
Data Driven Predictive Control Based on Orthonormal Basis Functions

A.A.Bachnas, S.Weiland, and R Tóth

Abstract— This paper presents a concept of an adaptive
model predictive control (MPC) scheme based on a flexible pre-
dictor model that utilizes orthonormal basis functions (OBFs).
This model structure offers a trade-off between adaptation
of the model accuracy in terms of the expansion coefficients
and the dynamical structure in terms of the basis functions.
We show that this adaptation can maintain desirable control
performance. Moreover, since OBF model structures can be
seen as a generalization of finite impulse response (FIR) model
structures, the incorporation of this scheme in FIR-based MPC
is rather straightforward.

I. INTRODUCTION

Model predictive control (MPC) is widely applied in the
process control field [1]. This control scheme allows safe
operation of the controlled plant subject to boundary and
operational conditions. However, due to wear in the process
and possible changes in the operational conditions, the de-
sired performance of the controller can only be sustained in
a limited time period after its commissioning. Such problems
are either solved by enforcing the MPC to be robust w.r.t. all
possible changes of operational conditions and disturbances,
or by equipping the MPC with adaptation capabilities. In
contrast with the research in robust MPC, a recent survey
[2] states that only few solutions (such as [3], [4], [5], [6])
have been proposed to tackle this problem from an adaptive
point of view. In fact, none of the aforementioned papers
try to exploit a specific model structure as the basis of the
adaptivity properties of MPC.

In this work, we propose a concept of data-driven MPC
which is based on a finite set of orthonormal basis functions
(OBFs). The first contribution to relate MPC and OBFs
can be found in [7]. This work uses the filtering properties
of the OBFs for designing a state observer and a fault
tolerant controller. The utilization of OBF model structure
to guarantee robustness properties of an MPC scheme has
already been attempted in the work of [8]. Unlike these
two works (and their continuations), we propose a direct
utilization of state-space (SS) realizations of an OBF model
structure for MIMO MPC. This model structure proves to
be attractive in terms of adaptivity properties for a control
scheme. Namely, it is accompanied with a well-defined
stochastic framework for conducting system identification, it
has a linear in the parameter property, and it is supported by
important results originating from Kolmogorov to efficiently
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Control System group of Electrical Engineering Department,
TU Eindhoven, 5612 AJ Eindhoven, The Netherlands,
emails:{a.a.bachnas,s.weiland,r.toth}@tue.nl

characterize variations of the system dynamics [9], [10]. We
utilize these properties to formulate an adaptive MPC scheme
which is tailored to capture changes in the plant dynamics in
the closed-loop setting. The goal is to maintain the control
performance after the MPC has been commissioned. The
adaptation itself is achieved by iterative re-identification of
the model coefficients. In a more general adaptation setting,
the OBF model structure also offers to update its dynamical
structure in terms of the basis function.

The paper is organized as follows. The formulation of
linear time invariant (LTI) model structures with OBFs and
the corresponding system theoretical aspects are presented
in Section III. Afterwards, procedures for iterative model
coefficients estimation are described in Section IV. Section
V explains the integration of the model structure into the
predictive control scheme. The concept of data-driven MPC
is summarized in Section VI. Lastly, in Section VII, the
proposed concept is tested on a benchmark model of a binary
distillation column. Conclusions are drawn in Section VIII.

II. NOTATION

Two ways of denoting signal samples will be used. Let
p(k) denote the value of a vector valued signal p : Z→ Rnp

at time instant k. Introduce the symbol pkN ∈ RN×np for a
matrix of N past signal samples {p(i)}ki=k−N+1:

pkN =
[
p(k −N + 1) p(k −N + 2) . . . p(k)

]>
. (1)

The other symbol is p̆Nk ∈ RnpN which is the vector
collection of future predictions of the signal {p(k+ i|k)}Ni=0

from data obtained up to time instant k:

p̆Nk =
[
p>(k|k) p>(k+1|k) . . . p>(k+N |k)

]>
. (2)

III. THE LTI-OBF MODEL STRUCTURE

The LTI-OBF model structure is based on a specific series
expansion representation of an LTI system that is constructed
from a finite set of OBFs. The formulation of the model
structure in the state-space form is straightforward and the
underlying properties of the structure are attractive for model
adaptation.

