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Abstract— In this paper, a discrete-time model predictive
control (MPC) design approach is proposed to control systems
described by linear parameter-varying (LPV) models in input-
output form subject to constraints. To ensure stability of the
closed-loop system, a quadratic terminal cost along with an
ellipsoidal terminal constraint are included in the control opti-
mization problem. The proposed scheme is a robust LPV-MPC
scheme, which considers future values of the scheduling variable
being uncertain and varying inside a prescribed polytope. The
MPC design problem is formulated as a linear matrix inequality
(LMI) problem. The effectiveness of the proposed LPV-MPC
design is demonstrated using a numerical example.

I. INTRODUCTION

Identifying linear parameter-varying (LPV) models in

input-output (IO) form from data [1] has become well devel-

oped with several successful applications, e.g., [2]. However,

most of the LPV controller synthesis techniques have been

developed based on state-space (SS) models. Obtaining

reliable SS realization of IO models is usually hindered

by the so-called dynamic-dependency problem connected to

LPV realization theory [1], which introduces a significant

complexity increase of the realized models that grows beyond

the applicable range of computational tools. Therefore, it is

desired to synthesize controllers using IO models directly.

Model predictive control (MPC) has been developed to

solve control problems that have constraints and time delay.

In the SS setting, the MPC problem has received considerable

research interest, see e.g., [3], also with various techniques

developed in the LPV setting. The control law in most of

theses techniques, e.g., [4], is calculated by repeatedly solv-

ing a convex optimization problem based on linear matrix

inequities (LMIs) to minimize an upper bound on a worst-

case function involving stability constraints. A common

property of these approaches that they are based on an LPV-

SS representation of the system and they depend on the avail-

ability of the corresponding states during implementation.

The use of observers to access the state information may

deteriorate significantly closed-loop performance in terms

of input disturbance rejection when plant input constraints

become activated, as in that case, the nonlinearities start to
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dominate the behavior of the closed-loop system, see [5]. To

cope with these issues, a subspace-based predictive control

for LPV systems has been proposed in [6]. The critical

issue in this approach is that no stability guarantee has been

provided. Moreover, the complexity exponentially increases

with the order and number of scheduling variables (p) of the

system.

To cope with these issues, we develop in this work an MPC

approach to control LPV-IO models subject to constraints.

For the sake of simplicity, we focus here on the SISO case.

To ensure stability of the proposed MPC technique, we

utilize the stability framework of [3] along with a sufficient

condition developed recently in [7] for stability of LPV-IO

models. The proposed MPC design approach is formulated as

an optimization problem subject to LMI constraints, where a

robust MPC problem is solved at every sampling instant for

the LPV-IO model such that future values of p over the pre-

diction horizon are considered uncertain but confined inside

a prescribed polytope. The bounds on the rate of change of p

are exploited to reduce the conservatism of the design. The

significance of the proposed control approach lies in the fact

that it enables MPC control design directly based on LPV-

IO representations. In addition, it offers reference tracking

by integral action, has asymptotic stability guarantee, and

does not require a state observer.

The paper is organized as follows: After some prelim-

inaries in Section II, the proposed LPV-MPC scheme is

developed in Section III. The extension to robust LPV-MPC

is presented in Section IV. An illustrative example is given in

Section V. Finally, the conclusions are drawn in Section VI.

II. PRELIMINARIES

Notations: For a sequence z(k) : Z → R, let z[k+i,k+j] ∈
R

|i−j|+1 gather the values of z ordered from the sampling

instant k + i to k + j, i, j ∈ Z. For a matrix Z ∈ R
n×m,

let Zi,j ∈ R
(j−i+1)×m gather the rows of Z ordered from

row i to j. An upper linear fractional transformation (LFT)

is denoted by ∆⋆

[
L11L12

L21L22

]

= L22+L21∆(I−L11∆)−1L12.

