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Bayesian Identification of LPV Box-Jenkins Models*
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Abstract—In this paper, we introduce a nonparametric
approach in a Bayesian setting to efficiently estimate, both in the
stochastic and computational sense, linear parameter-varying
(LPV) input-output models under general noise conditions of
Box-Jenkins (BJ) type. The approach is based on the estimation
of the one-step-ahead predictor model of general LPV-BJ
structures, where the sub-predictors associated with the input
and output signals are captured as asymptotically stable infinite
impulse response models (IIRs). These IIR sub-predictors are
identified in a completely nonparametric sense, where not
only the coefficients are estimated as functions, but also the
whole time evolution of the impulse response is estimated as a
function. In this Bayesian setting, the one-step-ahead predictor
is modelled as a zero-mean Gaussian random field, where
the covariance function is a multidimensional Gaussian kernel
that encodes both the possible structural dependencies and the
stability of the predictor. The unknown hyperparameters that
parameterize the kernel are tuned using the empirical Bayes
approach, i.e., optimization of the marginal likelihood with
respect to available data. It is also shown that, in case the
predictor has a finite order, i.e., the true system has an ARX
noise structure, our approach is able to recover the underlying
structural dependencies. The performance of the identification
method is demonstrated on LPV-ARX and LPV-BJ simulation
examples by means of a Monte Carlo study.

I. INTRODUCTION

Identification of linear parameter-varying input-output
(LPV-I0) models has recently received significant attention,
e.g., [1]1, [2], [3], as the prediction error minimization (PEM)
methods have successfully been extended to the LPV case,
providing a well-understood framework for the stochastic
interpretation of the estimates [4]. Moreover, the PEM frame-
work is well suited to a large class of noise and plant models,
see [5] for an overview. Consider a single-input single-output
(SISO) data generating LPV system described in discrete-
time by the following equations:

Ao(p,k,q~")ij(k) = Bo(p. k,q " u(k), (1a)
Do(p,k,q~ "v(k) = Co(p, k.q ")e(k), (1b)
y(k) = y(k) +v(k), (1c)

where k € Z is the sample time, ¢ is the time-shift operator,
ie, ¢ u(k) = u(k —i),u :Z - R, §:Z — R and
y : Z — R denote the input, noise free output and noisy
output signals respectively, p : Z — P is the so-called

* This research has benefited from the financial support of the Stu-
dent Mission, Ministry of Higher Education, Government of Egypt and
the Netherlands Organization for Scientific Research (NWO, grant no.:
639.021.127).

T Mohamed Darwish, Pepijn Cox and Roland Téth are with the Control
Systems Group, Department of Electrical Engineering, Eindhoven Univer-
sity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
{m.a.h.darwish,p.b.cox, r.toth}@tue.nl

% Gianluigi Pillonetto is with the Information Engineering Department,
University of Padova, Padova 35131, Italy, giapi@dei.unipd.it

978-1-4799-7885-4/15/$31.00 ©2015 IEEE

66

scheduling variable with compact range P C R"r, v : Z — R
is the coloured noise signal, and e € R is a white noise
process with e(k) ~ N(0,1?). The p-dependent operators
Ao(p,k,q~ 1) and By(p,k,q~ ') that describe the process

part (1a) of the model are polynomials in ¢~' of degree
n, and ny, respectively:
Ao(p kg ) =14 ailp k,i)g ™, (2a)
n 1=1 |
Bo(p,k,q™ ) = bi(p, k. d)a ™, (2b)
=0

where the coefficient functions a;(p, k,7) :Px...xP— R
and b;(p,k,j) : P x ... x P — R are shorthand notations
for a;(p, k,i) = a;(p(k),...,p(k — 1)) and b;(p,k,j) =
bj(p(k),...,p(k — 7)). These functions are assumed to be
smooth and bounded functions on IP. In a similar fashion, the
noise model (1b) relations Co(p, k,q~ 1) and Do(p, k,q~ 1)
are defined as

Ne

Colp kg™ ) =1+ clpki)g", (o)
=1
ng ]
Do(p,kyq™") =1+ di(p,k,)g?,  (3b)

j=1
where ¢;(p,k,i) : P x ... x P — R and d;(p,k,j)
P x ... x P — R are the coefficient functions of the monic
polynomials in ¢~! of degree n. and nq, respectively.

