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Abstract— Kernel-based regularization approaches for lin-
ear time-invariant system identification have been introduced
recently. This class of methods corresponds to a particu-
lar regularized least-squares methodology that may achieve
a favorable bias/variance trade-off compared with classical
Prediction Error Minimization (PEM) methods. However, to
fully exploit this property, the kernel function itself needs to be
appropriately designed for the identification problem at hand to
be able to successfully capture all relevant aspects of the data-
generating system. Hence, there is a need for a methodology
that can accomplish this design step without affecting the
simplicity of these approaches. In this paper, we propose a
systematic kernel construction mechanism to capture dynamic
system behavior via the use of orthonormal basis functions
(OBFs). Two special cases are investigated as an illustration of
the construction mechanism, namely Laguerre and Kautz based
kernel structures. Monte-Carlo simulations show that OBFs-
based kernels with Laguerre basis perform well compared
with stable spline/TC kernels, especially for slow systems with
dominant poles close to the unit circle. Moreover, the capability
of Kautz basis to model resonant systems is also shown.

I. INTRODUCTION

Identification of Linear Time-Invariant (LTI) systems
is a well-established field. The most commonly applied
approaches fall into the category of Maximum Likeli-
hood/Prediction Error Minimization ML/PEM methods [1],
[2]. In ML/PEM, a parametric model structure is proposed
and the model order, i.e., model complexity, is usually tuned
via classical tools, e.g., AIC, BIC or Cross-Validation [1],
[3]. However, classical methods for model order selection
do not always give satisfactory results especially for short
and noisy observations [4]. Alternatively, a novel kernel-
based regularization approach has been introduced in [5]
and further developed in [4], [6]. Although, the underlying
concept of such approaches is much older see, e.g., [7], [8],
in [5], the impulse response model structure is postulated and
its estimation is dealt with as a function estimation problem.
It has been shown that this approach corresponds to a
particular regularized least-squares method that may achieve
a favorable bias/variance trade-off compared to classical
ML/PEM [5]. Moreover, it admits a Bayesian interpretation
where the unknown impulse response is assumed to be a
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realization of a zero-mean Gaussian stochastic process with a
certain covariance (Bayesian prior or kernel) function and the
objective of the estimation problem is to estimate a particular
realization of this Gaussian process which is most likely the
true impulse response of the system. The assumed kernel
function encodes the prior knowledge about the system under
study and also restricts the high degree of freedom offered
by the nonparametric estimation. The latter is important
to define an estimator with a good bias/variance trade-
off. Hence, the kernel function should express important
qualitative properties of the dynamic system at hand like
stability and/or oscillatory behavior. Hence, it becomes a
question how to design a suitable kernel structure without
knowing the true system. Such a structure is typically known
up to some kernel parameters, called hyperparameters, which
are needed to be estimated from data [9]. Hyperparameters
estimation replaces traditional model order selection with the
so-called model complexity selection. Such a ”selection” in
practice can be performed by the empirical Bayes approach,
i.e., maximizing the marginal likelihood of these parameters
with respect to the observed data [10], [11].

