
Moment Matching Based Model Reduction for LPV State-Space Models
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Abstract— We present a novel algorithm for reducing the
state dimension, i.e., order, of linear parameter varying (LPV)
discrete-time state-space (SS) models with affine dependence
on the scheduling variable. The input-output behavior of the
reduced order model approximates that of the original model.
In fact, for input and scheduling sequences of a certain
length, the input-output behaviors of the reduced and original
model coincide. The proposed method can also be interpreted
as a reachability and observability reduction (minimization)
procedure for LPV-SS representations with affine dependence.

I. INTRODUCTION

In control applications, it is often desirable, see [17],
[15], to use discrete-time linear parameter-varying state-
space representations with affine dependence on parameters
(abbreviated as LPV-SS representations in the sequel) of the
form:

Σ

{
x(t +1) = A(p(t))x(t)+B(p(t))u(t)

y(t) =C(p(t))x(t),
(1)

where t ∈N, N denotes the set of natural numbers including
zero, x(t) ∈ Rnx is the state, y(t) ∈ Rny is the output, u(t) ∈
Rnu is the input, and p(t) =

[
p1(t) · · · pnp(t)

]T ∈P⊆Rnp

is the scheduling signal at time t ∈N. Here P is an arbitrary
but fixed, closed, simply connected subset of Rnp . The matrix
functions A(p(t)), B(p(t)), C(p(t)) in (1) are assumed to be
affine and static functions of p(t) of the form:

A(p(t)) = A0 +
np

∑
i=1

Ai pi(t), B(p(t)) = B0 +
np

∑
i=1

Bi pi(t),

C(p(t)) =C0 +
np

∑
i=1

Ci pi(t),

(2)

where Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx are constant
matrices for all i ∈ {0,1, . . . ,np}.
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Contribution of the paper Consider a LPV-SS represen-
tation Σ of the form (1) and fix a positive integer N. In this
paper, we present a procedure for computing another LPV-SS
representation

Σ̄

{
x̄(t +1) = Ā(p(t))x̄(t)+ B̄(p(t))u(t)

ȳ(t) = C̄(p(t))x̄(t),
(3)

such that for x(0) = 0, y(t) = ȳ(t) for 0 ≤ t ≤ N, for all
scheduling sequences (p(0), p(1), . . . , p(N)) ∈ PN+1 and in-
put sequences u = (u(0),u(1), . . . ,u(N)) ∈ (Rnu)N+1. More-
over, the state space dimension of Σ̄ is smaller than or equal
to the state space dimension of Σ. In other words, given an
LPV-SS representation Σ of order nx (state space dimension
nx) and a N ∈N\{0}, we would like to find another LPV-SS
representation Σ̄ of order r ≤ nx which has the same input-
output behavior for all scheduling and input sequences of
length up to N+11. In addition, we would like the represen-
tation Σ̄ to be a “good” approximation of Σ in terms of input-
output behavior, even for scheduling and input sequences
of length greater than N + 1 (see Remark 1 for what is
meant by “good” here). Intuitively, it is clear that there is
a relationship between N and r: larger N yields a better
approximation of the original input-output behavior, but it
also results in larger value of r. In this paper, this relationship
will be made more precise. Finally, by making use of this
relation, the number N can be guaranteed to be chosen such
that the resulting representation is a complete realization of
the original model and it is reachable and/or observable.
Therefore, the procedure stated in the present paper can also
be used for reachability or observability reduction (hence,
minimization) of an LPV-SS representation.