An input-output representation of a SISO LPV system in

discrete-time can be given by the difference equation

G :

(

1+

na∑

i=1

ai(pk)q
−i

)

y(k)=

nb∑

j=0

bj(pk)q
−ju(k), (1)

or A(q−1, pk)y(k) = B(q−1, pk)u(k), where q−1 is the

backward time-shift operator, na, nb ≥ 0, u(k) : Z → R

and y(k) : Z → R are the control input and the measured

output, respectively. Furthermore, the coefficients ai and bj
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Fig. 1: Closed-loop interconnection: reference tracking.

are analytic and bounded functions of the scheduling variable

pk = p(k) ∈ P, which is online measurable. For simplicity,

we consider b0(pk) ≡ 0. Assume that P is given by a

convex set P := Co({pv1 , . . . , pvnv
}), where each pvi ∈ R

np

corresponds to a vertex of a polytope and Co denotes

the convex hull. Moreover, let the rate of variation of the

scheduling variable dp(k) = p(k)−p(k−1) be bounded such

that dp(k) ∈ Pd := {dp ∈ R
np | dpmin ≤ dp ≤ dpmax}.

Consider the reference tracking problem depicted in Fig. 1

and assume that there exists a robust, linear time-invariant

(LTI) controller K which can stabilize the depicted closed-

loop system for all p ∈ P. K together with the integral action

can be written in an IO form

KI :

(

1+

nKa∑

i=1

aKiq
−i

)

(
1−q−1

)
u(k)=

nKb∑

j=0

bKiq
−je(k), (2)

or AKI(q
−1)u(k)=BK(q

−1)e(k), where e(k) = r(k)−y(k);
let AKI(q

−1)=1+
∑nKa+1

i=1 aKIiq
−i and bK0=0. The closed-

loop behavior of the system shown in Fig. 1 can be described

implicitly in a so-called LPV kernel representation, see [7]:
[
Ā(pk) −B̄(pk) 0
B̄K ĀKI −B̄K

]

ζ(k) = D(pk)ζ(k) = 0, (3)

where Ā = [1 a1 . . . andy
], B̄ = [0 b1 . . . bndu

] are

matrix valued functions, ĀKI = [1 aKI1 . . . aKIndu
],

B̄K = [0 bK1 . . . bKndy
] with ndy = max(na, nKb),

ndu = max(nb, nKa + 1) and ζ(k) =
[y⊤[k,k−ndy]

u⊤
[k,k−ndu]

r⊤[k,k−ndy ]
]⊤ with dimension

nζ =2ndy+ndu+3. Based on a choice of a latent variable

x(k) = Π1ζ(k) with dimension nx = 2ndy + ndu for the

closed-loop system (3), where Π1 = diag(Π1y,Π1u,Π1y),
Π1y =

[
0 Indy

]
, Π1u =

[
0 Indu

]
, it holds that

x(k + 1) = Π2ζ(k), with Π2 = diag(Π2y,Π2u,Π2y),
Π2y =

[
Indy

0
]
, Π2u =

[
Indu

0
]
, Πiy ∈ R

ndy×(ndy+1)

and Πiu ∈ R
ndu×(ndu+1), i = 1, 2. Then, a sufficient

condition for asymptotic stability in the Lyapunov sense

and L2-performance of the closed-loop system in Fig. 1 can

be derived as shown in [7]. Consequently, the controller K
in Fig. 1 can be designed.

III. LPV-MPC SCHEME

Next, the proposed MPC technique is described under the

temporary assumption that the future trajectory of p over

the prediction horizon is available. This assumption will be

relaxed later based upon a robust characterization of the

future variations.

First a prediction equation, used for the MPC formula-

tion, is required to express prediction of the future output

sequence based on the past measurements generated by

(1). The LPV system represented by (1) has an infinite

impulse response (IIR) representation in the form y(k) =

∑∞
i=0 hi(p[k,k−i])u(k − i), where hi(·) are the Markov

coefficients of the LPV system. Let us introduce the short

form hand hi(k) = hi(p[k,k−i]). Using (1), the Markov

coefficients can be computed recursively as

hi(k)=







bi(pk)−
min(i,na)∑

j=1

aj(pk)hi−j(k − j), i ≤ nb

−
min(i,na)∑

j=1

aj(pk)hi−j(k − j) else.