As for the kernel structure design, there are some struc-
tures available in the literature, for example, the stable spline
(SS) kernels [5], diagonal/correlated (DC) kernels [6] and
first order stable spline kernels known as tuned/correlated
kernels (TC) [6], etc. The aim of the present work is to
introduce a new way to construct kernels based on some
classes of orthonormal basis functions (OBFs) with attractive
properties in both system identification and series expansion
representation of LTI systems [12]. These OBFs can be
generated by a cascaded network of stable inner trans-
fer functions, i.e., all-pass filters, completely determined,
modulo the sign, by their poles [12]. In frequency-domain,
OBFs provide basis for the Hilbert space RH2− (space of
strictly proper rational functions over C with real coefficients
which functions are squared integrable on the unit circle and
analytic outside of it). Moreover, in the time-domain, their
correspondents, i.e., their impulse responses, provide basis
for `2(N), i.e., the space of impulse responses of causal
LTI systems. This means that, in the context of kernel-based
regularization for impulse response estimation, a positive-
definite kernel function can be expressed in terms of the
impulse response of OBFs. This kernel is associated with a
reproducing kernel Hilbert space (RKHS) that corresponds
to the Hilbert space of impulse responses spanned by the
OBFs associated impulse responses. There have already been
few attempts to introduce OBFs-based kernels, e.g., [13].
However, the introduced OBFs-based kernels do not perform
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well compared with other kernels, i.e., the TC kernel, as
shown in [13, Section V]. Moreover, the question of how
many basis functions should be used to generate such kernels
has not been answered yet. In this paper, we introduce the
formulation of an OBFs-based kernel directly in the time-
domain based on the impulse response formulation of these
basis functions and introduce a decay term that weights the
OBFs. In this way the difficult problem of selecting the
number of basis functions to be introduced in the model is
totally circumvented. Moreover, since the OBFs are uniquely
determined in terms of the generating poles, these poles can
be interpreted as hyperparameters. Hence, estimation of the
poles can be performed in a Bayesian setting by maximizing
the marginal likelihood with respect to the observed data. As
an illustration of the construction mechanism, two special
cases of OBFs-based kernel structures, i.e., Laguerre and
Kautz basis [14], [15], are introduced and compared to other
structures, i.e., the TC kernel.

This paper is organized as follows: the problem for-
mulation of the finite impulse response estimation of LTI
systems is presented in Section II, whereas Section III gives
a brief overview on the regularized approaches to tackle
this problem. The formulation of the proposed OBFs-based
kernels in the time-domain is introduced in Section IV,
followed by an extensive Monte-Carlo study in Section V.
Conclusions then end the paper.
Notation: Consider the following definitions: let D = {z ∈
C | |z| < 1} be the interior of the unit disc in the complex
plane, J = {z ∈ C | |z| = 1} the unit circle and
F = {z ∈ C | |z| > 1} to represent the exterior of D ∪ J,
i.e., F = C \ (D ∪ J). Let N denotes the natural numbers.
If a is a matrix, then |a| denotes the determinant of a and
IN denotes the N -dimensional identity matrix. Finally, let
`1 and `2 denote the classical spaces of real sequences over
N with summable absolute or squared values, respectively.

II. PROBLEM FORMULATION

Consider a Single-Input-Single-Output (SISO), finite or-
der, asymptotically stable and LTI discrete-time data gener-
ating system described by

y(t) = G0(q)u(t) + v(t), (1)

where t ∈ Z is the discrete-time, q is the forward time-shift
operator, i.e., qx(t) = x(t + 1), y : Z → R is the output,
u : Z → R is the input of the system, v(t) is a zero-mean
quasi-stationary noise process, independent of u, and

G0(q) =

∞∑
k=1

g0kq
−k, (2)

is the transfer operator of the system, where g0 = {g0k}∞k=1 is
the unknown impulse response of the deterministic part of (1)
represented by G0. Since G0 is assumed to be asymptotically
stable, i.e., the sequence g0k is absolute convergent, then, there
exist a n > 0 such that |g0k| ≈ 0 for k > n, where n is
typically large. Hence, it is possible to consider

G(q, θ) =

n∑
k=1

gkq
−k, θ = [g1 · · · gn]>, θ ∈ Rn, (3)

which is the nth order Finite Impulse Response (FIR) model
of G0(q). Given N data points, DN = {u(t), y(t)}Nt=1

generated by (1), our goal is to estimate the n-truncated
impulse response, i.e., the parameter vector θ, ”as well
as” possible. The corresponding identification criterion to
achieve this objective will be defined later.

III. REGULARIZATION BASED METHODS

It is well-known that for high order FIR, PEM/ML gives
an unbiased estimate at the price of high variance, due to
the large number of parameters [1]. The standard way to
cope with the variance increase is to introduce regularization,
which can be understood from two equivalent point of views:
the first is functional approximation in RKHS and the second
is a Bayesian point of view. In the following, we will focus
on the first perspective, where the second perspective will be
occasionally highlighted to give further interpretation of the
considered approach.

A. Regularization in RKHS

Let us first recall the definition of a positive definite kernel
and its associated RKHS.

