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An IV-SVM-based Approach for Identification of State-Space LPV
Models under Generic Noise Conditions
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Abstract— This paper presents a nonparametric identifica-
tion method for state-space linear parameter-varying (LPV)
models using a modified support vector machine (SVM) ap-
proach. While most LPV identification schemes in the state-
space form fall under the general category of parametric
methods, regularization-based SVMs provide a viable alterna-
tive to model scheduling dependencies, without the need of
specifying the dependency structure and with an attractive
bias-variance trade-off. In this paper, a solution is proposed
for nonparametric identification of LPV state-space models in
terms of least-squares SVMs (LS-SVM) and is then extended
in a way that the proposed estimation is robust to errors in the
noise model estimation. The so-called instrumental variables
(IV) method has been used in linear system identification for
quite some time, and has recently seen its application in the
identification of both nonlinear and LPV systems in the input-
output (I0) form. The IV method reduces the bias in estimated
LPYV state-space models in case the noise model is not estimated
properly or is unknown. In the proposed method of this paper,
the attractive bias-variance trade-off properties of LS-SVMs
are combined with statistical properties of IV-based methods to
give robust estimates of the functional dependencies. Numerical
examples are provided to compare the performances of the
proposed IV-based technique with the LS-SVM-based LPV
model identification methods.

I. INTRODUCTION

Linear parameter-varying (LPV) models offer an efficient
framework for modeling nonlinear systems by representing
the nonlinear model as a linear dynamic relation of the input
and output variables where the relations themselves are de-
pendent on the measurable time-varying signals, commonly
known as the scheduling variables. This way, the scheduling
signals take into account the varying operating conditions of
the system. This simplicity of LPV models allows for the
application of several linear control techniques to nonlinear
systems represented by LPV models and opens the door
for the application of powerful LPV control synthesis tools.
Naturally then, LPV identification has attracted a lot of
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attention in the past decade [1], with different identification
schemes developed for both input-output (I0) and LPV state-
space models [2]-[5].

Most identification methods in the literature for state-space
LPV models fall under the category of parametric approach,
where the scheduling dependencies of the state space model
matrices are assumed to be parameterized with respect to
known basis functions [6]. This leads to over-parametrization
of the model coefficients, causing a large variance in the
estimates. On the other hand, an inappropriate selection of
these functions is known to cause a structural bias [3]. For
LPV state-space and bilinear models, parametric methods
are mostly based on various subspace approaches. These
methods usually require a high computational demand due to
the enormous dimensions of the data matrices involved. The
authors in [7] proposed a tractable way to reduce this curse
of dimensionality for LPV state-space models with affine
parameter dependence. A few more subspace-based methods
were later published in [2], [8] among others.

Nonparametric methods provide an alternative that can
avoid the bias-variance trade-off by obtaining nonparametric
reconstruction of the scheduling dependencies in LPV mod-
els. With the emergence of kernel-based techniques, a new
avenue of nonparametric identification, classification and
data processing has appeared in the last two decades. Kernels
are functions that enable us to perform linear operations in
high-dimensional feature spaces, often mapping nonlinear
dependencies efficiently using the so-called kernel trick [9].
This has sprouted the use of kernel-based techniques for
solving various problems under the umbrella of LPV system
identification [3], [10]. The identification approaches in [3],
[11]-[13] reported efficient kernel-based methods employing
least-squares support vector machines (LS-SVM) for LPV-
IO and state-space models; the results showed consistent es-
timates with an attractive bias-variance trade-off. An iterative
mixed parametric method for LPV state-space identification
was proposed recently in [14], in which the authors described
the C' matrix using a nonparametric LS-SVM model, while
the A matrix was described by a parametric model.

While regularization-based SVMs provide an attractive
bias-variance trade-off for efficient nonparametric identifica-
tion, these methods suffer from severe restrictions imposed
on noise, where the obtained estimates would be truly
unbiased w.rt. the noise only when writing the estimation
problem into a regression form and the resulting noise
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process is white [11]. In order to obtain unbiased estimates
for more generic noise conditions, instrumental variables
(IV) have been employed in LTI identification theory in [15],
and recently in the context of nonparametric identification for
nonlinear ARX models in [11] and LPV IO models in [11].