For such a general noise scenario represented by (1),
classical PEM methods lead to a nonlinear optimization
problem [4], which is sensitive to local minima and its
performance is, for example, dependent on the parametriza-
tion of (2)-(3) and also on the initial estimate. A linear
parametrization of the coefficient functions {ai,...,dn,}
in terms of a user specified set of basis functions is often
required [5], which either needs a significant a priori knowl-
edge of the underlying system or tedious repetitive execution
of the methods to synthesise an acceptable basis.

Alternatively, the so-called nonparametric setting offers an
attractive approach to capture the underlying dependencies
directly from data without specifying any parametrization in
terms of fixed basis functions. The two main streams of LPV
nonparametric identification presented in literature are: the
least squares-support vector machine (LS-SVM) methods,
e.g., [6], [7], and the Bayesian setting based approaches,
e.g., [8]. The LS-SVM and Bayesian approaches are methods
that have roots in reproducing kernel Hilbert space (RKHS)
theory and admit a ¢5-regularization based interpretation [9].

In this work, we chose a Bayesian setting to formulate
a nonparmaetric estimator of the one-step-ahead predictor
of (1), preserving the generality of the hypothesized noise



class and achieving the maximum likelihood property of
the PEM without the heavy computational complexity. For-
mulating the LPV-BJ identification problem in a Bayesian
framework is an extension of the nonparametric identification
setting introduced in [8], where only LPV-FIR models are
considered. For LPV-BJ setting, we define two LPV sub-
predictors associated to the input and output signals by
asymptotically stable infinite impulse response (IIR) mod-
els. The associated coefficient functions of these impulse
responses are captured in a jointly nonparameteric way, for
which the computational complexity remains equivalent to
a linear regression problem. The nonparametric framework
uses a kernel function that acts as a basis function generator
to describe both the functional dependencies and the time-
evolution of the impulse responses of the sub-predictors.
However, an important issue is how to design the kernel
structure parametrized in terms of a few hyperparameters,
such that a large generality of dynamics can be captured.
To this aim, inspired by the approach presented in [10],
we hereby introduce a kernel function which encodes: 1)
the possible structural dependencies and ii) stability of the
predictor by including a decaying term, which models a
vanishing influence of the past input-scheduling-output pairs
on the predicted output. The small set of hyperparameters
related to this kernel can be efficiently estimated by the
empirical Bayes approach, e.g., [11], via maximizing the
marginal likelihood (ML).

This paper is organized as follows: in Section II, the
IIR models of the one-step-ahead predictor of the LPV-BJ
model (1) is presented. Then, a Bayesian approach to identify
the one-step-ahead predictor is formulated in Section III.
Section IV shows the performance of the proposed nonpara-
metric identification scheme on two illustrative examples by
means of Monte Carlo simulation studies. Finally, the paper
is concluded in Section V.

II. GENERAL LPV-IO MODEL

In this section, we develop an equivalent one-step-ahead
predictor representation of (1). This form allows the identi-
fication of these models under general noise scenarios in the
linear regression framework.

A. The IIR form

For well-possessedness of formulating a predictor for (1)
both (1a), (1b), and the inverse noise dynamics of (1b)! need
to correspond to asymptotically stable LPV filters as it is
given by Definition 1.

Definition 1: An  LPV filter A (p, k,q~1)y(k)
Bo(p, k,qY)u(k), is called globally asymptotically stable,
if for all trajectories of {u(k),p(k),y(k)} satisfying (1),
with w(k) = 0 for £ > 0 and p(k) € P, it holds that
limg s 00 |7(K)|= 0. ]

If the noise filter (1b) is global asymptotically stable
in terms of Definition 1, then the noise v has bounded
spectral density, which is a natural assumption in data-driven

I'Hence, we assume the existence of a stable left inverse of the corre-
sponding IRR as detailed in the Appendix.
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modeling. Based on this stability notion the system given
in (1) is written in terms of IIRs as shown in Theorem 2.

Theorem 2: Let the process dynamics (la) and noise
dynamics (1b) be asymptotically stable according to Def-
inition 1. If, in addition, the inverse noise process is also
monic and asymptotically stable, then (1) can be equivalently
represented by the following IIR form

y(k) = Z hy, (p, k. i)q "y (k)+
- Z hu, (D ke, j)a T u(k) + e(k), (4)
§=0

hy,(p,k,i) : Px ... xP = Rand hy,(p,k,j) : P x...x
P — R are real meromorphic® coefficient functions in the
scheduling signal p. O
For a proof see the Appendix. The IIR representation makes
it possible to formulate a predictor which is only given by

the past inputs-scheduling-output signals, as shown next.
B. One-step-ahead predictor