Motivation LPV-SS representations are used in a wide va-
riety of applications, see for instance [11], [20], [5], [19], [6].
Their popularity is due to their ability to capture nonlinear
dynamics, while remaining simple enough to allow effective
control synthesis, for example, by using optimal H2/H∞

control, MPC or PID approaches. LPV-SS representations
arising in practice, especially originating from first-principles
based modeling, often have a large number of states. This
is due to the inherent complexity of the physical processes
whose behavior the LPV-SS representations are supposed
to capture. Unfortunately, due to memory limitations and
numerical issues, the existing LPV controller synthesis tools
are not always capable of handling large state-space repre-
sentations [9]. Moreover, even if the control synthesis is suc-

1Note that finding a representation Σ̄ with the same number of states as Σ

is in fact not necessarily useful, but it can happen that the proposed method
does not allow us any other option.
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cessful, large plant models lead to large controllers. In turn,
large controllers are more difficult and costly to implement,
and they often require application of reduction techniques.
For this reason, model reduction of LPV-SS representations
is extremely relevant for improving the applicability of LPV
systems.

Related work The tools which have been used in this
paper stem from realization theory of LPV-SS representations
[13], [18]. Similar tools were used for linear switched
systems in [3]. In fact, we use the relationship between LPV-
SS representations and linear switched systems derived in
[13] to adapt the tools of [3] to LPV-SS representations. The
method employed in this paper is related to that of [18]. The
main difference is that [18] requires the explicit computation
of Hankel matrices of LPV-SS representations. It should
be noted that the size of the partial Hankel matrix of an
LPV-SS representation increases exponentially. In contrast,
the algorithm proposed in this paper does not require the
explicit computation of Hankel matrices, and its worst-case
computational complexity is polynomial.

Model reduction problem of LPV-SS representations was
investigated in several papers [7], [8], [1], [22], [21], but
except [21] they are only applicable to quadratically stable
LPV systems. The method of [21] is applicable to quadrati-
cally stabilizable and detectable LPV-SS representations. In
contrast, this paper does not impose any restrictions on the
class of LPV-SS representations. In [16] joint reduction of the
number of states and the number of scheduling parameters
has been investigated. However, the method of [16] requires
constructing the Hankel matrix explicitly. Hence, it suffers
from the same curse of dimensionality as [18].

Outline: In Section II, we present the formal definition
and main properties of LPV-SS representations. In Section
III, we recall the concept of sub-Markov parameters for LPV-
SS representations and give the precise problem statement. In
Section IV, we present the moment matching algorithm. In
Section V the algorithm is illustrated on a numerical example
and its performance is compared with the one of [18].

II. DISCRETE-TIME LPV-SS REPRESENTATIONS

In this section, we present the formal definition of discrete-
time LPV-SS representations and recall a number of relevant
definitions. We follow the presentation of [13].

In the sequel, we will use

Σ = (ny,nu,nx,{(Ai,Bi,Ci)}
np
i=0), (4)

or simply Σ to denote a discrete-time LPV-SS representation
of the form (1). In addition, we use Is2

s1 to denote the set
Is2

s1 = {s ∈ N | s1 ≤ s ≤ s2}. An LPV-SS representation Σ

is driven by the free variables (inputs) {u(k)}∞
k=0 and the

scheduling sequence {p(k)}∞
k=0. In the sequel, regarding

state trajectories, the initial state x(0) for an LPV-SS rep-
resentation is taken to be zero unless stated otherwise. This
assumption is made to simplify notation. Note that the results
of the paper can easily be extended for the case of non-zero
initial state.

Notation 1: We will use HN to denote the set of all maps
of the form f : N→ H where H is a (possibly infinite) set.
Using this, the sets U , P , Y and X are defined as U =
UN, P = PN, Y = YN and X = XN where U = Rnu , P ⊆
Rnp , Y = Rny and X = Rnx .