Definition 1: (Positive definite kernel) [16]. Let (X , d)
be a metric space with d being its metric and X ⊂ R·.
A real-valued function K : X × X → R is called a
positive definite kernel if it is continuous, symmetric and
satisfies

∑m
i,j=1 aiajK(xi, xj) ≥ 0 for any finite set of

points {x1, · · · , xm} ⊂ X and {a1, · · · , am} ⊂ R. �

Definition 2: (Reproducing kernel). Let (H, 〈·, ·〉H) be a
Hilbert space of real-valued functions on X with inner
product 〈·, ·〉H. A real-valued function K : X × X → R
is a reproducing kernel for H if and only if

1) ∀x ∈ X ,Kx = K(x, ·) ∈ H, is the kernel section
centered at x.

2) The reproducing property holds, i.e.,
f(x) = 〈f,K(x, ·)〉H, ∀x ∈ X ,∀f ∈ H. �

A Hilbert space of real-valued functions which possesses
a reproducing kernel is called a RKHS and defined as the
closure of span {Kx := K(x, ·) : x ∈ X}, i.e., the functions
in H can be written as

H =

{
f : X → R | f(X) =

n∑
k=1

aiKxi
(x), n ∈ N,

xi ∈ X , ai ∈ R, ‖f‖H < +∞} ,
where ‖f‖H =

√
〈f, f〉H is the norm in H induced by the

inner product of H which is defined as

〈g, h〉H =

m∑
i=1

m∑
j=1

aibjK(xi, xj),

for
g =

m∑
i=1

aiKxi
, h =

m∑
j=1

bjKxj
.

Moreover, due to the Moore-Aronszajn Theorem [17], there
is a one-to-one correspondence between RKHS H and its
reproducing kernel K, i.e., to every positive definite kernel
K, there corresponds a unique RKHS H with K as its repro-
ducing kernel and vice versa. Hence, in the sequel, we shall
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denote the RKHS associated with the kernel function K as
HK and its inner product as 〈·, ·〉K with the associated norm
‖ · ‖K . Now, we are in a position to illustrate the problem
of estimating the impulse response as a function estimation
problem in RKHS. Equivalently, (1) can be rewritten as

y(t) = (g0 ∗ u)(t) + v(t), (4)

where, (g0 ∗ u)(t) denotes the time convolution between
the impulse response g0 and the input u. One approach of
estimating the impulse response g0 from noisy measurements
is to regard it as an element of a HK associated with a real
causal kernel K, i.e., K : N×N→ R, and then minimizing
a regularized functional with respect to HK [5], [4]

min
g0∈HK

N∑
t=1

(y(t)− (g0 ∗ u)(t))2 + λ‖g0‖2K (5)

where λ ≥ 0 is the regularization parameter and ‖ · ‖2K is
the induced norm of HK . It is worth to mention that the
cost function in (5) consists of two terms. The first term
is the quadratic loss accounting for the adherence to the
observations. The second term, i.e., ‖g0‖2K , control the model
complexity render the problem well-posed by including
information about g0, e.g., smoothness and/or stability. By
considering the Output-Error (OE) noise model with (3), i.e.,
the n-truncated impulse response, (5) becomes equivalent to
the following regularized least-squares problem [18]

θ̂ = arg min
θ
‖YN − Φθ‖22 + λθ>K(β)−1θ (6a)

= (K(β)Φ>NΦN + λIN )−1K(β)Φ>NYN , (6b)

where ‖ · ‖2 denotes the Euclidean norm, K(β) is an n ×
n kernel matrix, which is defined as [K]ij = K(i, j), the
parameter vector β contains the hyperparameters that should
be tuned, YN = [y(1) · · · y(N)]

>, Φ =
[
φ>(1) . . . φ>(N)

]>
and φ(i) = [u(i− 1) · · ·u(i− n)].