In case of no additional disturbances, given p[k,k+N ] and

u[k,k+N−1], the future output sequence of the system can

be computed by y(k + j) = θ⊤(k + j)φ(k) +
∑j

i=0 hi(k +
j)u(k + j − i), j ∈ IIN1 , where N is the prediction horizon,

φ(k) ∈ R
na+nb is the regressor vector given as φ(k) =

[y(k − 1) . . . y(k − na) u(k − 1) . . . u(k − nb)]
⊤ and

θ(k + j) ∈ R
na+nb is computed recursively via

θ(k+ j)=
−→
Ij θ̄(k+ j)−

min(j,na)∑

i=1

ai(p(k+ j))θ(k + j − i), (4)

j ∈ IIN1 , with θ̄(τ) =
[
− a1(pτ ) . . . − ana(pτ )b1(pτ ) . . .

bnb
(pτ )

]⊤
, τ = k + j and

−→
Ij = diag(

−→
Ijna

,
−→
Ijnb

), where−→
Ijna

∈ R
na ,

−→
Ijnb

∈ R
nb are obtained by shifting identity

matrices of the corresponding dimensions with j column to

the right. In order to provide a controller with integral action,

an incremental IO model can be defined by introducing a new

input signal as v(k) = u(k)− u(k− 1). Therefore, the LPV

model can be rewritten as

GI : A(q−1, pk)y(k) = B(q−1, pk)(v(k) + u(k − 1)). (5)

Now, given the current value and the future trajectory of

the scheduling variable and the input of the system, the future

output of GI in (5) can be computed as follows:

y(k+j)= θ̃⊤(k+j)φ(k) +

j
∑

i=0

i∑

l=0

hl(k+j)v(k+j−i), (6)

j ∈ IIN1 , where the vector θ̃(k+j) ∈ R
na+nb is computed as

in (4) except its (na+1)th element that is given by θ̃na+1(k+
j) = θna+1(k + j) +

∑j
i=0 hi(k + j). Note that this is the

coefficient of u(k − 1) in (6). Therefore, the key prediction

equation for GI with h0(k) ≡ 0 is given by

y[k,k+N ] = H(k)v[k,k+N−1] +Θ(k)φ(k), (7)

where y[k+1,k+N ] ∈ R
N is a vector of future values of the

output, H(k) ∈ R
N×N is a lower triangular Toeplitz matrix

with the Markov coefficients of the system:

H(k)=








h1(k+1) . . . 0
...

. . .
...

N∑

1
hi(k+N) . . . h1(k+N)







,Θ(k)=








θ̃1(k+1)

θ̃2(k+2)
...

θ̃N(k+N)








(8)

Θ(k) ∈ R
N×(na+nb); H and Θ are functions of p[k,k+N ].

Next, the proposed LPV-MPC scheme with stability guar-

antees is formulated. Define the cost function
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VN =

Ne∑

i=0

µie
2(k+i−ndy)

︸ ︷︷ ︸

ℓe

+

Nv∑

j=1

ρjv
2(k+j−ndu)

︸ ︷︷ ︸

ℓv

+Vf , (9)

where VN = VN (x0, e0, v[k,k+N−1], r[k+1,k+N ], p[k,k+N ])
with x0 ∈ R

nx is the state vector at instant k

and e0 = e(k) = r(k) − y(k) is the error signal

as shown in Fig. 1, Vf = Vf(x(k + N + 1))
defines a terminal cost with x(k + N + 1) =
[
y⊤[k+N,k+N+1−ndy]

u⊤
[k+N,k+N+1−ndu]

r⊤[k+N,k+N+1−ndy]

]⊤

(to simplify the notation, we drop the arguments) and

Ne = N + ndy − 1, Nv = N + ndu − 1, Nv ≤ Ne. The

terminal cost penalizes the states of the closed-loop system

at the end of the prediction horizon, whereas the stage cost

given by ℓ(e, v) = ℓe + ℓv specifies the desired control

performance via arbitrary values for N,µi > 0 and ρj > 0,

see (9). The proposed MPC control problem is given by

min
v[k,k+N−1]

VN , (10a)

subject to u(k + i) ∈ U, ∀i ∈ IIN−1
0 , (10b)

x(k +N + 1) ∈ Xf , (10c)

with the LPV system dynamics represented by (5), where U

is a compact input set constraint defined as

U := {u(k) ∈ R | umin ≤ u(k) ≤ umax} (11)

and Xf ∈ R
nx specifies a terminal set constraint to enforce

the states at the end of the prediction horizon to lie in Xf .

