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Abstract— This paper presents a Gaussian Process (GP)
based Bayesian method that takes into account the effect of
additive noise on the scheduling variables for identification of
linear parameter-varying (LPV) models in input-output form.
The proposed method approximates the noise-free coefficient
functions by a local linear expansion on the observed scheduling
variables. Therefore, additive noise on the scheduling variables
is reconstructed as a corrective term added to the output
noise that is proportional to the squared gradient obtained
from the posterior of the Gaussian Process. An iterative
procedure is given so that the obtained solution converges to
the best estimation of the coefficient functions according to
the given measure of fitness. Moreover, the expectation and
covariance functions estimated by GP are modified for the noisy
scheduling variable case to include the noise contribution on
the estimated expectation and covariance functions. The model
training procedure identifies noise level in the measurements
including outputs and scheduling variables by estimating the
noise variances, as well as other defined hyperparameters.
Finally, the performance of the proposed method is compared
to the standard GP approach through a numerical example.

I. INTRODUCTION

Most of the existing methods for model identification
of linear parameter-varying (LPV) systems consider the
scheduling variables to be noise free. However, the presence
of uncertainty, i.e., noise, in the measured data including the
scheduling variables is inevitable and can lead to an inac-
curate model identification. Hence, the precise knowledge
of scheduling variables in the presence of uncertainties is
a critical issue in both LPV model identification and LPV
control design.

Several identification methods have been recently pro-
posed to cope with noisy scheduling variables corresponding
to the so-called error-in-variables problem in the context
of linear time-invariant (LTI) systems [1]. Unlike the LTI
framework, nonlinear dependency of the linear parameter-
varying LPV model coefficients on the scheduling variables
is considered to be the main source of complexity in coping
with the noise corrupted scheduling variables. There are
very few works examining the model identification of LPV
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systems considering noise corrupted scheduling variables.
The previous approaches of [4], [5] have focused on the
identification of LPV input/output (LPV-IO) models us-
ing set-membership and instrumental variable (IV) based
methods. More specifically, a convex relaxation approach
is proposed in [5] under the assumption that all the noisy
observations including outputs and scheduling variables are
bounded. Moreover, the IV-based method presented in [4]
is capable of coping with noisy scheduling variables assum-
ing that the instrument is uncorrelated with the scheduling
variable noise and the scheduling dependency is linear.
More recently, a bias-corrected, IV-based method has been
developed for the identification of LPV models from noise
corrupted measurements of the outputs and the scheduling
variables [6]. While, the recent works have offered signif-
icant improvement for the identification of LPV systems,
they, however, have assumed that the dependency on the
scheduling variables is a priori known. The present work
introduces a Bayesian-based approach assuming a priori
unknown dependency, only characterized in terms of a prior
distribution, on the noise corrupted scheduling variables. The
Bayesian-based approaches provide a rich variety of a priori
kernels that can effectively characterize such distributions
and hence identify structural characteristics of the systems
under study [7]. The Bayesian formulation is based on the
expression of the beliefs about the prior information or
measurements through specification of a priori knowledge
before observing new data. In this paper, an extension of
one of such approaches, namely a Gaussian Process (GP)
based approach is formulated to identify the dependency of
LPV model coefficients on the scheduling variables while
they are corrupted with a Gaussian noise process.

Throughout this paper, notation A⊙B is used to represent
the Hadamard product of the matrices A and B of the same
dimension such that [A ⊙ B]ij = [Aij ] · [Bij ]. In addition,
IN , R, Z and Rn denote the N ×N identity matrix, the set
of real numbers, the set of integer numbers and the set of
n-dimensional vector space with real elements, respectively,
and (·)⊤ represents the transpose of the associated vector or
matrix.

The rest of the paper is organized as follows. Section II
describes the LPV model formulation. Section III explains
the principles of Gaussian processes and the corresponding
Bayesian identification framwork. The formulation of the
error in the scheduling variables problem is given in Section
IV. Finally, simulation results are shown in Section VI, and
concluding remarks are provided in Section VII.
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II. LPV INPUT-OUTPUT MODELS