A. Orthonormal basis of RH2

The OBFs used in the LTI-OBF model is defined as
{φi(z)}nb

i=1 ∈ RH2, which is a subset (truncation) of a
complete orthonormal basis {φi(z)}∞i=1 of RH2, the Hardy
space of complex valued functions that are rational with real
valued coefficients, strictly proper, analytic in the exterior of
the unit disc, and square integrable over the unit circle. The
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Hardy space is a separable Hilbert space with inner product
defined as:

〈F1(z), F2(z)〉RH2
=

1

2π

∫ π

−π
F1(eiw)F ∗2 (eiw)dw. (3)

B. Series expansion representations via OBFs

Given a complete orthonormal basis {φi(z)}∞i=1 ∈RH2,
the transfer function F (z) ∈ RHny×nu

2 (space of ny × nu

matrices with elements in RH2) of any strictly proper
asymptotically stable multi-input multi-output (MIMO) LTI
system can be written as:

F (z) =

∞∑
i=1

wiφi(z), (4)

where wi ∈ Rny×nu is a matrix of expansion coefficients
whose (m,n)-th entry is given by:

wm,ni = 〈φi(z), Fm,n(z)〉RH2
. (5)

Here, Fm,n(z) denotes the (m,n)-th entry of F (z). We are
interested in the truncations of (4) w.r.t. the first nb basis
functions:

FOBF(z) =

nb∑
i=1

wiφi(z). (6)

Any such truncation incurs an error Fnb
(z) := F (z) −

FOBF(z), where the error norm, that is induced by the inner
product, is defined by:

‖Fm,n(z)− F m,n
OBF (z)‖2RH2

=

∞∑
i=nb+1

(wm,ni )2. (7)

Clearly the error (7) depends on the choice of the OBFs
{φi(z)}nb

i=1. Note that, the series expansion representation
(4) is given in term of scalar basis, for MIMO basis see [9].

C. Construction and realizations of OBFs

The OBFs considered in this paper are the Takenaka-
Malmquist functions:

φi(z) =

√
1− |λi|2
z − λi

i−1∏
j=1

1− λ∗jz
z − λj

, (8)

where {λ1, . . . , λi} ∈ D are complex numbers inside the unit
disc. In addition, we define the Blaschke product:

Gb(z) =

nb∏
j=1

1− λ∗jz
z − λj

, (9)

where nb is the order of the all-pass filter Gb(z) and
{λi}nb

i=1 ⊂ D can be seen as the poles of the filter. Suppose
that Ab ∈ Rnb×nb , Bb ∈ Rnb×1, Cb ∈ R1×nb , Db = 0
realizes Gb(z) in the sense that it is jointly input-output
balanced. Then, it has been shown in [9] that (6) admits
a state-space realization of the form:

x(k + 1) =


Ab . . . 0
...

. . .
...

0
. . . Ab


︸ ︷︷ ︸

A∈Rng×ng

x(k) +


Bb . . . 0

...
. . .

...

0
. . . Bb


︸ ︷︷ ︸

B∈Rng×nu

u(k)

y(k) = θ>x(k) (10)
where ng = nb·nu, x(k) ∈ Rng is the state of the filter banks
{φi(z)}nb

i=1, u(k) ∈ Rnu and y(k) ∈ Rny are the inputs and

the outputs of the system represented by (6) respectively, and
the coefficient θ ∈ Rng×ny is 1-1 related to the expansion
coefficients {wi}nb

i=1, i.e. there exists a bijection between θ in
(10) and {wi}nb

i=1 in (6). In fact, by using the shift operators
q, one can show that the state in (10) is generated by:

x(k) = [φ1(q)u1(k) . . . φnb
(q)u1(k) . . .

φ1(q)unu(k) . . . φnb
(q)unu(k)]>. (11)

A more detailed description of the OBFs of the type (8) and
their properties can be found in Chapter 2 and 10 of [9].