In this paper, we present an LS-SVM-based nonparametric
identification method for multi-input multi-output (MIMO)
state-space LPV models. We further derive an IV-based SVM
optimization problem to model the coefficient dependencies
on the scheduling variables in the presence of colored noise,
often correlated with the scheduling variables. The paper is
arranged as follows. The problem is formulated in Section
II. An LS-SVM identification algorithm is formulated in
Section III. Section IV discusses the conditions on the
instruments and on the LPV structure of the noise. Section
V formulates the proposed I'V-based algorithm. Performance
of the proposed method is demonstrated on a numerical
example in Section VI. Concluding remarks are made in
Section VII.

II. PROBLEM FORMULATION

Consider an LPV system represented by the following
discrete-time state-space model
z(k+1) = A(pr)z(k) + B(pr)u(k) + v(k),

y(k) = Clpr)z(k) + 2(k), (D
where k € 7Z denotes the discrete time instant, and matrices
A(pr) € R™™, B(pr) € R™™, and C(p;) € R"v*"
are functions of time-varying scheduling variables p(k) €
R™», denoted as pj, for better readability. Variables v(k) €
R™, z(k) € R™ are zero-mean, quasi-stationary stochastic
noise processes, not necessarily white, but independent from
u(k). We aim at employing nonlinear kernel functions under
the LS-SVM framework in order to estimate the functional
dependencies of the state-space matrices on the scheduling
variables. We can formulate the problem by writing the state-
space LPV model (1) as follows

a(k+1) = Wap, (k) + ey (k),

y(k) =Wy, (k) + e (k) )
where &,(k),e.(k) are residual errors on the states and
outputs, W, = [W; Wy] € R and W, = W5 €
R™s X" are weighting matrices, and ¢, (k) € R?"#*1 and
@J(k:) € R™#*1 are unknown regressors given by

pr (k) = [(@1(pr)z (k)" (@2(pr)ulk)) '],

@, (k) = ®3(pi)x(k). 3)
In addition, nyg represents the dimension of a possibly
infinite-dimensional feature space. From (2)-(3), we can
gauge that A(py) = W1®1(px), B(pr) = WaPa(py), and
C(pr) = W3P3(px). We assume that the states are available
for measurement, a possibility often encountered in appli-
cations like chemical processes. Estimating dependencies
without state measurements is the subject of our ongoing
research and is not covered in this paper. The problem, there-
fore, reduces to finding the dependency of W, (k) and

Wy, (k) on py given the data {u(k), z(k),y(k), p(k) }p_ .
where N is the number of samples.

III. AN LS-SVM APPROACH FOR LPV-SS
IDENTIFICATION

The estimates of the LPV state-space matrix functions can
be obtained by minimizing the following cost function

1
TWa, Wy,202) = 5 (IWall2 + 1W, 1)

1 N N
+5 (Z el (k)Tey (k) + Zsj(k)xpgz(k)) ,
k=1 k=1
4)

where ||| denotes the Frobenius norm, and I' =
diag(vy1,- -+ ,vn) and ¥ = diag(¢1,--- ,1,,) are diagonal
weighting matrices on the residual errors &,(k) and e, (k)
in (2); these weighting matrices are known as the regular-
ization parameters. The above optimization can be solved by
introducing Lagrangian multipliers and substituting the inner
product ® ®; using an a priori chosen nonlinear kernel
function as shown in [3]. We define the Lagrangian as

E(thwlﬁ Oé,ﬁ,&‘v,(:‘z) = j(Wm Wyasvaez)

N
=Y o {Wal (3) +0d) — (i + 1)}

N
B AW () F () v}, )

where o; € R™, 8; € R"v are the Lagrange multipliers at
the discrete time j. In order to solve for the global optimum,
saddle points are obtained by solving the Karush-Kuhn-
Tucker (KKT) conditions as follows

oL N
oL N |

aw, =0=W, Zgﬁjwyu), (6b)
oL

50 = 0= (i) =20 +1) = Wap (5),  (6c)
aj

oL

—— =0=c.(j) =y(j) — Wy, (), (6d)