We consider a single-input single-output (SISO) lin-
ear parameter-varying (LPV) system defined in the auto-
regressive form with exogenous input (ARX) as

y(k) = −
na∑
i=1

ai(p(k))y(k−i)+

nb∑
i=0

bi(p(k))u(k−i)+e(k),

(1)
where k ∈ Z denotes the discrete time, y : Z → R is
the system output and u : Z → R is the system input.
Also, p : Z → P is the so-called scheduling variable
with P ⊆ Rnp and e(k) is an independent and identically
distributed (i.i.d.) white stochastic noise process that is
independent of u and p. The coefficients ai(p(k)), bi(p(k))
are assumed to be bounded possibly nonlinear functions over
P that fully characterize the LPV model (1). To estimate
the structure of the model coefficient functions usually
requires the parametrization of ai and bi in terms of a priori
known basis functions. To avoid difficulties arising from an
inappropriate selection of the basis functions, nonparametric
approaches have been proposed in the literature [8]. This can
favor the LPV modeling of time-varying or nonlinear systems
specially in case of the dynamic dependencies of the model
coefficients on the scheduling variables, i.e., dependency on
p(k), p(k − 1), . . . .

Both parametric and nonparametric approaches for LPV
model identification aim at describing the underlying depen-
dencies of the model coefficients on the scheduling variables.
However, often only a measured version of p(k) is available,
polluted by noise. As a result, estimation of the dependencies
of the coefficients on the scheduling variables often leads to
bias of the estimated coefficient functions, referred to as an
error-in-variables problem. The present work is an effort
to identify and compensate for the error in the scheduling
variables by a modified Bayesian approach. The model (1)
can be represented in a more compact form by introducing
the following notations:

xi(k) = −y(k − i), i = 1, . . . , na, (2a)
xna+j+1(k) = u(k − j), j = 0, . . . , nb, (2b)

x(k) = [x1(k) x2(k) . . . xna+nb+1(k)]
⊤. (2c)

Additionally, if the coefficient function vector is defined as

g = [g1 . . . gng ] = [a1 . . . ana b0 . . . bnb
], (3)

with ng = na + nb + 1, then

y(k) = g(p(k))x(k) + e(k). (4)

Equation (4) can be rewritten as

y(k) =

ng∑
i=1

gi(p(k))xi(k) + e(k), (5)

where xi(k) indicates the i-th entry of the vector x(k) and
gi is the i-th entry of the vector function g.

III. INTRODUCTION TO GAUSSIAN PROCESSES

Gaussian process (GP) has been introduced to capture
functional maps from observations and find the posterior

distributions of the underlying functional dependencies over
the observed data. The GP regression model in the dynamic
case can be described as

y(k) = F(D(k)) + e(k), (6)

where D(k) is the vector of the observations, and e is an
i.i.d. noise process with e(k) ∼ N (0, σ2

e), denoting a normal
distribution with zero mean and variance σ2

e . In the LPV
context, the GP method is adopted to estimate the model
coefficients g and their dependencies on p assuming that F
is describable as a particular realization of a Gaussian process
with a zero-mean prior distribution with a previously chosen
symmetric positive definite covariance function K(·, ·) as

F(·) = GP
(
0,K(·, ·)

)
, (7)

where GP denotes the Gaussian process [9]. Accordingly,
the joint distribution of the output data y (conditioned) w.r.t.
a given data set D and a test output data F∗ is[

y
F∗

]
= N

(
0,

[
K(D,D) + σ2

eIN K(D,D∗)
K(D∗,D) K(D∗,D∗)

])
, (8)

where D∗ is a given set of test points and D is the given
set of observations. It should be noted that if there are N∗
test points and N training data, then the covariance matrix
K(D,D∗) would be an N ×N∗ matrix. Hence, to obtain the
posterior distribution over functions, the joint distribution is
conditioned on the observations. The following predictive
equations can be obtained by deriving the conditional distri-
butions [9]

F∗|(D, y,D∗) ∼ N (F̄∗,Cov(F∗)), (9a)

F̄∗ , E[F∗|(D, y,D∗)] = K(D∗,D)[K(D,D) + σ2
eIN ]−1y,

(9b)

Cov(F∗) = K(D∗,D∗)

−K(D∗,D)[K(D,D) + σ2
eIN ]−1K(D,D∗). (9c)

The mean and covariance functions obtained from (9b)-
(9c) can statistically characterize the coefficients of the LPV
model (5).