D. Optimality of the selected OBFs

Suppose that a system with F (z) ∈ RH2 has been mod-
eled by (6) using the OBFs of (8). Introduce Φnb

⊂ RH2

as the subspace spanned by {φi(z)}nb
i=1 and Φnb

⊂ RH2 as
its orthogonal complement. According to [9], [11], the error
Fnb
∈ Φnb

has exponential rate of convergence (with rate
ρ ≥ 0) since

‖Fm,nnb+lnb
‖RH2

≈ ρl‖Fm,nnb
‖RH2

, ∀ l ∈ N. (12)

In order to improve the convergence rate of the approximate
model (6), we need to select {λi}nb

i=1 in (9) to minimize

ρ({λi}nb
i=1) := max

z∈Ω

nb∏
i=1

∣∣∣∣ z − λi1− λ∗i z

∣∣∣∣ , (13)

with Ω ⊂ D is the set of nominal poles of F (z). This
procedure is also known as the inverse kolmogorov n-width
(KnW) problem and the methods for optimal selection of the
all-pass filter poles can be found in [11], [12].

E. Adaptation of the LTI-OBF model

In the scope of this work, we are interested in adapting the
model FOBF(z) in case the underlying system F (z) ∈ RH2,
which is modeled during the commissioning stages, changes
into a different system F̃ (z) ∈ RH2. The adaptation goal is
to minimize the approximation error of the model w.r.t. the
new system ‖F̃m,nnb

‖RH2
for all m,n input-output channel.

This can be done by executing different levels of adaptation:

1) If ‖F̃m,nnb
‖RH2 ≤ ‖Fm,nnb

‖RH2 , then the adaptation is
governed by re-estimating new coefficient θ̃ of (10).

2) If ‖F̃m,nnb
‖RH2 ≥ ‖Fm,nnb

‖RH2 , but ‖F̃m,nnb+lnb
‖RH2 ≤

‖Fm,nnb+lnb
‖RH2 , then the adaptation is conducted by

including more OBFs via repeating the poles of Gb(z)
for l times in the expansion (6) and realization (10).

3) In case the number of repetition l in the second level
becomes relatively large, re-selection of the OBFs is
conducted by solving the inverse KnW problem men-
tioned in Section III-D to maintain low approximation
error as well as low model complexity.

This paper only covers the first level of adaptation. For the
second item, longer expansion of (6) can be deliberately used
to maintain arbitrarily low approximation error. By doing
this, it is possible to utilize the change of coefficient θ̃ as a
detection tool of growing approximation error by employing
hypothesis test such as mentioned in [13].

3027



IV. COEFFICIENT ESTIMATION OF LTI-OBF MODELS

Estimation of expansion coefficients of the OBF model
structure is often accomplished as a parameter estimation
problem in the prediction error minimization (PEM) setting
with a well-defined stochastic framework [14], [9]. Similar
to the FIR model structure in PEM, this is an attractive model
structure due to linearity in the model parameters resulting
in an analytic solution of the identification problem.

A. The PEM identification setting

It is assumed that a data-sequence of input and output
signals D(k)

N = {u(τ), y(τ)}kτ=k−N+1 generated by a system
F (z) ∈ RHny×nu

2 :

y(k) = F (q)u(k) + v(k) (14)

is available, where F (q) is the transfer operator form of
F (z), with q being the time shift operator, and v(k) is a zero
mean stationary noise sequence with rational spectra. In the
output error (OE) setting of (14), the estimate of coefficient
θ of (10) for a given set of basis {φi(z)}nb

i=1 is obtained by
minimizing the least-squares (LS) identification criterion:

θ̂ = arg min
θ

1

N

N∑
t=1

ε(k, θ)2

︸ ︷︷ ︸
VN (θ)

(15a)

ε(k, θ) := y(k)− ŷ(k |k − 1; θ) (15b)

of the one step-ahead prediction error ε(k, θ) of the model
output ŷ(k |k−1; θ) = θ̂x(k). Introduce θ∗ as the coefficient
of the SS representation of the truncated expansion of F (z)
in terms of (6). If the input sequence u is persistently exciting
w.r.t. the filter (10), then θ̂ → θ∗, with probability 1 as N →
∞. More on the properties of PEM based identification with
LTI-OBF models can be found in Chapter 4 and 5 of [9].