Note that the constraints (10b-c) are implicit constraints on

v[k,k+N−1]. The MPC control law is obtained by solving (10)

at each sampling time instant and applying it to the system

in a receding horizon manner.

Let the reference trajectory r be a piecewise constant

signal with target steady-state values defined by the following

set Rs := {rs ∈ R | rmin ≤ rs ≤ rmax}, where rmin, rmax

are, respectively, the minimum and maximum admissible

values of the reference trajectory. For a target steady-state

value rs ∈ Rs so that y = rs, let us ∈ U be the

corresponding steady-state input, which can be computed

at a frozen scheduling variable ps ∈ P by solving the

linear equation (1 +
∑na

i=1 ai(ps))rs = (
∑nb

i=1 bi(ps))us.

Therefore, the associated target steady-state of the system

becomes xs =
[
rs . . . rs us . . . us rs . . . rs

]⊤
.

Then, let Us := {us ∈ U | (1 +
∑na

i=1 ai(ps))rs =
(
∑nb

i=1 bi(ps))us, ∀(rs, ps) ∈ Rs × P} define the set of all

steady-state inputs us corresponding to all rs ∈ Rs, for all

ps ∈ P. Moreover, let the set of all target steady states

xs associated with all rs ∈ Rs be given as Xs := {xs ∈
R

nx | xs = [rs . . . rs us . . . us rs . . . rs]
⊤, ∀(rs, us) ∈

Rs × Us}. Now, consider the following assumptions:

A.1 There is no model error and no disturbances and the

future trajectories of both r and p are known.

A.2 The reference trajectory r is a piecewise constant signal,

then, for any target output y(k+N) = rs, rs ∈ Rs, all

steady-states of the system, i.e., x(k+N+1) = xs (also

corresponding to u(k+N − 1) = us) should belong to

the terminal set Xf , namely, Xs ⊂ Xf .

A.3 The function Vf(x(k)) is continuous, positive definite

for all x(k) and Vf(0) = 0.

A.4 The set Xf is closed.

In general, the closed-loop system can be asymptotically

stabilized by the MPC control law κN (·) if there exists a

terminal feedback controller κf(x(k)) such that the following

conditions are satisfied [3]:

C.1 Vf(·) is a Lyapunov function on the terminal set Xf

under the controller κf(·) such that

Vf(x(k+1))−Vf(x(k)) ≤ −ℓ(x(k), κf(x(k))) < 0, (12)

∀x(k) ∈ Xf , ∀pk ∈ P, ∀k > N .

C.2 The set Xf is positively invariant under the controller

κf(·), i.e., if x(k) ∈ Xf , then x(k + 1) ∈ Xf , ∀p ∈ P.

C.3 κf(·) ∈ U, ∀x ∈ Xf (input constraint is satisfied in Xf ).

Under these conditions, the optimal cost function V ∗
N is a

Lyapunov function for the closed-loop system and its domain

of attraction is the set of initial states x0, initial errors e0
and future reference and scheduling trajectories, r[k+1,k+N ],

p[k+1,k+N ], respectively, where the optimization problem is

feasible; let such domain of attraction be denoted by XN . The

invariance condition imposed on the terminal region makes

the optimization problem feasible if the initial values are in

the domain of attraction, c.f., [3] for more details.

Next, we show how Vf(·) and Xf can be chosen to satisfy

the above conditions. In terms of (12) the function Vf(·) can

be chosen to be an upper bound on the value function of

the unconstrained infinite horizon cost of the system states

starting from Xf and controlled by the terminal controller

κf(·) [3]. Thus, we choose

Vf(x(k+N+1)) ≥
∞∑

i=N+1

(
µ̃e2(k+ i−1)+ ρ̃v2(k+ i−1)

)
,

(13)

for all x ∈ Xf , ∀p ∈ P where µ̃ > 0 and ρ̃ > 0 are constants.