IV. FORMULATION OF THE ERROR IN SCHEDULING
VARIABLES PROBLEM

Gaussian processes have been successfully applied to a
variety of applications in the context of dynamic systems
and proven that they can accurately capture the underlying
mapping of the input space to the output space. However,
there are some limitations due to the assumptions made about
the noise conditions. The standard GP algorithm is based on
the assumption that the input data are free of measurement
errors and also independent from the noise process which is a
white (stationary) Gaussian noise. However, it is very likely –
specially in industrial processes – that the input data are also
corrupted by signal-independent sensor noise. As described
earlier, in the present work, the scheduling variables available
in the data set are assumed to be corrupted with an i.i.d.
Gaussian noise. Let p̆ denote the np-dimensional scheduling
variable vector defined as

p̆k = pk + εp(k), (10)
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where εp ∼ N (0,Σp) is a white Gaussian noise that is in-
dependent of u and e. p is the noise-free scheduling variable
that actually affects the underlying system. To simplify the
notation, pk is used instead of p(k). It is assumed that the
scheduling variables are independently corrupted by noise,
and hence the noise variance Σp is a diagonal matrix. In the
LPV model (5), the coefficients are functions of the noisy
scheduling variables and calculating the posterior distribution
is intractable using the standard GP framework. We employ
the first order approximation of the model coefficients ob-
tained using Taylor’s series expansion on the observed data
as

gi(p̆k − εp(k)) ≈ gi(p̆k)− ε⊤p
∂gi(p̆k)

∂p
+ · · · . (11)

Since the derivative of a Gaussian process is itself another
Gaussian process [10], the previous assumptions still hold
true for the Taylor’s expansion of the coefficients. However,
one might argue that these functions are not available and
need to be identified, which will be later examined in this
section. Approximation in (11) gives a good estimation of
the effect of scheduling variables noise on the function
evaluation. We note that additional terms can also be kept
beyond the affine approximation in (11) at the expense of
more complexity eventually leading to a much higher com-
putational load. Substituting (11) into (5) and considering
the derivative of the expectation (mean) of the LPV model
coefficients obtained by Gaussian process, we have

y(k) =

ng∑
i=1

gi(p̆k)xi(k)−
ng∑
i=1

ε⊤p
∂ḡi(p̆k)

∂p
xi(k)+e(k), (12)

where ḡi(p̆k) represents the mean value of the LPV model
coefficients at an observed scheduling variable. The obtained
heteroscedastic model considers the errors in both noisy
output and noisy scheduling variables. Hence, the new error
term can be considered as

ẽ(k) = −
ng∑
i=1

ε⊤p
∂ḡi(p̆k)

∂p
xi(k) + e(k) (13)

According to (12) and (13), the probability of the output
y given the functions gi, i = 1, . . . , ng, and data set D =
{p̆(k), y(k), u(k)}Nk=1 can be obtained as

P (y| (g,D)) =

N
(
E(y),

ng∑
i=1

xi(m)
∂ḡi(p̆m)

∂p

⊤
Σp

∂ḡi(p̆n)

∂p
xi(n) + σe

2
)
,

(14)

E(y) =
ng∑
i=1

gi(p̆k)xi(k). (15)

This can be seen as an equivalent formulation to considering
the given scheduling variables as deterministic and adding
a corrective term to the output error term. To obtain the
posterior distribution, the prior is considered as the standard
GP (6)

P
(
gi(pk)xi(k)|D

)
= N

(
0,Ki(D,D)

)
, (16)

where Ki(D,D) is the N ×N symmetric covariance matrix
defined as

K(Dm,Dn) =

ng∑
i=1

xi(m)ki(p̆m, p̆n)xi(n), (17)

ki(p̆m, p̆n) = λi exp

(
(p̆m − p̆n)

⊤W−1
i (p̆m − p̆n)

)
, (18)

where Wi is the diagonal matrix of characteristic length-
scale, and λi is a positive scalar factor representing the
value of the covariance function when p̆m and p̆n are very
close. Using the (approximation) LPV model in (12), the
gradient term can be considered as a secondary error term
to compensate for the error in the scheduling variables and
its effect on the output. Hence, similar to the variance of
the output error, only the elements on the diagonal are kept
for calculating the joint covariance matrix. The associated
diagonal matrix is defined as

Qi(n, n) = xi(n)
∂ḡi(p̆n)

∂p

⊤
Σp

∂ḡi(p̆n)

∂p
xi(n), (19)

for n = 1, . . . , N . The calculated probabilities (14) and (16)
are combined to obtain the following posterior distribution[

y
gi(P∗)

]
= N

(
0,

[
K(D,D) + σ2

eIN +Q κi(D,P∗)

κi(P∗,D)
⊤

ki(P∗,P∗)