Consider an initial state x0 ∈ Rnx of the LPV-SS repre-
sentation Σ of the form (1). The input-to-state map XΣ,x0 :
U ×P→X and input-output map YΣ,x0 : U ×P→ Y of
Σ corresponding to this initial state x0 are defined as follows:
for all sequences u = {u(k)}∞

k=0 ∈ U and p = {p(k)}∞
k=0 ∈

P , let XΣ,x0(u,p)(t) = x(t) and YΣ,x0(u,p)(t) = y(t), t ∈ N,
where x(t), y(t) satisfy (1) and x(0) = x0. We say that Σ is
reachable, if Rnx = span{XΣ(u,p)(t) | (u,p) ∈ U ×P, t ∈
N}, i.e., Rnx is the smallest vector space containing all the
states which are reachable from x(0) = 0 by some scheduling
sequence and input sequence at some time instance t, where
t ∈N. We say that Σ is observable if for any two initial states
x1,x2 ∈Rnx , YΣ,x1 =YΣ,x2 implies x1 = x2. That is, if any two
distinct initial states of an observable Σ are chosen, then for
some input and scheduling sequence, the resulting outputs
will be different. In the sequel, to simplify the notation,
we will be dealing with those input-output maps of LPV-SS
representations which correspond to the zero initial state. We
will use XΣ and YΣ to denote XΣ,0 and YΣ,0 respectively.

The definition above implies that the potential input-output
behavior of an LPV-SS representation can be formalized as
a map

f : U ×P → Y . (5)

The value f (u,p)(t) represents the output of the underlying
black-box system at time t, if the initial state x(0) = 0,
the input u = {u(k)}∞

k=0 and the scheduling sequence p =
{p(k)}∞

k=0 are fed to the system. Next, we define when an
LPV-SS representation realizes (describes) f . The LPV-SS
representation Σ of the form (1) is a realization of a map f
of the form (5), if f equals the input-output map of Σ, i.e.,
f = YΣ. Two LPV-SS representations Σ1 and Σ2 are said to
be input-output equivalent if YΣ1 =YΣ2 . Let Σ be an LPV-SS
representation of the form (1).

Consider an LPV-SS representation Σ1 of the form (1) and
an LPV-SS representation Σ2 of the form

Σ2 = (ny,nu,nx,{(Aa
i ,B

a
i ,C

a
i )}

np
i=0).

A nonsingular matrix S ∈ Rnx×nx is said to be an LPV-SS
isomorphism from Σ1 to Σ2, if for all i ∈ Inp

0

Aa
i S = S Ai, Ba

i = S Bi, Ca
i S =Ci. (6)

In this case Σ1 and Σ2 are called isomorphic LPV-SS
representations. The order of Σ, denoted by dim(Σ) is the
dimension of its state-space. That is, if Σ is of the form (1),
then dim(Σ) = nx. Let f be an input-output map of the form
(5). An LPV-SS realization Σ is a minimal realization of f ,
if Σ is a realization of f , and for any LPV-SS representation
Σ̄ which is also a realization of f , dim(Σ)≤ dim(Σ̄). We say
that Σ is minimal, if Σ is a minimal realization of its own
input-output map YΣ. From [13], it follows that an LPV-SS
representation Σ is minimal if and only if it is reachable and
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observable. In addition, if two minimal LPV-SS realizations
are input-output equivalent, then they are isomorphic.

III. MODEL REDUCTION OF LPV-SS
REPRESENTATIONS: PRELIMINARIES

In this section, the sub-Markov parameters of a realizable
input-output map f and its corresponding LPV-SS represen-
tation Σ will be defined, and the moment matching problem
for LPV-SS realizations will be stated formally. To this end,
we recall the concepts of an infinite impulse response (IIR)
representation of an input-output map [18] and the concept
of sub-Markov parameters.

Consider an LPV-SS representation Σ of the form (1),
and consider its input-output map f = YΣ. Recall from [18]
that for any input sequence u = {u(k)}∞

k=0 and scheduling
sequence p = {p(k)}∞

k=0,

f (u,p)(t) = YΣ(u,p)(t) =
t

∑
m=0

(hm � p)(t)u(t−m) (7)

for all t ∈ N where

(h0 � p)(t) = 0, (h1 � p)(t) =C(p(t))B(p(t−1)),

(hm � p)(t) =C(p(t))

(
m−1

∏
l=1

A(p(t− l))

)
B(p(t−m)).