There is an important issue regarding this estimation
approach: the choice of the kernel function K. The de-
sign of the structure of K is concerned with choosing a
parameterised form of K with some hyperparameters β
which can express a wide variety of impulse responses,
but at the same time restricts the high degree of freedom
by encoding expected dynamical properties like stability,
oscillatory behaviour, etc. Furthermore, it is important that
the associated restrictions are sensitive to the choice of β, i.e.,
β can be efficiently used to decrease the RKHS associated
with K towards a set capturing the dynamical properties of
g0, but at the same time β is low dimensional. The resulting
hyperparameters β can be tuned by using an empirical Bayes
approach in terms of marginal likelihood maximization [19].
More specifically, the considered approach admits a Bayesian
interpretation, where the impulse response is modeled as a
zero-mean Gaussian process [11] with a covariance K(β),
i.e., θ ∼ N (0,K(β)), and independent of the disturbance
v(t) which is assumed to be white Gaussian with mean
0 and variance σ2, i.e., v(t) ∼ N (0, σ2). As a result,
θ and YN are jointly Gaussian distributed and hence the
posterior distribution of θ given YN is also Gaussian and
its maximum a posterior (MAP) estimate is given as (6b).

This interpretation provides an efficient way to estimate the
hyperparameters from data following the empirical Bayes
approach as follows

β̂ = arg max
β

p(YN |β)

= arg min
β
Y >N (ΦK(β)Φ> + σ2IN )−1YN

+ log |ΦK(β)Φ> + σ2IN |. (7)

It is shown in [20] that this approach of tuning the hyper-
parameters can achieve a well balanced trade-off between
the data fit and the high degree of freedom offered by
the nonparametric estimators. Moreover, an efficient and
accurate way to implement the hyperparameters estimation
problem can be found in [21].

B. Kernel structures for impulse response estimation

As mentioned before, the importance of the kernel struc-
ture design step comes from the fact that the properties of
the kernel function are reflected directly to the associated
RKHS that is used as a hypothesis space for the estimation.
For impulse response estimation, the kernel function K
should reflect what is reasonable to assume about the impulse
response, e.g., the exponential stability, smoothness and/or
oscillatory response. Hence, it is useful to recall from [6]
that the optimal kernel for the estimation problem (5) can be
expressed as:

K(i, j) = g0i g
0
j . (8)

Even if (8) is not possible to be used in practice since the
true impulse response is unknown, it provides a guideline to
design a suitable kernel function for regularized identifica-
tion. Inspired by the machine learning literature, many kernel
structures have been introduced, e.g., stable spline (SS)
kernel [5], diagonal/correlated (DC) [6], tuned/correlated or
first order stable spline kernel [6]:

DC KDC
i,j (β) = cρ|i−j|λ

i+j
2 , β = [c ρ λ]>

TC KTC
i,j (β) = cmin(λi, λj), β = [c λ]>

SS KSS
i,j (β) =

{
cλ

2i

2 (λj − λi

3 ), i ≥ j
cλ

2j

2 (λi − λj

3 ), i ≥ j
, β = [c λ]>

However, besides of exponential decay of the hypothesised
impulse responses, none of these kernels can express other
dynamical aspects of impulse response. In the next section
we will propose an advanced kernel structure that is capable
of expressing these dynamical aspects.

IV. ORTHONORMAL BASIS FUNCTIONS BASED KERNELS

A. Orthonormal basis viewpoint for kernels

Mercer’s theorem [22] allows us, under certain conditions,
to represent the kernel function and thus any function in HK
as orthonormal basis in terms of eigenvalues {λi}∞i=1 and
eigenfunctions {φi}∞i=1 as follows

K(i, j) =

∞∑
k=1

λkφk(i)φk(j), (9)

where i, j ∈ N and the eigenfunctions constitute a basis of
HK and, as a result, the RKHS spaceHK can be equivalently
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defined as linear combinations of the orthonormal basis
{
√
λiφi}∞i=1 as follows [11]:

HK=

{
f :X→R | f(x)=

∞∑
i=1

aiφi(x) &

∞∑
i=1

a2i
λi

< +∞

}
This means that any function f ∈ HK can be represented as
a linear combination of the orthonormal basis generated by
the kernel function K. Next, using LTI system theory, we
will show how a proper selection of such orthonormal basis
of K can be chosen to define a corresponding RKHS that is
suitable for impulse response estimation.