0B;
oL

de,) 07 =Tl (6e)
oL _

de.(g) 07 P = W), (60

Substituting the relations (6a)-(6f) into (2), we can eliminate
the primal decision variables and write

w(k+1) = Wapg (k) + o (k)

N
=D _aeali) gl W)+ Loy, (D)
! cu(k)
We
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y(k) = Wy, (k) + . (k)
N
=Y Biey(d) poy ) +T B (®)
— S——
g=1 e. (k)
W?/

Replacing the inner product ® (p;)®i(pr) by a kernel
function k%(p;, py), we deﬁne kernel matrices €2 and = as

Qe = ¢al 227 )k (pj, pr)zi(k),  (9)
[Elik = ey @)y (k) = SO, (0)
where z;(k) = xz(k) and z;(k) = wu(k) for ¢ 1,2,

respectively; the function k(-,-) denotes a nonlinear kernel
function. While a wide variety of kernel functions exist in
the literature to choose from, commonly used kernels include
the Radial Basis Function (RBF), polynomial and sigmoid
kernels among many others [9]. A typical RBF kernel, also
known as the Gaussian kernel, is represented by

2
lps —pl?
201-2 ’

where o; is a free kernel parameter and ||-||, represents the
Euclidean norm. By using (9) and (10), we can write (7)-(8)
in a more compact form as

X=aQ+Tq,

Y =pB2+ V713,
where 2 € RV*N and = € RV*Y are the kernel matrices,
a=[a;ay] €ER™Nand B = [B; - By] € RN are
Lagrange multipliers, and X = [z(1) ---2(N)] € R™*¥ and
Y = [y(1)---y(N)] € R"*¥ contain the states and outputs
for the N samples. The solution to the above equations can
be obtained as follows

vec(a) = (Iy T + QT @ 1,)  vee(X),  (12)

vee(B) = (Iy@ U ' + 2T @1, ) vee(Y), (I3)
where ® denotes Kronecker product and vec(-) denotes
vectorization function, which stacks subsequent columns in
a matrix below one another; matrix I represents identity
matrix of dimension /N. The solutions (12)-(13) are obtained
using the solution to the classical Sylvester equation. Once
estimated, the estimate of the state-space matrices can be
calculated by using (6a)- (6b) as

k' (pj,pr) = exp (11)

A() = Zakm R)E'(pr, ), (14a)
B() = Wads(") Zaku kYK (pre, ), (14b)
C(-) = Wads(-) me KK (pr,-),  (l4o)

giving us a nonparametrlc estimate of the state-space
matrices. It is noteworthy that the parameter matrices W, or
the basis functions ®,(-) are not accessible explicitly. What

we estimate via nonlinear kernel functions is W;®,(-).

Remark 1: It is noteworthy here that since the objective
function (4) and constraints (2) constitute a convex primal
problem with linear equality constraints, strong duality holds,
and there exists no duality gap between the dual solution
(12)-(13) and the solution to the primal problem.

IV. NOISE MODEL ESTIMATION AND INSTRUMENTAL
VARIABLES

Consider that there exists Wo, Wyo such that the follow-
ing holds true for the true data-generating LPV system (1):
z(k+1) = Waopg (k) +vo(k), y(k) = Wyopy (k) +zo(k).
It was shown in [11] that LS-SVM-based optimization
can provide consistent estimates under the assumption that
W0, Wyo are bounded smooth functions and the condition
that there is an absence of correlation between ¢, (k) and
vo(k), e.g., when vg is a white noise process. The same
holds true for correlation between ¢, (k) and zo(k). This
is not often the case in practice with sensor and actuator
noise; noise is mostly colored and often correlated with the
scheduling variables. To address the identification problem
in the presence of colored noise, one could increase the
complexity of the noise model; this, however, would lead to
an increase in the complexity of the estimation and might in
many cases, lead to a non-convex optimization problem. The
so-called instrumental variable (IV) methods have provided
a viable alternative by providing estimates that are robust
to noise model estimation errors. Suppose that the colored
noise v(k), z(k) have the following LPV structure