(8)

The representation above is called the IIR of f = YΣ. The
map f in (7) is absolute convergent for all P ∈ PN if the
represented system is IO asymptotically stable. From (8) and
(2), it can be seen that the terms (hm � p)(t), m ≥ 0 can be
written as follows:

(h0 � p)(t) = 0, (h1 � p)(t) =
np

∑
q=0

np

∑
q0=0

CqBq0 pq(t)pq0(t−1),

(hm � p)(t) =
np

∑
q=0

np

∑
j1=0
· · ·

np

∑
jm−1=0

np

∑
q0=0

CqA j1 · · ·A jm−1Bq0 p̂q j1··· jm−1q0 ,

(9)
where p0(k) = 1 for all k ∈ It

0 and p̂q j1··· jm−1q0 = pq(t)p j1(t−
1) · · · p jm−1(t−m+1)pq0(t−m).

Now we are ready to define the sub-Markov parameters of
Σ. To this end, we introduce the symbol ε to denote the empty
sequence of integers, i.e., ε will stand for a sequence of
length zero and we denote by S (Inp

0 ) the set {ε}∪{ j1 · · · jm |
m≥ 1, j1, . . . , jm ∈ Inp

0 } of all sequence of integers from Inp
0 ,

including the empty sequence. If s∈S (Inp
0 ), then |s| denotes

the length of the sequence s. By convention, if s = ε , then
|s|= 0. The coefficients

η
Σ
q,q0

(ε) =CqBq0 ,

η
Σ
q,q0

( j1 · · · jm) =CqA j1 · · ·A jmBq0 ,
(10)

m ≥ 1; q, j1, . . . , jm,q0 ∈ Inp
0 appearing in (9) are called

the sub-Markov parameters of the LPV-SS representation
Σ. In the sequel, the sub-Markov parameters ηΣ

q,q0
(s) with

q,q0 ∈ Inp
0 , s ∈S (Inp

0 ), |s| = m, will be called sub-Markov
parameters of Σ of length m. The intuition behind this termi-
nology is as follows: the length of a sub-Markov parameter

is determined by the number of A j matrices which appear in
(10) as factors.

Note the sub-Markov parameters do not depend on the
particular choice of an LPV-SS representation, but on the
choice of the input-output map (provided that we fix an affine
depency of the matrices of the LPV-SS representation on the
scheduling variable). From [13] it follows that if Σ1, Σ2 are
two LPV-SS representations with static affine dependence
on the scheduling variable, then their input-output maps are
equal, if and only if their respective sub-Markov parameters
are equal, i.e., YΣ1 = YΣ2 ⇐⇒ ∀s ∈ S (Inp

0 ) : η
Σ1
q,q0(s) =

η
Σ2
q,q0(s). Note also that another way to interpret the sub-

Markov parameters is that they correspond to the derivatives
of f with respect to the scheduling variable.

Recall that p0(k) = 1 for all k ∈ It
0. In addition, ob-

serve from (8), that the output y(t), for t ≥ 1 of an LPV-
SS representation corresponding to an input sequence u =
{u(k)}∞

k=0 and a scheduling sequence p = {p(k)}∞
k=0 is

uniquely determined by the sub-Markov parameters of length
up to t − 1 i.e., only the sub-Markov parameters of length
up to t − 1 appear in the output y(t). Hence, if the sub-
Markov parameters of length up to t − 1 of two LPV-SS
representations Σ and Σ̄ coincide, it means that Σ and Σ̄

will have the same input-output behavior up to time t for
arbitrary input and scheduling sequences. This discussion is
formalized below.