])
,

(20)
where P∗ = p̆∗i , i = 1, . . . , N∗, is a test point and κi(D,P∗)
is defined as follows

κi(P∗,D) = κi(D,P∗) =


xi(1)k

i(p̆1,P∗)
xi(2)k

i(p̆2,P∗)
...

xi(N)ki(p̆N ,P∗)

 , (21)

and Q is the N ×N matrix of the derivatives calculated as

Q =

ng∑
i=1

Qi, (22)

and Cov(gi(p̆m),gi(p̆n)) = ki(p̆m, p̆n) is the covariance
or kernel function given by (18). According to (20), the
posterior mean and covariance are obtained as

ḡi = E[gi(P∗)|D,P∗] = κi(P∗,D)
[
K(D,D) + σ2

eIN

+Q
]−1Y, (23)

Cov[gi(P∗)] = ki(P∗,P∗)−κi(P∗,D)
[
K(D,D)+σ2

eIN

+Q
]−1

κi(D,P∗), (24)

where Y = [y(1), y(2), . . . , y(N)]⊤. To simplify the notation
we define α as

α =

(
K(D,D) + σ2

eIN +Q
)−1

Y. (25)

As observed, ḡi is dependent on its derivative, and hence an
analytical solution does not exist to the resulting equations.
Hence, an iterative procedure is proposed here. To this pur-
pose, we first calculate α using standard GP, i.e., from (25)
without the derivative term Q. Then, the Qi’s are obtained
by substituting α into (26). Q would then be computed
from (22) and replaced in (25) to find α. This procedure
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is repeated until it converges to the best estimation of the
system output through estimating the coefficient functions
of the LPV model. The measure of the fitness along with
more technical details are explained later in this section.
After calculating the derivatives, substituting them in (19)
and defining P = {p̆1, p̆2, . . . , p̆N}, we obtain

Qi(n, n) = xi(n)α
⊤(2∆n ⊙ κi(p̆n,P)⊤

)⊤W−⊤
i ΣpW−1

i(
2∆n ⊙ κi(p̆n,P)⊤

)
αxi(n), (26)

where ∆n is defined as ∆n = [p̆n − p̆1, p̆n − p̆2, . . . , p̆n −
p̆N ]⊤ and κi(p̆n,P) is a vector defined as

κi(p̆n,P) =

[
xi(1)k

i(p̆n, p̆1)) , · · · , xi(N)ki(p̆n, p̆N )

]
.

(27)
It should be noted that for calculating the covariance matrix,
the coefficient functions are assumed to be mutually indepen-
dent and hence their associated derivatives are also mutually
independent [10]. The added diagonal matrix Q to the output
noise variance in (20) is a corrective term that compensates
for the error in the scheduling variables by taking into
account the effect of the gradient of the mean function
as a measure of sensitivity to noise-corrupted scheduling
variables. Since, the corrective term Q needs to be found
to calculate the expectation of the LPV model coefficients,
an iterative procedure is defined. First, the gradient of the
estimated coefficients ḡi(pk) by the standard GP are calcu-
lated and substituted in (20). In fact, we find the derivative
of the coefficients from the mean function obtained via the
standard GP at the training points. The obtained gradient is
used to calculate the corrective additive term to update the
probability distribution (20). Next, the updated distribution is
used to estimate the coefficient functions and system output
accordingly. Then, the hyperparameters including the noise
variance of np scheduling variables and that of the output
are tuned through trial and error to maximize the so-called
best fit ratio (BFR) defined by

BFR := 100% · max
(
1− ∥y(k)− ŷ(k)∥l2

∥y(k)− ȳ∥l2
, 0

)
, (28)

which is considered to be the fitness score [11]. In (28), ŷ
is the simulated output of the estimated model, y is the true
output and ȳ represents the mean of the true output y. Next,
the gradient of the estimated posterior mean ḡi(pk) is used
to update the corrective term and retrain the process. The
procedure is iterative and continues until the maximum BFR
is achieved.