=" filpr, k) - e(k — i), (15a)
=0

k) =Zgi<pk,k> ce(k —1),

where e(k) represents zero-mean white noise. The I'V-based
solutions provide unbiased estimates as long as the schedul-
ing variables pj are independent from e(k) and the LPV
filters (15a)-(15b) represent monic infinite impulse response
(IIR) filters that are asymptotically stable. Recently, a non-
parametric IV solution has been derived for nonlinear ARX
models in [11] that provides unbiased estimates irrespective
of the noise model. The idea follows the IV for linear systems
in [15], which states that one can circumvent the problem of
biased estimates due to noise modeling errors by introducing
so-called instruments (, and (, such that

E{vo(k)Ga (k)} = E{zo(k)G, (K)} = 0, Yk € Z.  (16)
Consequently, we can introduce the instrument in the LS-
SVM optimization problem derived in the previous section.

(15b)

V. IV-SVM MODIFICATION
A. The IV-SVM scheme

We now modify the cost function (4) such that the con-
dition (16) is met; we do this by introducing instruments
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Co(k), ¢y(k) € RY*2nH While the regressors ¢, (k), oy (k)
depend on the past samples of states and inputs, the instru-
ments can be chosen by the user. The modified cost function
can be written as

|F> 7

1 2 2
I(WaWyseuses) = 5 (HWIHF 11w, )

N
1
3 (et + Y e
k=1

A7)
The Lagrangian will now be defined as
C(Wm,Wy,a,ﬁveu,sz): I(Wa, Wy, e0,¢62)
fZaT {Weol (5) + (i) = 2(G + 1)}
*Zﬁ” {(Wyey () +2:0) =)} (8)

Like before, the stationary points for the Lagrangian are
obtained by solving the KKT conditions as follows

oL ol .
S = 0= W =) aje.(h),

o (192)
oL al .
o, = 0= Wy = ;@wy(m (19b)
oL _ _ .

Qj

oL

=0=y(j) = Wye, () +e:(j), (19d)

9B;
ai‘fj) 0= ,(j) = (26 (HTTT) oy, (19)

oL S
9e.) 0= e.(j) = (2¢,( )C () w) B (19)

Next, like before, we eliminate the primal decision variables
by substituting (19a)-(19f) into (2) and obtain the following:

(k+1) = Wapg (pr) + o (k)

1

> aeap;) o 01) + (2G(RE ETT) o,

ey (k)
W
(20)
y(k) = Wye, (k) + e (k)

N
S Bi0y () p ey (k) + (26, (R)C) (k)0 TW) B
- <. (k)

Wy

(21)
The kernel matrices {2 and = are defined as before, and (20)-
(21) can be written in compact form as

X=aQ+(T'D)"
Y =BE+(V'0)"'8Z,

laz,, (22)

(23)
where

Z, - diag((zczu)cl W) e (N (N))‘l), 24

2, = ding (26,167 (1) -+ (26, ()6 (V)
The solution to (22)-(23) can be obtained as follows
XZ;'=aQZ; ' + (D) e,

vec(a) = (IN @[T

*1). (25)

L0z @ In) vee(X Z3 ),

DIV
(26)
YZ, ' =BEZ, "+ (ww) ',

vec(B) = (IN @(T'O) " +EZN @ Iny> vee(YZ, ).

DIV

27
Remark 2: By choosing the regularization parameters as
M = = v, and Yy = .-+ = Py, , one can, albeit
at the cost of introducing conservatism in the estimation,
simplify the solution to (22)-(23) by avoiding the calculation
of inverses in DIV and D;V. Equations (22)-(23) can then
be written in a simplified manner with a simpler solution as

X=aQ+aZ,y? = a=X (Q + Zw,TQ)_17 (28)
DLV
—_ _ —_ _oy—1
Y =BE+BZ47% = B=Y (E+Z,47%) . (29
—_————
p1v

Thus, calculation of the inverses DIV € RN"*Nn apd
D[V € RN™ >Ny is replaced by calculating the inverses of

matrices with much smaller dimensions, i.e. Div e RNVXN,
ANV NxN
D,” eR .