In the prediction error (PE) setting, identification of (1) is
formulated by using (4) to define a one-step-ahead predictor
of y(k) based on only the observations of the input u(7) for
7 < k, the scheduling p(7) for 7 < k, and the output signal
y(1) for 7 < k — 1. The basic idea is to consider the mean
of y conditioned on the past data, i.e.,

y(klk—1) =argmin E{ |ly(k) -3 | +®},
SER

where E{-} is the expectation operator and xz(¥)
{u®, p®) y=D1 is the shorthand notation of the past
measurements till time k, e.g., u®) = {u(7)},<x. As e(k) is
a white noise, straightforward application of the expectation
operator gives

y(klk = 1) =Y hy(p, k,))g " y(k)+

1=1 e .
> by (0., g ulk). (6)
j=0

(&)

The prediction error model (6) is a mixture of the func-
tional dependencies (2) and (3) as given in the Appendix.
Hence, direct minimization of the ¢5 norm of the PE, i.e.,
e(k) = y(k) — y(k|k — 1), leads to a nonlinear optimization
problem, prone to local minima. To avoid the nonlinear
optimization, it is possible to create a linear-in-the-parameter
problem by parametrizing the coefficient functions h,, and
h., as a linear combination of a set of basis functions
but for real-world problems this often results in large-scale
parametrizations [5]. Generally, such approach results in a
high estimation variance with no overall gain compared to
attempting to solve the nonlinear optimization problem.

III. BAYESIAN IDENTIFICATION FOR LPV-IO MODELS

The question is how to utilize the simplicity of the IIR
form (4) but overcome the large parametrization and the
high parameter variance associated with its identification. A
solution can be found in the Bayesian framework, where the

2h : R™ — R is a real meromorphic function, if h = g/f with g, f
analytic functions and f # 0.



functional dependencies h,, and h,; are estimated nonpara-
metrically and, in addition, a regularization is introduced to
keep the variance of the estimates low by a sacrifice of a
small amount of estimation bias.

A. Mixture of Gaussian kernels for LPV-10 models

Inspired by the approach introduced in [10], IIRs based
model (4) can be considered as a standard Gaussian process
regression model, i.e., y(k) = f(z®)) + e(k), where f is
a particular realization from a zero-mean Gaussian random
field, i.e., f ~ GP(0,K), which is the priori assumption in
our Bayesian setting. The Gaussianity assumption implies
that, in order to define f, the covariance K of the random
field is required to be specified. The latter express the time
and scheduling evolution of the functional form of the IIRs
which is estimated. As the IIRs in (4) correspond to the
sum of two “sub-models”, hence, f can be viewed as a sum
of two zero mean Gaussian random fields f“, fY, i.e., f =
doiey [+ 3272 f3- Due to our orthogonality assumption,
it follows that E{f“fY} = 0 and, hence, the covariance
function for f can be expressed as

K(z®, 2y = E{f(a:<k>)f(x(’<’>)}
= il@’(x(k )+ Z/cu

where K is a mixture of Gaussian kernels ICy IC“, which
represent the covariances of f7, /' between tlme k and
k' respectively. In the Bayesian identification framework,
the covariance (7) should be parameterized with a priori
information to include possible structural dependencies and
asymptotic stability of the predictor. A popular choice in
system identification to capture functional dependencies is to
use Gaussian kernels, also known as radial basis functions
(RBFs) (e.g., see [11]), which only encode information on
the smoothness of the underlying function to be estimated.
Therefore, a decaying term, introduced in [10], is included in
the kernel to express the decay of the impulse response over
time. Hence, the covariance K¥ of the function f}* takes the

following form
k’))} _
[[p*7)—pt

u k K’
ICj(x( ), )y =
AW
2l —)), ®)

L2, )

E{ 7= ®) £ (at
u(k—j)ﬁ;exp<—

R (p(k:9) p(k'.9))

where p(¥7) is a vector of the past measurements startin Tg
from time k till k—7, i.e., pt9) = [p (k),...,p"(k — ] ,
By = Ae77*2 denotes the exponential decaying term
and oy, \1,\2 € RT are the unknown hyperparameters
parametrizing the kernel. Similarly, the covariance K is

K (@®,00) = B £ () £ (2)) } =
oD —p9 3

) '—=i),

0-2

y(k—i) B} eXp(

RY (pk:9) p(k.0))
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where 8! = A3e~ is the decaying term and Oy, A3, A\q €
R+ are the hyperparameters.