Learning with Uncertain Scheduling Variables

The expectation (23) and covariance (24) of the coefficient
functions obtained by GP are modified to include the noise
contribution in the scheduling variables. To this aim, the
expectation of the modified mean and covariance are ob-
tained by integrating over the distribution of the scheduling
variables [12]. In the present work, the test points are
assumed to be a set of Gaussian distributions, and hence,
the integral is analytically tractable. It should be noted that
the true scheduling variables are not observable; however, we

have access to their distribution N (P∗,Σp), where P∗ is the
observed test point [13]. Therefore, the noise-free scheduling
variables are assumed to be Gaussian distributed P̃∗ ∼
N (P∗,Σp), where P̃∗ = p∗i , i = 1, . . . , N∗. According
to the given distribution on the scheduling variables, the
expectation of the covariance function (18) is obtained as

ki∗(P∗, p̆k) = EP̃∗ [k
i(P̃∗, p̆k)|P∗,Σp]

=

∫ +∞

−∞
ki(P̃∗, p̆k)P (P̃∗|P∗,Σp)dP̃∗. (29)

Eventually, we have

ki∗(P∗, p̆k) = λi | I +W−1
i Σp |− 1

2

exp

(
− (P∗ − p̆k)

⊤(Wi +Σp)
−1(P∗ − p̆k)

)
. (30)

The expected value of the LPV model coefficients given the
observed scheduling variables is obtained from (20) and (29)
as

EP̃∗ [gi(P̃∗) | (P∗,D)] = ḡi(P∗)

= κi
∗(P∗,D)

⊤
(
K(D,D) + σ2

eIN +Q
)−1

Y, (31)

where Y = [y(1) y(2) . . . y(N)] and κi
∗(P∗,D) is as

defined in (21) considering the expectation of the covari-
ance function ki∗(P∗, p̆k) instead of the previously defined
ki(P∗, p̆k). To calculate the predictive covariance, the total
covariance law is implemented (see [14]), where

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [Cov[gi(P̃∗) | (P∗,D)]]

+ CovP̃∗ [ḡi(P̃∗)]. (32)

The covariance and mean are calculated from the distribution
described by (20). Then, the total covariance law results in
the following

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [k
i(P̃∗, P̃∗)]

− EP̃∗ [κ
i(P̃∗,D)

⊤(K(D,D) + σ2
eI + D

)−1
κi(D, P̃∗)]

+ EP̃∗ [ḡi(P̃∗)ḡi(P̃∗)⊤]− EP̃∗ [ḡi(P̃∗)]EP̃∗ [ḡi(P̃∗)]⊤.
(33)

After substituting the predictive mean in (33), the predictive
covariance function for a given test point P∗ is obtained as

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [k
i(P̃∗, P̃∗)]

− EP̃∗ [κ
i(P̃∗,D)⊤

(
K(D,D) + σ2

eIN + D
)−1

κi(D, P̃∗)]

+ EP̃∗ [κ
i(P̃∗,D)

⊤
(
K(D,D) + σ2

eIN + D

)−1

YY⊤

(
K(D,D) + σ2

eIN + D

)−1

κi(P̃∗,D)]

− EP̃∗ [κ
i(P̃∗,D)

⊤
(
K(D,D) + σ2

eIN + D

)−1

Y]

× EP̃∗ [κ
i(P̃∗,D)

⊤
(
K(D,D) + σ2

eIN + D

)−1

Y]. (34)
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Fig. 1. The estimated covariance functions by employing the proposed
method.

This can be rewritten in the following form

Cov[gi(P∗)] =

λi −
N∑

n=1

N∑
m=1

SmnEP̃∗ [κ
i(P̃∗,Dm)κi(Dn, P̃∗)]

+ Y⊤SEP̃∗ [κ
i(P̃∗,D)κi(P̃∗,D)

⊤
]SY − ḡi(P∗)2, (35)

where

S =
(
K(D,D) + σ2

eIN +Q
)−1

, (36)

and

EP̃∗[κ
i(P̃∗,D)κi(P̃∗,D)

⊤
]

=

∫ +∞

−∞
κi(P̃∗,D)κi(P̃∗,D)

⊤
P (P̃∗|P∗,Σp)dP̃∗. (37)

The integration over the given distribution leads to the
following expression for the corresponding elements of (37)

EP̃∗ [κ
i(P̃∗,D)κi(P̃∗,D)

⊤
]m,n =

EP̃∗ [κ
i(P̃∗,Dm)κi(P̃∗,Dn)] = λi | 2W−1

i Σp + I |− 1
2

xi(m)ki(P∗,Dm)xi(n)k
i(P∗,Dn)

× exp
(
− (P∗ − p̆m + p̆n

2
)⊤(Wi +

1

2
WiΣ

−1
p Wi)

−1

(P∗ − p̆m + p̆n
2

)

)
. (38)

Substituting (38) back into (35), the predictive covariance of
the LPV model coefficients is obtained. Therefore, (31) to-
gether with (35) form the basis for one-step ahead prediction
of the system output by the obtained predictive distribution
over the given uncertain scheduling variables.