Lemma 1 (I/O equivalence and sub-Markov parameters):
For any LPV-SS representations Σ1,Σ2,

∀(u,p) ∈U ×P,k ∈ It
0 : YΣ1(u, p)(k) = YΣ2(u, p)(k)

if and only if

∀s ∈S (Inp
0 ),q,q0 ∈ Inp

0 , |s| ≤ t−1 : η
Σ1
q,q0

(s) = η
Σ2
q,q0

(s)
This prompts us to introduce the following definition.
Definition 1: Let Σ be an LPV-SS representation of the

form (1). An LPV-SS representation Σ̄ of the form (3) is
called a N-partial realization of f = YΣ, for some N ∈ N, if

∀s ∈S (Inp
0 ),q,q0 ∈ Inp

0 , |s| ≤ N : η
Σ
q,q0

(s) = η
Σ̄
q,q0

(s). (11)
That is, Σ̄ is an N-partial realization of f =YΣ, if the sub-

Markov parameters of YΣ and YΣ̄ up to length N are equal.
In other words, Σ̄ is an N-partial realization of YΣ, if

CqBq0 = C̄qB̄q0 , ∀q,q0 ∈ Inp
0 ,

CqA j1 · · ·A jk Bq0 = C̄qĀ j1 · · · Ā jk B̄q0 , ,∀k ∈ IN
1 ,

∀q,q0, j1, . . . , jk ∈ Inp
0 .

The problem of model reduction by moment matching for
LPV-SS models can now be formulated as follows.

Problem 1: Let Σ be an LPV-SS representation and let
f = YΣ be its input-output map. Fix N ∈ N. Find another
LPV-SS realization Σ̄ such that dim(Σ̄) < dim(Σ) and Σ̄ is
an N-partial realization of f = YΣ.

In order to explain the intuition behind this definition, we
combine [14, Theorem 4] and [13] to derive the following.

Corollary 1: Assume that Σ is a minimal realization of
f = YΣ and N is such that 2dim(Σ)− 1 ≤ N. Then for any
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LPV-SS representation Σ̄ which is an N-partial realization of
f , Σ̄ is also a realization of f = YΣ and dim(Σ)≤ dim(Σ̄).

Remark 1: Corollary 1 implies that there is a tradeoff
between the choice of N and the order of Σ. Assume Σ is
a minimal realization of f = YΣ. If N is chosen to be too
high, namely if it is such that N ≥ 2nx−1, then it will not
be possible to find an LPV-SS representation which is an
N-partial realization of f and whose order is lower than nx.
In fact, if the model reduction procedure to be presented in
the next section is used with any input N ≥ 2nx− 1, then
the resulting LPV-SS representation Σ̄ will be a complete
realization of f = YΣ. However, the order of Σ̄ will be the
same as the order of Σ (provided that Σ is minimal). This
relation between N and nx gives an a priori idea of how well
the input-output map of Σ̄ approximates that of Σ. More
specifically, we can expect the output error YΣ−YΣ̄ to be
smaller when N is increased, as long as N < 2nx− 1. This
error will be zero for N ≥ 2nx−1, since in this case Σ̄ will
be a complete realization of YΣ.

IV. MODEL REDUCTION OF LPV-SS
REPRESENTATIONS

In this section, first, the theorems which form the basis of
the model reduction by moment matching will be presented.
Then, the algorithm itself will be stated. In the sequel, the
image (column space) and kernel (null space) of a real matrix
M is denoted by im(M) and ker(M) respectively. In addition,
rank(M) is the dimension of im(M). We will start with
presenting the following definitions for LPV-SS realizations
of the form (1).

Definition 2 (N-partial unobservability space): The
N-partial unobservability space ON(Σ) of Σ is defined
inductively as follows:

O0(Σ) =
⋂

q∈Inp
0

ker(Cq),

ON(Σ) = O0(Σ)∩
⋂

j∈Inp
0

ker(ON−1(Σ)A j), N ≥ 1.
(12)

From [12], [13], it follows that Σ is observable if and only
if ON(Σ) = {0} for all N ≥ nx−1.