B. Selection of the Instruments

To ensure unbiased estimates, the instruments (, (k) and
¢y (k) should be uncorrelated to the noise signals v(k) and
z(k); in other words, condition (16) should hold true. As
described in [15], the chosen instrument should be correlated
with the regression variables, in this case, ¢ (k) and ¢, (k),
but should be uncorrelated with the noise processes. Most
instruments used in practice are generated by passing the
past inputs through a filter; this is true in the LTI case
where instruments can be generated using a least squares
(LS) estimated model, while estimated LS-SVM-based non-
linear models have been used to generate instruments in
the nonlinear [11] and LPV [11] cases in the input-output
form. While the choice of an instrument generally remains
an open problem, and depends highly on the structure of the
system and the noise model, following the general principles
outlined in [15] and later adopted in [11], we choose the
instruments as

G (k) = (@1 ()61 (k)T (P2(p)&2(k) ], (30)
¢y (k) = ®5(pr)é (k), 31
where &;(k) = (k) and &(k) = w(k) for ¢ = 1,2,
respectively. Variable Z(k) denotes noise-free states. Since
we usually do not have access to noise-free measurements,
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Algorithm 1 IV-SVM algorithm for state-space LPV identification
Initialize: iter = 0
I: Given D = {u(k),x(k),Ay(lc),p(k)}ch:l, obtain an initial
estimate A(pk), B(pr), and C(py) by obtaining Lagrange mul-
tipliers a(?, B(9) using LS-SVM solution (12)-(13) as proposed
in Section III; this model is labeled as M°.
2: Simulate the developed model in Step 1 to get estimates Z(k).
3:iter = 1
while o and 8 do not converge according to (34) do
4: Define the instruments (5 (k), ¢y (k) as (30)-(31); compute
(32)-(33) to obtain the matrices Z, Z,.
5: Estimate the Lagrange multipliers o using IV-
SVM solution (26)-(27) and solve (14a)-(14c) to obtain the
model MeT,
6: Using M, generate the estimates (k).
7: iter < iter + 1.
end while

iter iter
B

Z(k) can be considered to be estimates of x(k). The inner-
product (; (k)¢ (k) (i = x,y) in (24)-(25) can now be
replaced by kernel functions giving us Z, and Z, as follows:

chag( Zf,
Z & (

Zy _dla’g<(2§1( ) (plapl)é-l( )) 17

1

P1,p1)fz( )) ,

k' (pv,pn)&E(N )~ 1>a (32)

-, (28] (NE (pn, pr)& (V)™ 1>. (33)

In case the chosen kernel function k% is an RBF kernel,
K (pj , pj) = 1; however, we refrain from making this simpli-
fication in (32)-(33) since the derived expression is generic
and may pertain to the choice of any kernel function, not
necessarily RBF. The estimates of the state-space matrices
A(-), B(:) and C(-) can then be computed by using (14a)-
(14¢) in which o and 3 are the Lagrange multipliers obtained
from the IV-SVM update (26)-(27), and z(k) and u(k)
denote the recorded noisy states and inputs, respectively.
The estimates #(k) used for the calculation of Z, and Z,
can be considered to be those obtained from the developed
SVM-based model, and can be improved iteratively until the
solutions c, 3 converge according to the following criterion:

it it iter—1 iter iter—1
Oler: 1er_a1er HF+H/8 _/3 HF§67

(34
where € is a small number chosen for the stopping criterion of
the iterative procedure. Detailed steps needed to implement
the IV-SVM routine are described in Algorithm 1.

VI. SIMULATION RESULTS

The following numerical example of a second order
discrete-time state-space LPV model is considered.

z(k +1) = A(pr)x(k) + B(pr)u(k) + v(k),

1,2
o= [ ] - 0, |

-1 -0 06 04 02 1] 0z 04 0.6 0.e 1
Pk

Fig. 1. Functional dependencies of elements {a11} and {a22}, {b21}
on the scheduling variable pj as estimated by IV-SVM; solid red lines
denote the mean values of the estimates over the Monte-Carlo simulations,
while dotted black lines denote the standard deviation. Original functional
dependencies are shown by dotted blue line.

TABLE I
MONTE-CARLO SIMULATION RESULTS FOR OUTPUT BFR
Mean (BFR %) Std. (BFR %)

LS-SVM 86.22 0.8247
IV-SVM 97.72 0.1596
where ¢ = 2mpy, and
—0.5, pr <—0.5
sat(pr) = 0.5, pp>0.5
0 otherwise.