To verify (13), we need to satisfy

Vf(x(k + i+ 1))− Vf(x(k + i))

≤ −
(
µ̃e2(k + i− 1) + ρ̃v2(k + i − 1)

)
< 0, (14)

for all e(k + i− 1) 6= 0, v(k + i− 1) 6= 0, i ≥ N + 1 and

∀p ∈ P. Then, summing (14) from i = N + 1 to ∞ gives

Vf(x(∞)) − Vf(x(k +N + 1))

≤ −
∞∑

i=N+1

(
µ̃e2(k + i− 1) + ρ̃v2(k + i− 1)

)
. (15)

If (14) is satisfied, then with Assumption A.3, we have

Vf(x(k+N+1)) ≥ Vf(x(∞)), hence, (13) holds. Therefore,

Condition C.1 can be verified, if there exists a function

Vf(·) that satisfies Assumption A.3 along with (14). Note

that such a Vf(·) can serve as a Lyapunov function for the

closed-loop system shown in Fig. 1. On the other hand, this

also implies the existence of a control law κf(·) that can

drive a state in Xf into a steady-state point xs ∈ Xf , i.e.,

limk→∞ ‖x(k) − xs‖ = 0. Therefore, we need to derive

a controller such that (14) holds for all i ≥ N + 1, and
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consequently, it guarantees that x(k) converges to xs. In

other words, we employ (14) to design the controller κf(·),
the existence of which implies that Vf(·) is a Lyapunov

function for the closed-loop system. This suggests that Vf(·)
could be a quadratic function as

Vf(x(k)) = x⊤(k)Pfx(k), Pf = P⊤
f ≻ 0, (16)

Pf ∈ R
nx×nx . Then, based on (14), (16) and the applica-

tion of the S-procedure and Finsler’s Lemma, we have the

following sufficient condition.

Theorem 1: The closed-loop system described by (3),

is asymptotically internally stable and satisfies the L2-

performance constraint ζ⊤(k + i)Qζ(k + i) ≥ 0, where

Q = diag(Q1, Q2), Q1 = diag(−1, 0, · · · ), Q2 =
diag(γ2, 0, · · · ), γ > 0, if there exist a controller κf(·),
F ∈ R

nξ×2 and

S =

[
S1 0 −S1

0 S2 0
−S1 0 S1

]

, S1 =
[
µ̃ 0
0 0

]

, S2 =

[
ρ̃ −ρ̃ 0
−ρ̃ ρ̃ 0
0 0 0

]

,

µ̃ > 0, ρ̃ > 0, where S1 ∈ R
ndy×ndy and S2 ∈ R

ndu×ndu

such that
Pf = P⊤

f ≻0, (17a)

Π⊤
2PfΠ2−Π⊤

1(Pf+S)Π1+Q+FD(p)+D⊤(p)F⊤≺0 (17b)

hold for all p ∈ P.

The proof is omitted due to lack of space. Therefore,

existence of the controller κf(·) satisfying (17a-b) for all

p ∈ P guarantees that Vf(x(k)) is a Lyapunov function sat-

isfying (14), which implies Condition C.1. The inequalities

(17a-b) can be solved as a feasibility optimization problem

with bilinear matrix inequality (BMI) constraints using the

approach in [7].

To guarantee asymptotic internal stability of the proposed

MPC controller, we further need to verify Conditions C.2

and C.3. For C.2, it is required to specify Xf to be a positive

invariant set with the controller κf(·) [3]. One way to achieve

this is to choose Xf as a sub-level set of Vf(·) [3], as follows:

Xf := {x(k) ∈ R
nx | x⊤(k)Pfx(k) ≤ α}, α > 0. (18)

By this choice, Xf is an ellipsoidal terminal set constraint,

which can be enlarged by α. It is positive invariant for the

closed-loop system with the controller κf(·) if KfXf ⊂ U.

This provides that condition C.3 holds. Usually, the constant

α is chosen as the largest value such that Kfx ∈ U, ∀x ∈ Xf .

In the proposed MPC scheme, we follow the same strategy

and we further restrict Xf to be an ellipsoidal terminal set Xf .