In addition, due to the asymptotic decay of the coefficient
functions, the IIR sub-models in (6) can be arbitrary well
approximated by truncating the infinite sum as
Ny,

Zhy, .k, i)q y(k)+
nfy

> b,k §)g 7 u(k), (10)

g(klk — 1) =

where ny and ny, are sufficiently large. In the same line of
reasoning, the covariance functions (7) can be truncated to
the same finite orders ny, and ny,.

B. Estimation from data

The objective is to estimate the predictor (6) by the
truncated model (10) from a given data set YDy
{y(k),u(k),p(k)}Y_, by minimizing the ¢ norm of the
predictor error e(k) y(k) — g(klk — 1). Let 0 de-
note the vector of the unknown hyperparameters, 6
[77 Oy Ou A1 A2 A3 Mg }T, with 7 the standard
deviation of the noise e in (I1b). Let n = max(ny,,ny,)
denote the maximum truncation order and let y" de-
note the vector with the observations, ie., y" =

Y
[ Yn+1 YN ]

" In the Gaussian regression frame-
work, two estimates minimizing this /5 norm can be for-
mulated, the first one is the minimum variance estimator of
f conditioned on a fixed 6 [11]:

N
:E{f('” yN79}: Z Ck—nlc( T

k=n-+1

=), 11

where z(®) is the set of truncated past measurements, i.e.,
) = [yFns) plkn) y(k’”fy)} and cy., is the k-th
component of the vector
c=(Z,(0))""y",
and ¥,€ RN-"N-7 is invertible with an (i, j)-entry given by
[2y(0)]i; = K", 2 H) 4+ %6, 5,

where ; ; is the Kronecker delta function w.r.t. (4, 7). The
second estimate is the marginal likelihood of the data 3™

given 6: -
(1) = exp (—5(y™)  (2y(0))”
det(27%,(6))
The latter expression is used in the empirical Bayes ap-
proach, e.g., see [12], to estimate the unknown hyperparam-

eters vector f parametrizing the kernel K. This is achieved
by maximizing the ML or equivalently

tyN)

(12)

6 = argmin —logp(y™N|6). (13)
9

This nonlinear program can be solved by a standard line-
search algorithm, e.g., fmincon in Matlab due to the
low number of hyperparameters and the structure of (12).
According to the empirical Bayes approach, the estimate
f in (11) can be obtained by substituting the optimized
0 of (13). Hence, the minimum variance estimate (11) of
individual coefficient functions are



N

hy ()= ) chny(k —i)RY (p*D, ), (14a)
k=n+1

~ N .

hu, () = D cronulk — j)RY(p*) ). (14b)
k=n+1

The corresponding covariance estimate of the individual
coefficient functions is given by

RY ()= (]) T (2y(0)) "o},
Ry () = (45) T (3 (0) M5!
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(15a)
(15b)

covhy, ()

covﬁuj (+)
where
oy =[RY (-, p" )y (n-i+1), ..., RY (-, PNV )y(N-0)] T
u u n+l,j . uw N,j 1T
P =[RY (-, p"™ N u(n-j+1), ..., RY(, pN ) Yu(N-5)]

In case the data-generating system has an LPV-ARX
representation, then the individual coefficient functions a;
and b; correspond to h,, and huj, respectively; hence, the
coefficient functions are identified by the quantities (14b)
and (14a) directly. The decaying terms keep the estimation
variance low even if a high truncation order ny , ny, is
selected, hence, the selected “truncation order” plays an
insignificant role in the bias/variance trade-off.

Assume that the one-step-ahead predictor (6) belongs
to the RKHS Hyx associated to the kernel K (7) with
parametrization (8)-(9). In addition, if A; — 0 as N — oo
for each ¢, and the same technical assumptions stated in [13]
hold, then the estimator functions h (14) are consistent, i.e.,
h — h with probability one in the topology of Hx.

IV. ILLUSTRATIVE EXAMPLES

In this section, the performance of the proposed nonpara-
metric approach to identify the one-step-ahead predictor is
demonstrated by two Monte Carlo studies. The identification
scheme is applied to two different examples: 1) an LPV-ARX
model and 2) an LPV-BJ model.

A. Identification setting

The one-step-ahead predictor is estimated using identi-
fication datasets with various sizes N = {200, 500, 1000}
and the prediction performance of the estimated model is
examined on an independently generated validation dataset
that contains Ny, = 500 samples. The identification and
validation datasets are generated with independent realiza-
tions of a white input signal v with Gaussian distribution,
ie., u(k) ~ N(0,1), and a scheduling signal given by

p(k) = 0.4sin(0.1k) + 0.1 + 6,,(k),

where 6, (k) is i.d.d. with d,(k) ~ U(0,1). The variance of
the white noise e driving the noise process is chosen such
that the signal-to-noise (SNR) ratio

N
> Y(k)?

