractive set for the
system under an LPV state feedback u(k) = K (θ(k))x(k).
In the simulation, N = 10, Q = diag {1, 0} and R = 1.
As in the previous example, 50 simulations using randomly
generated scheduling trajectories respecting the given ROV
bound were executed: the total cost and volumes of the
domains of attraction were computed and averaged. The initial
state was x(0) = [−1 0]

>. We compare a “classical LPV”
tube MPC scenario where the ROV bound is not used, and an
“anticipative” scenario where the ROV bound is included. The
results are summarized in Table III. Again, the anticipative
approach incorporating the knowledge of the ROV bound
achieves a better overall cost and the domain of attraction is

Scenario Avg. cost Avg. feas. vol.
TMPC LPV-C 74.01 13.44
TMPC LPV-A 71.84 14.68

TABLE III
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2.

enlarged. The relative increase in volume is fairly small due to
the relatively large ROV bound: if this bound is decreased the
relative volume improvement can be increased. For instance,
with a bound |θ(k + 1) − θ(k)| ≤ 1 it was found that the
average feasible volume for the LPV-A case was about 34.
Thus, the anticipative control setting proposed in this paper
can also exploit known ROV bounds to advantageous effect.
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