The above described conditions can be attained by solving

the convex optimization problem

max
α̃

α̃ subject to − umax ≤ α̃‖P−1
f Kf‖ ≤ umax, (19)

where α̃ =
√
α. Hence, Xf in (18) can be redefined as

Xf := {x(k) ∈ R
nx | x⊤(k)Pfx(k) ≤ αm}, (20)

where αm is the solution of (19). To ensure feasibility of

the proposed MPC, the terminal set Xf should also satisfy

Assumption A.2. This can be satisfied by verifying that Xf in

(20) contains all target steady-states xs ∈ Xs of the system,

i.e., Xf ⊃ Xs. Next, we show how this can be fulfilled.

Introduce

αs = max
xs∈Xs

x⊤
s Pfxs, (21)

then if αs ≤ αm, see (20), we can verify that Xs ⊂ Xf . It can

be shown that the optimization problem (21) is a constrained

nonlinear optimization problem, which can be solved using

any gradient-based optimization method.

Finally, we can summarize the previous results.

Theorem 2: Suppose that

(a) Assumptions A.1, A.2, A.3 and A.4 are satisfied, and

(b) there exists a terminal cost, given by (16), such that

(17) is satisfied and a terminal set, given by (20), such

that αm ≥ αs, where αm and αs are scalars being the

solutions of the optimization problems (19) and (21),

respectively,

then, conditions C.1, C.2 and C.3 are satisfied. Consequently,

the MPC controller derived by solving (10) asymptotically

internally stabilizes the system (5) for all initial values of

x0, e0, r[k+1,k+N ] and p[k,k+N ] in the set XN .

Next, the MPC optimization problem (10) is represented

as an optimization problem with LMI constraints, for which

LMI solvers can be utilized. Moreover, this is the key step to

formulate the robust LPV-MPC scheme in the next section.

The cost function (9) can be rewritten as follows:

VN = V0 +
(
∗
)⊤

M
(
r[k+1,k+N−1] − y[k+1,k+N−1]

)

+
(
∗
)⊤

Rv[k,k+N−1] +
(
∗
)⊤

P̃f x̃(k +N + 1), (22)

where V0 is a constant term given by
∑ndy

i=0 µie
2(k +

i − ndy) +
∑ndu−1

j=1 ρjv
2(k + j − ndu), M =

diag{µndy+1, µndy+2, . . . , µNe} ∈ R
(N−1)×(N−1),

R = diag{ρndu
, ρndu+1, . . . , ρNv} ∈ R

N×N ,

x̃(k + N + 1) = T−1
x x(k + N + 1) with Tx ∈ R

nx×nx

being a state transformation Tx = diag(Tx1, Tx2, Tx1),
Tx1 ∈ R

ndy×ndy , Tx2 ∈ R
ndu×ndu are anti-diagonal

matrices with all nonzero entries equal to one, which

rearranges the state vector as x̃, and P̃f = T⊤
x PfTx.

Now, given p[k,k+N ] and r[k+1,k+N ], the optimization

problem (10) can be rewritten as

min
β,v[k,k+N−1]

β (23a)

subject to VN ≤ β, (23b)

u(k + i) ∈ U, ∀i ∈ IIN−1
0 , (23c)

x(k +N + 1) ∈ Xf . (23d)

Substituting (8) into (23b), then, applying Schur complement

provides the LMI form of (23b) as












M−1 0 0 r[k+1,k+N−1] −H1,N−1(k)v[k,k+N−1]

−Θ1,N−1(k)φ(k)
0 R−1 0 v[k,k+N−1]

0 0 P̃−1
f

HN+1−ndy,N(k)v[k,k+N−1]

+ΘN+1−ndy,N (k)φ(k)
Tuv[k,k+N−1] + 1ndu

u(k − 1)
r[k+N+1−ndy,k+N ]

∗⊤ ∗⊤ ∗⊤ β − V0













� 0

(24)
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where 1χ = [1 1 · · · 1]⊤ ∈ R
χ and Tu ∈ R

ndu×Nc is given

by

Tu =

[
Tu1 Tu2

1⊤N−ndu+1 1⊤ndu−1

]