Definition 3 (N-partial reachability space): The N-
partial reachability space RN(Σ) of Σ is defined inductively
as follows:

R0(Σ) = span
⋃

q0∈I
np
0

im(Bq0),

RN(Σ) = R0(Σ)+ ∑
j∈Inp

0

im(A jRN−1(Σ)), N ≥ 1,
(13)

where the summation operator must be interpreted as the
Minkowski sum.
Again, from [12], [13], it follows that Σ is span-reachable if
and only if dim(RN(Σ)) = nx for all N ≥ nx−1.

Theorem 1: Let Σ = (ny,nu,nx,{(Ai,Bi,Ci)}
np
i=0) be an

LPV-SS representation, let V ∈ Rnx×r be a full column rank
matrix such that

RN(Σ) = im(V ).

If Σ̄= (ny,nu,r,{(Āi, B̄i,C̄i)}
np
i=0) is an LPV-SS representation

such that for each i ∈ Inp
0 , the matrices Āi, B̄i,C̄i are defined

as
Āi =V−1AiV , B̄i =V−1Bi, C̄i =CiV,

where V−1 is a left inverse of V , then Σ̄ is an N-partial
realization of the input-output map f = YΣ of Σ.

This theorem follows from [3], [4] using [13]. See [2] for
a detailed proof.

Note that the number r is the number of columns in the
full column rank matrix V , hence r≤ nx. This fact leads Σ̄ to
be of reduced order if N is sufficiently small, see Corollary
1. Using a dual argument, we can prove the following.

Theorem 2: Let Σ = (ny,nu,nx,{(Ai,Bi,Ci)}
np
i=0) be an

LPV-SS representation, and let W ∈Rr×nx be a full row rank
matrix such that

ON(Σ) = ker(W ).

Let W−1 be any right inverse of W and let

Σ̄ = (ny,nu,r,{(Āi, B̄i,C̄i)}
np
i=0)

be an LPV-SS representation such that for each i ∈ Inp
0 , the

matrices Āi, B̄i,C̄i are defined as

Āi =WAiW−1, B̄i =WBi, C̄i =CiW−1.

Then Σ̄ is an N-partial realization of the input-output map
f = YΣ of Σ.
The proof is similar to that of Theorem 1.

Finally, by combining the proofs of Theorem 1 and
Theorem 2, we can show the following.

Theorem 3: Let Σ = (ny,nu,nx,{(Ai,Bi,Ci)}
np
i=0) be an

LPV-SS representation, and let V ∈ Rnx×r and W ∈ Rr×nx

be respectively full column rank and full row rank matrices
such that

RN(Σ) = im(V ), ON(Σ) = ker(W ) and rank(WV ) = r.

If Σ̄= (ny,nu,r,{(Āi, B̄i,C̄i)}
np
i=1) is an LPV-SS representation

such that for each i ∈ Inp
0 , Āi, B̄i,C̄i are defined as

Āi =WAiV (WV )−1, B̄i =WBi, C̄i =CiV (WV )−1

then Σ̄ is a 2N-partial realization of the input-output map
f = YΣ of Σ.

Now, we will present an efficient algorithm of model
reduction by moment matching, which computes either an
N or 2N-partial realization Σ̄ for an f which is realized by
an LPV-SS representation Σ. First, we present algorithms for
computing the subspaces RN(Σ) and ON(Σ). To this end,
we will use the following notation: if M is any real matrix,
then denote by orth(M) the matrix U such that U is full
column rank, im(U) = im(M) and UTU = I. Note that U can
easily be computed from M numerically, see for example the
Matlab command orth.

The methodology for computing V ∈ Rnx×r such that
im(V ) = RN(Σ) is presented in Algorithm 1 below.

By duality, we can use Algorithm 1 to compute a W ∈
Rr×nx such that ker(W ) = ON(Σ), see Algorithm 2.
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Algorithm 1 Calculate a matrix representation of RN(Σ),
Inputs: ({Ai,Bi}i∈Inp

0
) and N

Outputs: V ∈Rnx×r such that rank(V ) = r, im(V ) =RN(Σ).