B. Iterative estimation of the model coefficients

To accommodate adaptivity, the coefficient θ must be
estimated at each time instant k, and will be further denoted
by θ̂k. Two methods which are based on the analytic solution
of (15), namely the weighted and recursive LS estimation,
are presented for this purpose. In order to capture possible
changes of the system dynamics, the identification will be
conducted iteratively in a closed loop setting. Unfortunately,
this implies that v(k) and u(k) are correlated. Without any
additional modification of (15), such as an instrumental-
variables (IV) scheme [15], this means that there will be
an estimation bias on the coefficient θ̂k. For the sake of
simplicity, the incorporation of such schemes in the iterative
identification will be covered in future work.

1) Weighted LS estimation: Using weighting approach,
the estimation problem is solved by:

θ̂LS
k = ((xkN )>WLSxkN )−1(WLSxkN )>ykN , (16)

where the tuning (hyper) parameter for this method is the
number of the considered past data N and the exponential
weighting WLS = diag

(
{ β

k

βN }Nk=1

)
with β ∈ R(0,∞). The

parameter N should be chosen to be larger than the settling

time of the slowest step response of the system dynamics. A
high value of N can reduce the estimation variance which is
caused by the noise, but result in slow adaptation speed of
the model. This situation can be remedied by the weighting
WLS that penalizes the effect of old data as proposed in [14].
A sensible value of β is in the range of (0, 20].

2) Recursive LS estimation : In this method, the esti-
mation of coefficient θ̂k is based on variables that can be
considered as the memory of the estimate [14]. The update
strategy requires computation of:

θ̂RLS
k = θ̂RLS

k−1 + L(k)ε>(k), (17a)

L(k)=
P (k − 1)x(k)

WRLS + x>(k)P (k − 1)x(k)
, (17b)

P (k)=
1

WRLS

(
P (k−1)−P (k−1)x(k)x>(k)P (k−1)

WRLS+x>(k)P (k−1)x(k)

)
.

(17c)

where L(k) ∈ Rng is the gain matrix, and P (k) ∈ Rng×ng

is the conditional covariance matrix of the estimation error.
The gain matrix L(k) governs the rate of change of the
estimated coefficient and can be seen as the gradient of the
parameter estimate. The hyper parameter of this estimation
method is the weight WRLS ∈ R(0,1) which also known as
the forgetting factor. The value of WRLS ≈ 1 is a reasonable
choice to allow continuous update on model coefficients. The
recursive algorithm requires initial values of P (k − 1) and
θ̂k−1. Typically, the initial values are obtained by starting the
recursion at a time instant k0 with

P (k0 − 1) =

[ k0−1∑
τ=0

x(τ)x>(τ)

]−1

, (18a)

θ̂RLS
k0−1 =P (k0 − 1)

k0−1∑
τ=0

x(τ)y(τ)>. (18b)

C. Calculation of the current state of the filters

Note that both the weighted and the recursive LS estima-
tion require the current state value x(k). From (11), it can be
seen that the state trajectory is determined by the inputs u(k)
that is passed through the filter banks {φi(q)}nb

i=1. Hence,
x(k) can be obtained by selecting a past time instant k0 � k
and then compute the current state x(k) recursively by:

x(k) = Ak−k0x(k0) +

k−k0−1∑
l=0

AlBu(k0 + l). (19)

Since the filter is stable, the effect of the initial state x(k0)
gradually dies out. Hence, considering x(k0) = 0 will not
result in a cumulative error in the value of x(k). The next
state x(k + 1) = Ax(k) + Bu(k) can be computed directly
from the current input u(k). As an additional note, the state
x(k) can also be estimated w.r.t. the input-output data. An
extended Kalman filter can be designed to jointly estimate the
current state x(k) together with the variation of coefficient
θk. This method is not explored for this work since the design
(stability) of the filter is not trivial and it is computationally
heavier compared to a direct calculation of (19).
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V. OBF BASED MPC FORMULATION