,
Tu1 ∈ R

(ndu−1)×(Nc−ndu+1),

Tu2 ∈ R
(ndu−1)×(ndu−1)

with Tu1 ∈ R
(ndu−1)×(Nc−ndu+1) being a matrix whose

entries are all one and Tu2 ∈ R
(ndu−1)×(ndu−1) is a lower

triangular matrix whose non-zero entries are one. Next, the

control input constraint (23c) can be written as

Ev[k,k+N−1]�c, E=

[
T

−T

]

, c=

[
1Numax−1Nu(k−1)
−1Numin+1Nu(k−1)

]

(25)

with T ∈ R
N×N a lower triangular matrix whose non-zero

entries are all one. Finally, the terminal set constraint (23d)

using (20) can be written as an LMI:








P̃−1
f

HN+1−ndy,N (k)v[k,k+N−1]

+ΘN+1−ndy,N (k)φ(k)
Tuv[k,k+N−1] + 1ndu

u(k − 1)
r[k+N+1−ndy ,k+N ]

∗⊤ αm









� 0. (26)

Therefore, solving the MPC problem (10) for an LPV-IO

model can be presented as an optimization problem with LMI

constraints as follows: At any time instant k, given x0, e0,

p[k,k+N ], r[k+1,k+N ], P̃f , αm and appropriate values for N ,

M and R, solve

min
β,v[k,k+N−1]

β subject to (24), (25), (26). (27)

This problem is solved online at each time instant k, where

N,M,R are tuning parameters chosen by the user. Also, P̃f

and αm should be obtained offline by solving the feasibility

problem (17) and the optimization problem (19), respectively.

IV. ROBUST LPV-MPC SCHEME

We propose in this section an MPC scheme based on the

above formulation to design a robust MPC controller for

LPV-IO models in which only p(k) is needed to be known

at every control cycle k while the future values of p, i.e.,

p(k+1), p(k+2), . . . , p(k+N), are uncertain. Therefore, in

(22), the worst-case cost over all possible future scheduling

values is considered. We then employ the full block multi-

pliers introduced in [8], to provide an optimization problem

with a finite number of LMI constraints, some of which are

required to be verified only at the vertices of P. Moreover,

bounds on the rate of variation of p will be exploited to

verify these LMIs at the vertices of a subset of P, which

can reduce the conservatism of the design. The robust MPC

design introduced here is based on the full block S-procedure

(Theorem 8 in [8]), which can be used to convert an uncertain

matrix inequality to a finite set of inequalities using full block

multipliers.

At a sampling instant k, if each of the constraints (24)

and (26) can be represented as a certain quadratic form, the

full block S-procedure can be used to transform each of

them into a form which enables solving the optimization

problem (27) without requiring the future values of p. The

first step is to formulate each of the constraints (24) and (26),

respectively, as

F⊤(p)WF(k)F (p) � 0, (28a)

G⊤(p)WG(k)G(p) � 0, (28b)

where F (p) ∈ R
nF×(2N+nx), nF = 4N + nx + na + nb +

ndu+1, and G(p) ∈ R
nG×(nx+1), nG = N+nx+na+nb+

ndy + ndu + 2 are matrix valued functions of H and Θ and

WF ∈ R
nF×nF , WG ∈ R

nG×nG are matrix valued functions

of r, v. These matrices are not given here due to space

restrictions. As a consequence, (28a) and (28b) can replace

(24) and (26), respectively, in the optimization problem (27).

Next, we transform both F (p) and G(p) into an upper LFT

form as follows:

F (p) = ∆F ⋆

[

F11F12

F21F22

]

, G(p) = ∆G ⋆




G11G12

G21G22



 , (29)

such that

∆F = diag{p1IrF1 , . . . , pnpIrFnp
}, ∆F ∈ ∆F, (43)

∆G = diag{p1IrG1 , . . . , pnpIrGnp
}, ∆G ∈ ∆G (44)

where

∆F(k) = {∆F (k) ∈ R
n∆F

×n∆F |
p
i
(k) ≤ pi ≤ pi(k), i = 1, 2, . . . , np}, (45a)