V :=U0, U0 := orth
[
B0 · · · Bnp

]
.

for k = 1 . . .N do
V := orth(

[
V A0V A1V · · · AnpV

]
)

end for
return V .

Algorithm 2 Calculate a matrix representation of ON(Σ)
Inputs: {Ai,Ci}i∈Inp

0
and N

Output: W ∈ Rr×nx , such that rank(W ) = r, and ker(W ) =
ON(Σ).

Apply Algorithm 1 with inputs ({AT
i ,C

T
i }i∈Inp

0
) to obtain

a matrix V .
return W =V T.

Notice that the computational complexity of Algorithm 1
and Algorithm 2 is polynomial in N and nx, even though
the spaces of RN(Σ) (resp. ON(Σ)) are generated by im-
ages (resp. kernels) of exponentially many matrices. Using
Algorithms 1 and 2, we can formulate a model reduction
algorithm, see Algorithm 3.

Theorems 1 – 3 imply the correctness of Algorithm 3.
Remark 2 (Minimization of LPV-SS representations):

From [13], it follows that if N ≥ nx−1 then

RN(Σ) =
∞

∑
i=0

Ri(Σ) =

span{XΣ(u,p)(t) | (u,p) ∈U ×P, t ≥ 0},

ON(Σ) =
∞⋂

i=0

Oi(Σ) =

{x ∈ Rnx | YΣ,x(u,p)(t) = 0,∀(u,p) ∈U ×P,∀t ≥ 0}.
In other words, an LPV-SS representation Σ of the form (1)
is reachable if and only if the dimension of its N-partial
reachability space RN(Σ) is nx for all N ≥ nx − 1, and Σ

is observable if and only if the dimension of its N-partial
unobservability space ON(Σ) is 0 for all N ≥ nx − 1. In
addition from [13], it follows that Σ is a minimal realization
of its own input-output map YΣ if and only if Σ is reachable
and observable. Hence, using this fact and [12], [18], it
can be shown that Algorithm 3 can be used as an order
minimization algorithm. That is, Algorithm 3 can be used
consecutively with the inputs N ≥ nx − 1, Mode = R (in
this case, the resulting Σ̄ will be reachable and it will be a
realization of f =YΣ) and N ≥ nx−1, Mode=O (in this case,
the resulting Σ̄ will be observable and it will be a realization
of f =YΣ) for reachability and observability reduction for Σ,
respectively. In turn, the resulting representation Σ̄ will be a
minimal realization of f = YΣ.

V. NUMERICAL EXAMPLES

In this section, the method stated in the present paper is ap-
plied to Example 4 in [18] and the result is compared with the

Algorithm 3 Moment matching for LPV-SS representations
Inputs: Σ = (ny,nu,nx,{(Ai,Bi,Ci)}

np
i=0), Mode ∈ {R,O,T}

and N ∈ N.
Output: Σ̄ = (ny,nu,r,{(Āi, B̄i,C̄i)}

np
i=0).

Using Algorithm 1-2, compute matrices V and W such that
V is full column rank, W is full row rank and im(V ) =
RN(Σ), ker(W ) = ON(Σ).
if rank(V ) = rank(W ) = rank(WV ) and Mode= T then

Let r = rank(V ) and

Āi =WAiV (WV )−1, C̄i =CiV (WV )−1,
B̄i =WBi.

end if
if Mode= R then

Let r = rank(V ), V−1 be a left inverse of V and set

Āi =V−1AiV , C̄i =CiV , B̄i =V−1Bi.

end if
if Mode= O then

Let r = rank(W ) and let W−1 be a right inverse of W .
Set

Āi =WAiW−1, C̄i =CiW−1, B̄i =WBi.

end if
return Σ̄ = (ny,nu,r,{(Āi, B̄i,C̄i)}

np
i=0).

one given in [18]. For this, both procedures are implemented
in MATLAB. The codes and the data used for both examples
in this section are available from https://kom.aau.dk/~mertb/.