This section describes the integration of the OBF model
structure into an MPC scheme. The predictor form of the
OBF model is formulated first and then the MPC formulation
is developed.
A. Predictor form of the OBF model

The SS representation (10) of the OBF model structure
allows a similar formulation as in [16]. The predicted out-
puts of the system (up to the prediction horizon Hp) are
constructed based on a linear combination of the future state
trajectory of the filter that is described by input increments
∆u(k) = u(k)− u(k − 1):

x̆
Hp

k =


A
...

AHu

...
AHp


︸ ︷︷ ︸

Ψ∈RHpng×ng

x(k) +



B
...∑Hu−1

l=0 AlB
...∑Hp−1

l=0 AlB


︸ ︷︷ ︸

Υ∈RHpng×nu

u(k − 1)+



B . . . 0
...

. . .
...∑Hu−1

l=0 AlB . . . B
...

...
...∑Hp−1

l=0 AlB . . .
∑Hp−Hu

l=0 AlB


︸ ︷︷ ︸

Θ∈RHpng×Hunu

∆ŭHu−1
k−1 . (20)

where Hu ≤ Hp is the control horizon, x̆
Hp

k is the vectorized
form of the predicted state trajectory, and ∆ŭHu−1

k−1 is the
vectorized form of future input increment sequence. The
formulation of the state as a function of ∆u(k) is chosen
to generate integral action in the controller. The Hp step-
ahead predicted output y(k + i|k) can be formulated as:

y̆
Hp

k =


θ̂>k . . . 0
...

. . .
...

0
. . . θ̂>k


︸ ︷︷ ︸
Ξ(k)∈RHpny×Hpng

x̆
Hp

k . (21)

where θ̂k is the coefficient that is obtained from either one of
the two aforementioned estimation approaches (16) or (17).
It can be seen that the predicted outputs:

y̆
Hp

k = Ξ(k)Ψx(k)+Ξ(k)Υu(k−1)+Ξ(k)Θ∆ŭHu−1
k−1 (22)

are constructed based on past data (governed by Ξ(k)),
present data (shown by the current state x(k) and input u(k−
1)), and the future input increment sequence (∆ŭHu−1

k−1 ).

B. Cost function and optimization problem
The formulation of the MPC scheme is based on the

standard quadratic cost function that penalizes deviation of
the output w.r.t. a known reference (̆r

Hp

k ) and the rate of
change of the input ∆ŭHu−1

k−1 :

V (k) = [y̆
Hp

k − r̆
Hp

k ]>Q[y̆
Hp

k − r̆
Hp

k ]+

[∆ŭHu−1
k−1 ]>R[∆ŭHu−1

k−1 ].
(23)

The weighting matrices Q and R are symmetric, positive
semi-definite matrices that define the control specification.
The matrix Q is used to put emphasis on a particular
output according to its importance or sensitivity. The tuning
matrix R is utilized to mitigate the aggressiveness of the
control action. The minimization problem of V (k) w.r.t. the
future input increment sequence ∆ŭHu−1

k−1 is solved while
obeying operational constraints. With prescribed range of
future output, input, as well as the input increment, this task
amounts to solving the optimization problem of:

min
∆̆u

Hu−1
k−1

V (k)

s.t. ymin ≤ y̆
Hp

k ≤ ymax,

umin ≤ ŭHu−1
k−1 ≤ umax,

∆umin ≤ ∆ŭHu−1
k−1 ≤ ∆umax.

(24)

Since the cost function of (23) and the operational constraint
can be written as a quadratic and a linear function of the input
increment ∆ŭHu−1

k−1 respectively, the optimization problem
(24) is a quadratic programming (QP) problem, and can be
solved efficiently using a wide range of available QP solvers.
Stability of the proposed control scheme can be ensured by
the inclusion of a terminal cost and terminal set into the
control problem (24) such as described in [17]. The stability
is implied if there exists a robust LTI terminal controller for
all possible values of θ̂k.