B. OBFs: an overview

The idea is to introduce OBFs [23], [12] to achieve
a theoretically sound construction of kernels for impulse
responses rather than the choices mentioned in Section III-B.
Since OBFs are mainly defined in the frequency-domain-they
are generated by inner transfer functions, therefore, in the
sequel we will introduce OBFs in the frequency-domain and
then define their correspondent basis for impulse responses
in time-domain.

Let Ψ = {ψτ (z)}∞τ=1 be a complete basis in RH2−(F),
the Hardy space of strictly proper rational complex functions
with real coefficients that are square integrable on J and
analytic in F, with the inner product defined as

〈F1, F2〉RH2−(F) =
1

2πi

∮
J
F1(1/z)F2(z)

dz

z

for any F1, F2 ∈ RH2−(F), where (·) denotes complex
conjugation. For this space, the general OBFs, i.e., Takenaka-
Malmquist basis [12] is defined as

ψτ (z) =

√
1− |ξτ |2
z − ξτ

τ−1∏
i=1

1− ξiz
z − ξi

, (10)

with {ξk}∞k=1 ⊂ D being the generating pole locations of Ψ
satisfying

∑∞
k=1(1− |ξk|) =∞. As {ψτ}∞τ=1 is a complete

basis for RH2−(F), it holds that for all transfer function
F0 ∈ RH2−(F), there exists a unique sequence of expansion
coefficients γτ ∈ R such that F0(z) =

∑∞
τ=1 γτψτ (z). Two

interesting special cases of the general Takenaka-Malmquist
basis, which have been proven to be useful in system
identification, are the Laguerre and the Kautz basis [12].
Laguerre basis in RH2−(F) are defined as

ψτ (z) =

√
1− ξ2
z − ξ

(
1− ξz
z − ξ

)τ−1
, ξ ∈ (−1, 1) (11)

where the parameter ξ is known as the Laguerre parameter or
generating real pole. The impulse response of Laguerre basis
functions exhibit an exponential decay, however, Laguerre
functions can not represent oscillatory behaviour of impulse
responses, i.e., complex poles. Therefore, two-parameter
Kautz basis functions result in more appropriate structure
for this purpose:

ψ2τ−1 =

√
1− c2(z − b)

z2 + b(c− 1)z − c

(
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

)τ−1
ψ2τ =

√
(1− c2)(1− b2)

z2 + b(c− 1)z − c

(
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

)τ−1
(12)

where b, c ∈ (−1, 1). Note that (12) corresponds to a
repeated complex pole pair ξ, ξ̄ ∈ D. Since we are inter-
ested in impulse response estimation, it is more convenient
to define the corresponding OBFs in time-domain. Denote
{φτ}∞τ=1 be the correspondent of {ψτ}∞τ=1 in time-domain,
i.e., φτ (t) = Z−1{ψτ (z)}, where Z−1{·} is the inverse z-
transform on the appropriate region of convergence, i.e., F. It
is an important result that {φτ}∞τ=1 is a complete basis of `2
and any impulse response g0 associated with F0 ∈ RH2−(F)
can be written as g0 =

∑∞
τ=1 γτφτ . Note also that the

expansion coefficients γτ decay to zero and based on the
choice of the basis functions it can have a rapid convergence
rate. We would like to use this property to build appropriate
kernels for our Bayesian identification problem.

C. OBFs-based kernels

A fundamental result on RKHS is
Proposition 3: ([17]). Let H be a separable Hilbert space

of functions over X with orthonormal basis {ϕj(·)}∞j=1.
Then,

H is a RKHS ⇐⇒
∞∑
j=1

|ϕj(x)|2 <∞, ∀x ∈ X.