The algorithm is applied to get a 3rd order approximation
to the LPV-SS realization of order 4 in Example 4, [18].
The original LPV-SS representation used in this case is of the
form Σ=(ny,nu,nx,{(Ai,Bi,Ci)}

np
i=0) with ny = nu = 1, nx = 4

and np = 3. When N is chosen to be 1 and Mode= Reach,
the resulting reduced order model Σ̄ is a 1-partial realization
of YΣ of order 3. The scheduling signal used for simulation is
of the form p(t)=

[
p̂
√
−p̂ sin(p̂)

]T where the parameter
p̂ takes its values randomly at each time instant, in the
interval [−2π,0]. In addition, a white input u(t)∼N (0,1)
is used. The upper limit of the simulation time interval is
chosen to be N + 50 = 51. Since N = 1, the sub-Markov
parameters of length at most 1 are matched with the original
LPV-SS model Σ. The precise number of matched sub-
Markov parameters is thus (np+1)

(
(np+1)N+1−1

np

)
(np+1) =

80. The original model Σ and the the reduced order model Σ̄

are simulated for 500 different scheduling and input signal
sequences of the type explained above, and their outputs y(t)
and ȳ(t) are compared for t = 0,1, . . . ,K, where K is the
number of steps of the simulation. For each simulation, the
responses of Σ and Σ̄ are compared with the best fit rate
(BFR) (see [10], [18]) which is defined as

BFR = 100%max

1−

√
∑

K
t=0‖y(t)− ȳ(t)‖2

2√
∑

K
t=0‖y(t)− ym‖2

2

,0


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TABLE I
COMPARISON OF ALG. 3 AND THE ALG. IN [18]

The Proc. Mean BFR Best BFR Worst BFR Run Time
Alg. 3 76.5710% 86.5821% 64.9409% 0.0430 s

Alg. in [18] 75.4364% 85.4157% 58.5798% 0.0711 s
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y(t): Response of the original LPV-SS model
ȳ(t): Response of the reduced order LPV-SS model

Fig. 1. The responses of the original LPV-SS model Σ of order 4 and the
reduced order LPV-SS model Σ̄ of order 3 acquired by Algorithm 3. The
BFR for this simulation is = 76.5773%.

where ym is the mean of {y(t)}K
t=0.

For this example, the algorithms stated in this paper and
in [18] are implemented for comparison. The mean of the
BFRs, which is computed over 500 simulations, can be
seen on Table I. In addition the best and worst BFRs over
500 simulations and the run-times for one single reduction
algorithm are also shown in Table I. The outputs y(t) and
ȳ(t) of the simulation which give the closest value to the
mean of the BFRs are shown in Fig. 1. We used Algorithm
3 to perform model reduction using moment matching. From
Table I, it can be seen that both algorithms result in almost
the same fit rates, whereas the algorithm stated in the present
paper provides a 50% reduction in terms of computational
complexity.

Note that LPV-SS examples with much bigger order n
and scheduling space dimension np are available for freely
experimenting on https://kom.aau.dk/~mertb/. The present
example is chosen for comparison with the method in [18]
(the same example is used in [18]) and for its simplicity.
See also [2] for a detailed example where the method in
[18] breaks down due to memory limitations, whereas the
present method functions successfully.

VI. CONCLUSIONS

A model reduction method is presented for discrete time
LPV-SS representations with affine static dependence on the
scheduling variable. The method makes it possible to find a
reduced order approximation to the original LPV-SS model,
which has the same input-output behavior for scheduling
and input sequences of a pre-defined, limited length. The
presented method can also be used for reachability and ob-
servability reduction (i.e., minimization) for LPV-SS models.
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