VI. ALGORITHM

The underlying concept of the proposed control scheme in
terms of model adaptation and MPC formulation have been
given in the previous sections. This section summarizes those
procedures into Algorithm 1. After the design step, the ini-
tialization is required before the main control-identification
loop can be activated. On top of this Algorithm, strategies
mentioned in the Section III-E can be employed to detect
growing approximation error and initialization to re-select
the basis functions.

VII. SIMULATION STUDY

The proposed control scheme is tested on a binary distil-
lation column benchmark model that is based on a liquid-
vapor flow configuration. The model is detailed in [18]. A
linearization of the model is established for the operating
condition of 0.5 and 0.95 (mole fraction) of the bottom
and top composition levels respectively, with corresponding
liquid and vapor flows of 521 kmol/min (kilo-mole per
minute) and 664 kmol/min. The sampling time of the system
is chosen to be 5 minutes while the settling time of the
system is 170 minutes (34 time steps). The MIMO LTI model
in deviation variables is given as follows:

G(z) =

[
0.001357z−0.0009633
z2−1.528z+0.5679

−0.0009023z+0.000597
z2−1.528z+0.5679

0.001174z−0.0009952
z2−1.528z+0.5679

−0.0003762z+0.0002929
z2−1.528z+0.5679

]
.

This represents a 2x2 LTI system with liquid and vapor flow
as the inputs (manipulated variables) and bottom and top
composition as the output (controlled variables) respectively.
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Algorithm 1 MPC-OBF scheme

Require:
• Selected basis poles {λi}nb

i=1 and their associated
realization (A,B) according to (10).

• Hyper parameters for LS estimation (N ,WLS) or
RLS estimation (WRLS).

• Control parameters Hp, Hu, Q and R.

1: Given measurement data D(k)
N ,

• Compute state trajectory {x(τ)}kk0 via (19).
• LS approach: Generate matrix xkN according to (1).
• RLS approach: Generate the initial values of P (t0)

and θ̂t0 (or set them to 0 with proper dimensions)
and propagate up to P (k − 1) and θ̂k−1 based on
(18).

2: Calculate state x(k) based on x(k − 1) and u(k).
3: Do coefficient estimation:

• LS approach: Calculate coefficient θ̂k based on (16).
• RLS approach: Calculate the gain matrix L(k) and

the current coefficient θ̂k based on (17) then update
matrix P (k).

4: Solve the QP optimization problem of (24) to obtain
∆u(k).

5: Apply input u(k).
6: Wait New measurement of output y(k + 1).
7: Set k ← k + 1.
8: Go to 2.

TABLE I: Open-loop validation result for both approaches.

Bottom product Top product
composition (y1) composition (y2)

BFR BFR
LS-approach 94.88 % 87.18 %

RLS-approach 89.81 % 84.26 %

The generated measurements from this system are corrupted
by a discrete-time output additive white noise with signal to
noise ratio (SNR) of 15 dB. The MPC-OBF scheme will be
designed and commissioned on this system with nb = 4 basis
functions that are generated from the poles of the system i.e.
‖Fm,nnb

(z)‖RH2
= 0. After the commissioning of the MPC,

the plant-model mismatch will be induced as an effect of a
rotation matrix:

Gnew(z) =

[
cos(α(k)) − sin(α(k))
sin(α(k)) cos(α(k))

]
G(z), (25)

where −π/5 < α(k) < 0 is the rotation coefficient at time
instant k. Different rates of change of α(k) such as abrupt
and slow changes are considered in the experiment. The goal
of this study is to test the ability of the MPC-OBF scheme
to track the change of the system while maintaining low
deviation from the given reference point. Since the rotation
matrix only induces changes on the output side, adaptation
in term of model coefficient θ̂k is sufficient in this example.