N )
> =1 0(k)?
is 20dB. For each of the datasets and each of the Ny = 100
Monte Carlo simulations, different realization of the noises
u, p, and e are taken. The LPV data-generating system has

SNR, = 10log
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Fig. 1: The BFR of the predicted response with respect to the
validation data sets using the estimated models based on different
truncation orders n = {2, 5,10} and different sizes of the identifi-
cation data set N = {200, 500, 1000}.

in both examples a plant model order of n, = ny, = 2, and
coefficient functions

ai(-) = 0.1p*(k — 1), (16a)
ag(-) = tan™ ! (p(k — 1)) cos(p(k — 2)), (16b)
bo(-) = —exp(—p(k)), (16c¢)
bi(-) = 1—0.5p(k) + p(k — 1), (16d)
ba() = tanfl(p(k —2)). (16¢)

Note, the nonlinear functions (16) have dynamic dependen-
cies on the scheduling variable, i.e., the functions depend on
p with different time shifts. The noise process is given in
the corresponding sections, Sections IV-B and IV-C. In the
given examples \; = A3, Ay = A4, and o, = 0y, to reduce
computational complexity of the ML optimization (13). The
performance is measured by means of the best-fit ratio (BFR)

E50 (k) — (k)12
ISV k) =gl

where ¢(k) is the predicted output by the estimated one-step-
ahead predictor on the validation dataset and ¢y defines the
mean of the true output y(k).

B. Example 1: identifying an LPV-ARX model

For the LPV-ARX model, the noise process (1b) is driven
by Co(p,k,q~") = 1 and Do(p,k,q ') = Ao(p,k,q ).
Both, plant and noise processes lie within the model set (4)
for finite model order, i.e., the one-step-ahead predictor (10)
has a one-to-one relation with the underlying data-generating
system. Hence, the proposed nonparametric identification
scheme should fully recover the structural dependency of
the original coefficients functions.

In this example, the performance of an ‘oracle’ estimator is
also displayed, which is a least squares (LS) based parameter
estimate of an ARX model with the true model order and true
underlying nonlinear functional dependencies, e.g., hy, = a;,
hy; = bj. The oracle represents the maximum achievable
performance given the dataset.

In Fig. 1, the BFR is shown for the oracle and the
identified one-step-ahead predictor for different truncation
orders n = {2,5,10} and different sample sizes N
{200,500,1000}. Fig. 1 shows that as the sample size
increases, the average BFR increases and the variance

BFR:max{l— 0} 100%, (17)
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Fig. 2: Results of the function estimation with n = 10, N = 1000.

decreases, as expected, as the kernels come closer to the
true covariance of (16). The nonparametric identification
approach is very efficient, as it comes close to the oracle
and, in contrary to the oracle, the functional dependencies
in the scheduling variable are also estimated. This high
performance is also evident in Fig. 2, which shows that the
true and estimated functions by and as.

Furthermore, the hyperparameters for the truncation order
selection are given in Fig. 3. The ML optimization also
successfully recovers the model order from the data, i.e.,
the function estimates }Alyi, ﬁui for ¢ > 2 are estimated with
an insignificant magnitude. For this reason, no significant
increase of variance of the BFR or decrease in mean of the
BFR is noticed in Fig. 1, compared to the case where this
exponential decay would not be included, e.g., see [14].

C. Example 2: identifying an LPV-BJ model

In this second example, the capabilities of the approach
under general noise conditions are demonstrated. The noise
process v in this case is a colored noise generated by a
filtered white noise, where the coefficient functions (3) are

15
—~ 10
s
O | | | | |
2 4 6 8 10
i [-]
Fig. 3: The 8; = Xiexp(—iX2) function optimized based on

N = 1000 samples with truncation order n = 10. The estimated
hyperparameters are A\; = 182 and A2 = 2.45.
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Fig. 4: The BFR of the predicted response with respect to
the validation data sets using the estimation models for different
truncation orders n = {2, 5, 10}, different sizes of the identification
data set N = {200,500, 1000}.

given as

a()=0.8p*(k = 1), c2(-)=0.5tan™" (p(k — 2)),

di(-)=0.2p%(k — 1), da(-)=0.5sin(p(k — 2)).
Note, under this general noise assumption, the coefficient
functions in (6) are summations of different products of the
functions a;, ...,d;, i.e., see (24a) and (24b), contrary to
the LPV-ARX case. For this case, the ‘oracle’ is an LS
estimate of a high-order ARX model parametrized in terms
of the true underlying nonlinear functional dependencies, i.e.,
these summation of the different products of the functional
dependencies a;, . .., d; in (24). The chosen truncation order
is n = 12, which has been tuned to have the highest average
BFR and lowest variance.