∆G(k) = {∆G(k) ∈ R
n∆G

×n∆G |
p
i
(k) ≤ pi ≤ pi(k), i = 1, 2, . . . , np}, (45b)

n∆F =
∑np

i=1 rFi
, n∆G =

∑np

i=1 rGi
, pi(k) = max(N ·

dpmax i + pi(k), pmin i) and p
i
(k) = min(N · dpmin i +

pi(k), pmax i).
Now, if the LFTs (29) are well-posed, i.e., (I−F11∆F)

−1

and (I − G11∆G)
−1 are well-defined for all p ∈ P,

then we can apply the results of [8] to the conditions

(28a-b). Therefore, at the sampling instant k, given x0,

e0, r[k+1,k+N ], the parameters P̃f and αm, which can be

computed offline, and the design parameters N , M and R,

the optimization problem (27) associated with the robust

MPC design considered here can be formulated using the

full block S-procedure, which is not given here due to space

restrictions. Next, as P is a convex polytope and the blocks

∆F and ∆G have linear dependence on p, the LMIs of the

robust MPC design are only required to be solved at the

vertices of P.

V. NUMERICAL EXAMPLE

In this section, the performance of the proposed MPC

scheme for LPV-IO models is demonstrated on a simulation

example. The system to be controlled is an unstable 2nd-order

LPV system represented in LPV-IO form according to (1) as

a1(pk) = −0.2 + 0.7p(k), a2(pk) = 0.7 + 0.4p(k),

b2(pk) = 1.6 + 2.8p(k), b1(pk) = 3.4 + 1.2p(k),

and b0(pk) = 0, with P = [0, 1], umax = 2 and the reference

to be tracked is given in advance as shown in Fig. 2a. In
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order to find Vf(·), the feasibility problem defined by (17a-

b) has been solved to obtain the matrix Pf ∈ R
6×6 and the

terminal controller κf(·), with nKa = 1 and nKb = 2. Next,

the ellipsoidal terminal set Xf in (20) is constructed offline by

computing the value of the parameter αm by solving (19) and

Xf ⊃ Xs has been verified by solving (21). Given Pf and αm,

which parameterize Vf(·) and Xf , respectively, the proposed

MPC schemes can be applied. The tuning parameters have

been chosen as ρ = 480, µ = 600, N = 6 and Nc = 5 to

achieve some desired control objectives. Then, the robust

LPV-MPC scheme has been implemented by solving its

associated optimization problem at each sampling instant

k to obtain the online optimal control law. The resulting

control structure has been validated via a simulation study

with a scheduling trajectory depicted in Fig. 2c. Stability

of the closed-loop system over the entire operating region

and feasibility of the optimization problem at all sampling

instants have been achieved by the MPC design. The evolu-

tion of the output and the control input of the closed-loop

system with the MPC controller are shown in Figs. 2a and

2b, respectively, which demonstrate a satisfactory tracking

capability at different operating conditions besides of the

integral action without violating the control input bounds.

For comparison purpose, the proposed LPV-MPC scheme

has been implemented by solving (27) where the future

values p[k+1,k+N ] have been provided at each instant k (p-

anticipating LPV-MPC). Figures 2a and 2b show that both

MPC schemes provide almost the same performance, which

demonstrates the capability of the proposed robust MPC

scheme.

VI. CONCLUSIONS

In this paper an MPC scheme has been proposed to control

LPV-IO models subject to input constraints. The proposed

LPV-MPC scheme characterizes a robust strategy to coun-

teract the worst-case possible uncertainties of the scheduling

variations. To guarantee closed-loop asymptotic stability, an

appropriate quadratic terminal cost is added to the quadratic

finite horizon cost function of the online MPC optimization

problem and an ellipsoidal terminal set constraint is included.

The full block S-procedure with an LFT formulation of

the parameter dependent inequality constraints as well as

information about the rate of change of p have been used

to develop a robust MPC scheme with low conservativeness.

The online optimization problem involved in such a scheme

is convex and can be solved by semi-definite programming

tools to compute the optimal control action at each sampling

instant. Using a simulation example, the performance of the

proposed scheme has been demonstrated.
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Fig. 2: Closed-loop performance with the robust (red) and

the p-anticipating (black-dashed) LPV-MPC schemes.
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