A. Initial observation and open-loop validation

An off-line experiment (study) has been conducted which
corresponds to the commissioning stage of the MPC where
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Fig. 1: Validation performance of the selected hyper param-
eters in the open-loop setting. LS approach (solid grey line),
RLS approach (dashed black line).

the hyper parameters of the estimation and the control
parameters are selected. In this experiment, the system
is excited with Gaussian white noise input with standard
deviation of 10 kmol/min. The length of the simulation
study is 23000 minutes (383 hours). It is important to note
that this experimental length is not the required time to
obtain the model. Instead, the length is chosen such that the
estimation capabilities of the model can be assessed with
respect to various rotation scenarios. The Hp-step ahead
prediction for each time instant k will be calculated to
display prediction capabilities of the obtained model. The
result of this experiment can be seen in Fig. 1 and Table
I in terms of average best fit ratio (BFR). These results
correspond to the selected hyper parameters of N = 239,
WLS = diag

(
{ 4.5k

4.5N }Nk=1

)
, and WRLS = 0.97 which are

obtained via the gridding of the parameter space. For the
controller, we select the values of Hu = Hp = 34 which
are based on the slowest subprocess of the system. Fig. 1
shows that the introduced rotation has a shrinking effect on
the top output channel, thus making the SNR of the top
output channel lower than the bottom one. Hence, the value
of Q = diag(6, 7) and R = diag(0.01, 0.01) are chosen to
put slightly more emphasis on the top output channel.

B. Closed-loop experiment

With the parameters available from Section VII-A, the
MPC-OBF is commissioned on the system. The control task
is to follow a set point of r1 = 0.02 and r2 = 0.98 for each
of the output channels under the effect of rotation factor
that is depicted in Fig. 1. Four different cases are considered
for the closed-loop experiment. The first case is the Oracle-
MPC where the predictive model is equal to the true system
dynamics. The result of the Oracle-MPC will also serve as
a benchmark on the best achievable result on the selected
control parameter. The second case considers a fix model for
the whole experiment (Fixed-MPC). The third and the fourth
cases are the MPC-OBF with either LS or RLS adaptation.
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TABLE II: Closed-loop performance of the investigated MPC
approaches with respect to the given reference

Bottom product Top product
composition (y1) composition (y2)
MSE BFR MSE BFR

Fixed-MPC 7.64 · 10−5 70.75 % 3.67 · 10−5 79.76 %
Oracle MPC 1.05 · 10−6 95.87 % 2.75 · 10−6 94.38 %

MPC-OBF LS 1.37 · 10−5 87.45 % 7.33 · 10−6 90.92 %
MPC-OBF RLS 1.17 · 10−5 88.34 % 5.96 · 10−6 91.79 %

The result of the closed-loop experiment, with their BFR
and mean-squared error (MSE), can be seen in Fig. 2 and
in Table II.

From these results, it can be seen that the Fixed-MPC
cannot give proper reaction to the change of the system since
the current condition of the system is unknown to the model.
On the other hand, the MPC-OBF which is based on an

adaptive model can still follow the reference in both abrupt
or slow rotation scenarios. From Table II, it can be seen
that the recursive approach slightly outperforms the least-
squares approach. This result is the opposite of the open-
loop simulation result (Table I) where the adaptations of
the system dynamics were performed better by the least-
squares approach. The explanation of this behavior is the
informativeness of the data set. In the open-loop setting (Fig.
1), the excitation signals in the form of white noise input
contain rich information and hence the analytic computation
based on a long data set will produce better results. In
contrary in the closed-loop setting, the input excitation is
limited which results in limited information in the data set.

VIII. CONCLUSION AND FUTURE WORK

The concept of a data-driven adaptive predictive control
scheme based on an OBF model structure has been presented.
The structure of the model can be exploited to offer adapta-
tion abilities w.r.t. changes in the controlled system dynam-
ics. The simulation study shows promising results where the
iterative model adaptations are able to mitigate the plant-
model mismatch and hence improve control performance. In
future works, a thorough explanation and inclusion of several
items such as closed loop recursive identification via an IV
scheme, persistency excitation of the control action, a proof
of stability, and a hypothesis test for the necessity of re-
optimizing OBFs will be explored to complete the whole
proposed MPC scheme.
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