Fig. 4 shows the BFR for the identified one-step-ahead
predictor with the proposed Bayesian approach under dif-
ferent truncation orders and sample sizes. In this figure, it
can been seen that increasing the truncation order slightly
increases the average BFR. According to our expectation,
all predictors benefit from increasing the amount of samples
in the identification dataset, which is evident in an increased
BFR and a decreased BFR variance.

The figures show that the Bayesian approach estimated
one-step-ahead predictor is capable of capturing the plant and
noise dynamics, concluding that the proposed nonparametric
identification scheme is able to identify the LPV model under
general nonlinear noise conditions.

(18)

V. CONCLUSIONS

We reformulated the BJ problem as an impulse response
identification problem based upon the one-step-ahead pre-
dictor form of these models. Under the assumption that the
resulting sub-predictors are asymptotically stable, a nonpara-
metric identification approach has been introduced based on
the Bayesian setting with a Gaussian random field as a priori.
As an important contribution, a suitable choice of a kernel
to jointly express the time convolution and the scheduling
dependency in terms of a few hyperparameters has been
proposed. These hyperparameters are tuned by an empirical
Bayes approach, i.e., maximizing the marginal likelihood
based on data. It is shown that the proposed nonparametric
approach is capable of achieving consistent estimation of



LPV-BJ models and it is capable of recovering the true
structural dependencies.

APPENDIX
PROOF OF THEOREM 2

Due to the sake of space, only a brief overview of the proof
is given. For all details see [4]. For notational ease, define
Ak(q) £ AO(p7 k? qil)’ ] Dk(q) £ Do(pv kv qil) and let
up, = u(k), ..., ex = e(k). By using recursive substituion,
it is possible to rewrite the noise process (1b) as

vg = Ck(q)ex + (1 — Di(q)) vk,
= Cr(@)ex+(1-Di(q))Cr(9)er
+(1—Dk(q))(1—Dr(q)) v,

= (1 - Dx(q))' Ck(q) ex (19)
1=0

Hy(q)
As asymptotic stability of (1b) in terms of Definition 1 is
assumed, it is possible to show that (19) is convergent, such
that

o)
where h; converges to the zero function as ¢ — oo. Note
that Cx(¢q) and Dy(q) being monic, implies that the IRR
(20) is monic as well. Similarly, the plant process (la) can
be rewritten as

gk =Y (1= Ax(q))" Brlg) ws, 1)
=0

Gr(q)
which, due the assumed asymptotic stability of (1a) in terms
of Definition 1, is convergent, given

)= gilp, ki),
i=0

where g; converges to the zero function as 7 — co. Assume
that the monic Hy(q) has a stable left inverse H ,I(q), ie, a
convergent monic IRR exists such that H T( VHi(q) = 1. As
Hj.(q) is monic, if such a H T( ) exists, then it is a bi-lateral
inverse of Hy(q), i.e, H)(q)Hxr(q) = Hp(q)H](q) = 1.
Now, if we substitute (20) and (22) into (1c), then it follows

yr = Gr(q)ur + Hi(q)er
= (1= H](@) v + BL@)Grla) w + ex.
—_— —

Fu(p,k,q1)

(22)

(23)

Fy(p,k,qt)
As H ;(q) and Gg(q) are convergent, asymptotically stable
IIRs, then it follows that F, and F, in (23) are also
convergent and represent asymptotically stable LPV filters,
given by

Fy(p, kvq_l) = 1_2 (1_Ck(Q)) (24’3-)

D (),

3Note, multiplication between the shift operator and a coefficient function
is non-communicative, hence, g~ 'C), = Cj,_1q~ ! (see [15] for details).
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and

Dy.(q)-

Fu(p, k,q”

! :i 1—Cr(q
1=0 00

(1 - Ax(q))’ (24b)

Jj=0

By(q).

To conclude the proof, the maximum backward time-shifts
for p in the functional dependencies of (24) does not exceed
the maximum backward time-shifts for u and y in (23).
Therefore, (23) can be rewritten as (4).
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