The unique kernel K that is associated with H is
K(x, y) =

∑∞
j=1 ϕj(x)ϕj(y). �

Consider `2 and its canonical orthonormal basis given by
the sequences ei with all null elements except 1 in the ith

component. Using the above given result, it is immediate
to conclude that `2 is an RKHS with kernel given by the
infinite-dimensional identity matrix, i.e. K(i, j) = δij where
δij is the Kronecker delta. Now, the simplest kernel that can
be built using Laguerre or Kautz basis functions is

K(i, j) =

∞∑
k=1

φk(i)φk(j). (13)

In the sequel, the suitability of the kernel defined by OBFs
(13) for impulse response estimation is assessed. Since
Laguerre or Kautz basis correspond to orthonormal basis in
`2, from Proposition 3, and in particular from the unicity
of the kernel, it comes that K(i, j) = δij . If the system to
be identified is stable, the kernel (13) will perform poorly:
in fact, the optimal structure (8) suggests that the kernel
diagonal elements should decay to zero, instead of being
constant. In addition, the off diagonal elements should be
different from zero. Also the Bayesian interpretation of
regularization, as described, e.g., in [24, Subsection 4.3],
helps in understanding the limitations of the kernel (13).
The estimator (5) can in fact be seen as the minimum
variance estimator of the impulse response when the latter
is a zero-mean Gaussian process, independent of the noise,
with covariance proportional to K. When (13) is adopted,
g becomes proportional to a stationary white noise. But the
stable impulse response is expected to decay to zero as time
progresses, hence, it should be represented by a noise process
with variance decaying to zero. Coming back to our RKHS
perspective, the above mentioned problem related to (13) can
be expressed as a kernel which is not stable according to the
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following definition (which extends to the discrete-time case
the one contained in [24, Section 13]).

Definition 4: Let HK be the RKHS of functions on N
induced by a kernel K. Then, K is said to be stable (from
the impulse response point of view) if HK ⊂ `1. �
The following proposition provides a sufficient condition
for a kernel to be stable. The proof is omitted since it is
derived from the results contained in [25] following the same
arguments contained in [24, Section 13]. In particular, one
can first think of the function domain as N equipped with
a counting measure. Then, the rationale in [24, Section 13]
holds replacing integrals with infinite sums.

Proposition 5: Let HK be the RKHS on N induced by
K. Then,

∞∑
i=1

∞∑
j=1

|K(i, j)| <∞ =⇒ HK ⊂ `1. (14)

�
In view of the above results, to include the stability constraint
for (13), the approach proposed in this paper is to consider
the following kernel construction

K(i, j) = λs

∞∑
τ=1

qτ (α)φτ (i)φτ (j), (15)

where |qτ (α)| → 0 as τ →∞. Possible choices of qτ are

qτ (α) = τ−α, α > 0

or
qτ (α) = ατ , 0 ≤ α < 1,

so that α becomes a hyperparameter that determines the
decay rate of the expansion (15). Note that the other kernel
hyperparameters are the scale factor λs and the poles used to
generate the sequence φτ (·). It is worth to mention that (15)
enables to use a large set of basis to generate K as qτ (α) acts
as a weighting to specify implicity the number of significant
basis. With the marginal likelihood optimization, qτ (α) acts
as an automatic selection of the number of basis that specify
K. The following proposition provides information on the
stability of the kernel built using Laguerre functions.

Proposition 6: Consider the kernel (15) built using the La-
guerre basis functions. Then, the kernel is stable if qτ (α) =
τ−α and α > 3 or qτ (α) = ατ and 0 ≤ α < 1.

Proof: The proof is a simple application of Proposition
5 and of the following inequality taken from [14]:

‖φτ‖1 ≤ τA,
where ‖ · ‖1 indicates the norm in `1 while A ∈ R is a
constant that depends only on the poles of the OBFs. Then,
∞∑
i=1

∞∑
j=1

|
∞∑
τ=1

qτ (α)φτ (i)φτ (j)|

≤
∞∑
i=1

∞∑
j=1

∞∑
τ=1

qτ (α)|φτ (i)||φτ (j)|

=

∞∑
τ=1

qτ (α)

∞∑
i=1

∞∑
j=1

|φτ (i)||φτ (j)|

=

∞∑
τ=1

qτ (α)

∞∑
i=1

|φτ (i)|
∞∑
j=1

|φτ (j)| ≤ A2
∞∑
τ=1

τ2qτ (α)

In the sequel, we will limit our attention to the case qτ (α) =
τ−α, leaving other investigations to future work.