A. Example

An LPV system described by a finite impulse response
(FIR) model and a nonlinear dynamic dependency on the
scheduling variables is considered here. The model is de-
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Fig. 2. The estimated covariance functions using the standard GP as
elaborated in [15].

scribed as

y(k) =
2∑

i=0

bi(pk−i)u(k − i) + e0(k), (39)

b0(pk) = − exp(−pk), b1(pk−1) = 1 + pk−1,

b2(pk−2) = tan−1(pk−2),

where e0 is a zero mean stochastic noise process with a
Gaussian distribution N (0, σ2), σ = 0.05. The scheduling
variable is generated by pk = sin( π

30k) and an additive
noise εp with a Gaussian distribution N (0,Σp), Σp = 0.1
is simulated to corrupt the scheduling variable resulting in
p̆k = pk + εp(k). A data set D = {p̆k, y(k), u(k)}Nk=1 with
N = 400 snapshots is collected from the system (39) by
considering a periodic input u(k) as

u(k) =

{
1 if k = 1

0 if k = 2, 3.
(40)

As mentioned before, the training data set contains the
noise corrupted scheduling variables and noisy output as the
measurement data. The robustness of the proposed approach
to the noise in variables is examined here and the results are
compared to the standard GP. The hyperparameters including
the RBF kernel parameters are obtained through the training
process as W1 = 1.17, W2 = 1.17, W3 = 1.17 and
λ1 = 1.2, λ2 = 4.5, λ3 = 5.6; the output and scheduling
variable’s noise variance are also estimated as σe = 0.048
and Σp = 0.98, respectively. The estimated variance from
previous step is used to slightly reduce the noise on the mea-
sured scheduling signal. Moreover, the evaluated covariance
function for every coefficient using the proposed method and
the standard GP are shown in Figures 1 and 2, respectively.
As observed from the figures, the proposed approach esti-
mates the LPV coefficients with a higher BFR in compared to
the standard GP-based LPV model identification developed
in [15]. It should be mentioned that to calculate the BFR,
the estimated and true coefficient functions ĝi and gi are
used instead of the ŷ and y in (28). The proposed approach
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Fig. 3. Estimated coefficient functions by the proposed method and standard GP.

TABLE I
EXAMPLE: THE MSE AND BFR OF THE ESTIMATED LPV MODEL

COEFFICIENT FUNCTIONS USING THE PROPOSED LPV IDENTIFICATION

APPROACH AND THE ONE IN [15].

Standard GP [15] Proposed GP
Coefficient MSE BFR MSE BFR

b0 0.09 62.35% 0.0132 85.56%

b1 0.0608 64.96% 0.0086 86.85%

b2 0.0396 65.89% 0.0062 86.52%

offers promising results in estimating the uncertainty level
by presenting a wider confidence region that contains the
uncertain data, as well as the true coefficients, whereas
the confidence regions obtained by the standard GP do not
include the true coefficients in various sections of the plots.
This error can be justified due to the inability of standard GP
in adapting to the presence of uncertainty in the scheduling
variables. Furthermore, the estimated coefficient functions
using the two approaches are shown in Figure 3.

The best fit ratio (BFR) and mean square error (MSE) are
used to quantify the estimated model accuracy by evaluating
it for each coefficient function and the results are shown in
Table I. The results illustrate that the proposed method in
this paper can effectively provide an accurate estimation of
the LPV model coefficients to cope with the uncertainty in
the data.

V. CONCLUDING REMARKS

A new system identification approach for input-output
LPV models is presented in this paper based on Gaussian
Process (GP) to compensate for the errors in the scheduling
variables. The proposed approach uses a linear approxima-
tion to capture the effect of scheduling variables noise on the
evaluated coefficient functions on the observed scheduling
variables. This leads to acquiring a better understanding of
the uncertainties in data through more accurate formulation
of the noise effect on the LPV model coefficients compared
to the standard GP. The results indicate that the proposed
method gives a more accurate estimation of the LPV model
coefficient functions in the presence of both noisy mea-
surement outputs and erroneous scheduling variables. The

simulation results demonstrate that the proposed approach
can effectively cope with uncertainties in the scheduling
variables.
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