The signal v(k) represents a colored noise correlated with
the scheduling variable p; and given by

_10.95p, 0 —0.3p3}

v(k+1)= [ 0 0-95101@} v(k) + [ e(k),

0.15pk
where e(k) ~ N(0,02) is a white noise sequence. Given
the measurements of states z(k), we are interested only
in the estimation of A(py) and B(py), and hence, only
Lagrange multipliers « are sought; estimation of C'(py)
would follow the same procedure for the estimation of 3
as outlined in the previous section. A total of 1000 samples
of scheduling variables p; € [—1,1] are generated such
that pr, = sin(0.8k). Uniformly distributed random inputs
u € [—1,1] are generated. White noise e(k) is generated
with standard deviation o, = 0.15, and v(k) is calculated.
This results in an average SNR of 12dB over the two states.
Data is divided into 700 and 300 samples for estimation and
validation, respectively. An RBF function is chosen for the
kernel functions k¢ with oy = o5 = 0.7 for both the LS-
SVM and the IV-SVM cases. Regularization parameters 71 2
are tuned to 2400 and 3200 for the two cases by searching
over a grid space of hyperparameters in order to maximize
the following best fit rate (BFR) in each case

BFR := 100%-max(” — 2l 0)
|z — 2z,
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TABLE II
MONTE-CARLO SIMULATION RESULTS: FUNCTIONAL DEPENDENCIES
AS ESTIMATED BY THE PROPOSED IV-SVM-BASED METHOD. BEST FIT
RATE (BFR) STATISTICS (%).

Function Mean Std. Function Mean Std.

ai1(pe) 79775 0.015  ai2(pk) 99.099 0.052
az1(pe) 96.012 0.078 a(px) 86.501 0.044
bir(pr) 97315 0.101  boi(pr) 97.508  0.025

where & represents simulated states of the estimated model
and x denotes sample mean value of the states.

The proposed LS-SVM and IV-SVM algorithms are run
and the Lagrange multipliers are estimated in each case.
The performance of the algorithms is assessed on noise-less
validation data set and average BFR values are calculated for
the two states. BFR statistics over 50 runs of Monte-Carlo
simulations are tabulated in Table I.

Elements of the identified state-space matrices using IV-
SVM show remarkable accuracy. The BFR values for the
functional dependencies of these elements evaluated over the
interval [—1,1] are tabulated in Table II. Figure 1 shows
three of these dependencies, namely, elements a1, ass, and
ba1, with the dashed line showing mean functional value
over all Monte-Carlo runs and the dotted black line showing
the standard deviation. The improvement in output BFR
values for the IV-SVM is reflected in the estimation of
these functions as well. In Figure 2, we compare the mean
functional values as estimated by the LS-SVM and IV-SVM
algorithms. Owing to the colored nature of the noise, and
the fact that the considered noise is correlated with the
scheduling variables, some functional estimates like ago in
the LS-SVM case show a visible bias.

Fig. 2. Functional dependencies of elements {a11} and {a12}, {a22}
on the scheduling variable pj as estimated by LS-SVM (dotted black) and
IV-SVM (solid red). Original functional dependencies are shown by dashed
blue line.

VII. CONCLUDING REMARKS

This paper has presented a nonparametric identification
scheme for state-space LPV models under generic noise

conditions. The proposed technique makes use of the non-
parametric LS-SVM method that has shown encouraging
estimation results for input-output LPV models, and further
incorporates the so-called “instruments” to induce robustness
to noise modeling errors. Instrumental variables have proven
to be effective in the LTI context and recently seen their
extension to nonlinear ARX and polynomial LPV models.
To gauge the performance of the proposed method, we have
considered simulation studies with a high level of output
noise, which was not only colored but also correlated with
the scheduling variables. The results have shown encouraging
improvements compared to LS-SVM based estimation meth-
ods in terms of providing unbiased estimates. Developing
IV-SVM-based identification methods for state-space LPV
models without the availability of state measurements is the
focus of our ongoing research.
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