D. Hyperparameters estimation

In case of OBFs-based kernel defined in (15), the hyperpa-
rameters that need to be estimated from data are the scaling
parameter λs, decay parameter α and the generating poles.
Note that in case of Laguerre-based (LOBF) kernel, only
one real pole, i.e., ξ, is needed to generate the full sequence
of basis and for Kautz-based (KOBF) kernel, two conjugate
complex poles defined by b and c in (12), are needed
to generate that sequence. Hence, the estimation of these
hyperparameters following the empirical Bayes approach can
be accomplished by solving the optimization (7).

V. NUMERICAL SIMULATION

A. Simulation studies

To test the proposed OBFs-based kernels in the considered
Bayesian identification settings, five simulation studies are
accomplished for the following scenarios:

1) S1D1: fast systems, data sets with N = 500, SNR=10.
2) S1D2: fast systems, data sets with N = 375, SNR=1.
3) S2D1: slow systems, data sets with N = 500,

SNR=10.
4) S2D2: slow systems, data sets with N = 375, SNR=1.
5) S3: oscillatory systems, data sets with N = 400,

SNR=10.
Each scenario 1) to 4) corresponds to 100 randomly gener-
ated 30th order discrete-time systems which are generated by
the drss Matlab function. The fast systems have all poles
inside the circle centered at the origin and radius 0.95 and
the slow systems have at least one pole outside this circle
but inside D, i.e., slow dominant poles. These systems are
used to generate data sets for a white u, with u ∼ N (0, 1)
and v being additive white Gaussian noise. The variance of
v is set such that the signal-to-noise ratio (SNR), i.e.,

10 log10

(∑N
k=1 ỹ

2(k)∑N
k=1 v

2(k)

)
where ỹ(k) denote the noise-free system output. Whereas,
scenario 5) generated as reported in [26], but with only one
dominant complex conjugate pole pair.
B. Identification setting

In all of the five scenarios, we estimate FIR models (3)
with n = 125 and with three different stable kernels:

1) First order stable spline denoted by TC
2) Laguerre-based kernel (LOBF)
3) Kautz-based kernel (KOBF)

The performance index that is used to measure the quality
of the impulse response estimation with different estimators
is the best fit rate index

BFR=100

1−

(∑125
k=1 |g0k − ĝk|2∑125
k=1 |g0k − ḡ0|2

) 1
2

 , ḡ0 =
1

125

125∑
k=1

g0k,

(16)
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TABLE I: Average of the BFR of each kernel

TC LOBF
S1D1 89.43 90.75
S1D2 74.27 75.10
S2D1 82.96 86.47
S2D2 60.48 65.72

where, ĝk are the estimated impulse response coefficients
and g0k are the true coefficients values. The hyperparameters
have been estimated by the discussed marginal likelihood
maximization, i.e., (7).
C. Identification results

The average model fits over the first four data sets are
reported in Table I, where the largest average model fit is
written in bold. For illustration, the distribution of the model
fits over the data sets S2D1, S2D2 and S3 is shown by
boxplots in Fig. 1.

Based on Fig. 1, it is obvious that the proposed OBFs-
based kernels perform well compared to other kernel struc-
tures, i.e., the TC kernel. This is due to the fact that the kernel
is built with OBFs which are directly linked to the dynamical
system behavior compared to existing kernel structures.
Moreover, the LOBF kernel is capable of capturing the
dynamics of the systems with a dominant real pole, whereas
KOBF has the advantage over other kernels to deal with
oscillatory systems.

VI. CONCLUSION AND FUTURE WORK

In this work, we have introduced a novel idea of using
OBFs to build a RKHS in the time-domain and use it as a
hypothesis space for impulse response estimation. Different
weights on different OBFs are imposed by a decaying term.
In this way, hyperparameters estimation replaces the diffi-
culty of selecting the number of basis functions that should
be introduced in the kernel. Two special cases are shown,
the LOBF and the KOBF kernel structure. The performance
of both of them is evaluated and compared with the TC
kernel by means of Monte-Carlo simulations. Results show
that the LOBF kernel performs well compared with the
TC kernel especially for slow systems. Moreover, KOBF
performs significantly better on resonant systems compared
with TC and LOBF.
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