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Abstract—1In this paper, a Bayesian framework for iden-
tification of linear parameter-varying (LPV) models with fi-
nite impulse response (FIR) dynamic structure is introduced,
in which the dependency structure of LPV system on the
scheduling variables is identified based on a Gaussian Process
(GP) formulation. Using this approach, a GP is employed
to describe the distribution of the coefficient functions, that
are dependent on the scheduling variables, in LPV linear-
regression models. First, a prior distribution over the nonlinear
functions representing the unknown coefficient dependencies
of the model to be estimated is defined; then, a posterior
distribution of these functions is obtained given measured data.
The mean value of the posterior distribution is used to provide
a model estimate. The approach is formulated with both static
and dynamic dependency of the coefficient functions on the
scheduling variables. The properties and performance of the
proposed method are evaluated using illustrative examples.

Index Terms— Linear parameter-varying systems; system
identification; Bayesian method; Gaussian process; linear re-
gression model

I. INTRODUCTION

During the last decade, identification of linear parameter-
varying (LPV) systems has attracted considerable attention
(see, e.g., [1]-[7]). In general, different modeling frameworks
such as input-output [8], state space [9] and orthonormal
basis functions representations [10] can be considered for the
identification of an LPV system. Estimation of LPV models
in an input-output (I/O) setting has received a great deal
of attention in the LPV identification literature [8], [11],
[12]. Most of the methods for LPV I/O model identification
have been developed in the discrete-time domain under
a linear regression form with static dependency on the
scheduling variables. The most basic model structure is an
auto-regressive model with exogenous input (ARX) which is
described as

ny

R+ as (G0 9k — ) = 3 by (o)l — )-+e(h),

§=0

(1
where k € 7 is the discrete time, v : Z — R and y :
Z — R denote the input and the output signals, respectively,
p : Z — P is the so-called scheduling variable with range
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P C R™ and e is an independent and identically distributed
(i.i.d) white stochastic noise process. The process (1) is
fully characterized by the nonlinear coefficients {a;};*;
and {bj }?io. However, in practical cases, these coefficients
are not fully known and often their estimation is required
from measured data. The standard solution to overcome this
problem is to parameterize these functions using an affine
combination of a priori known basis functions. In this case,
each function {a;} and {b;} is assumed to be represented as

a;(pr) = o + i fir(p(k)) + ... + asn fin (p(K)),  (2)

where f;; : P — R are prior fixed basis functions and
a;; € R, 5 = 1,...,N are the unknown parameters to
be estimated. Inaccurate selection of the basis functions
leads to structural bias while the over-parameterization may
increase the variance of the estimated model. Moreover, LPV
modeling of a nonlinear system requires that the nonlinear
coefficients depend on the time-shifted version of scheduling
variables p (dynamic dependence) while parameterization
with such dependency significantly increases the dimension
of the parameterization space. Hence, it is appealing to
estimate and learn the underlying dependencies of the LPV
model coefficients based on the measured data as well. Some
recent works have used non-parametric approaches to obtain
an efficient solution for this problem [5], [13]-[15].

In [13], a Least Square Support Vector Machine (LS-SVM)
approach is used to reconstruct the dependency structure for
linear regression-based LPV models. The SVM approaches
represent a class of supervised learning methods for efficient
reconstruction of underlying functional relationships and
structures in data where the LS-SVM is a particular subclass
formulated for regression problems [16]. In the present paper,
a different learning algorithm called the Bayesian method
is developed for structured identification of a finite impulse
response (FIR) of an LPV system. Bayesian methods for
system identification have been a subject of renewed interest
in the last few years [17]-[21]. The Bayesian formulation for
system identification problems has become popular mainly
due to the introduction of a family of a priori descriptions
(kernels) which encode structural properties of dynamical
systems such as stability [22]-[24]. In this context, in [18]
the impulse response is modeled for a linear system as the
realization of a Gaussian process (GP) whose statistics in-
clude information not only on smoothness, but also on BIBO-
stability. In this paper, we take advantage of Bayesian method
to reconstruct the dependency structure of an FIR model
of an LPV system. Unlike classical learning algorithms,
Bayesian algorithms do not attempt to identify the best model
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from data or make the best guess in terms of predictions for
new test inputs. Instead, they compute a posterior distribution
over models or compute posterior predictive distributions for
new test inputs [25]. These distributions provide a useful way
to quantify the uncertainties of the estimated model, which
can be exploited to make more robust predictions on new
test points.

This paper is organized as follows. In Section II, the
problem of LPV model identification based on the Bayesian
approach is considered and the main derivations for recon-
structing the dependency structure of LPV systems are given.
In Section III, properties and performance of the proposed
approach are studied through numerical simulations. The
concluding remarks are given in Section IV.

II. LPV MODEL IDENTIFICATION BASED ON A BAYESIAN
APPROACH

In this section, the Bayesian formulation is used to re-
construct the dependency structure of a given LPV system.
Here, we consider an LPV FIR model (a special case of
ARX model (1)), i.e.,, a; = 0,7 = 1,...,n,. The model of
the system can now be represented as

Ng

y(k) = gi(p(k))es(k) + e(k), 3)
1=1

where ng = ny, + 1 and

Ing } = [ bo
¢j1(k) = u(k = j),

In the context of the Bayesian approach, GP is used to
describe a distribution over nonlinear functions representing
the coefficients of an LPV model to be estimated and the
posterior distributions of these functions are obtained, given
the observations. Formally, a GP is a stochastic process
such that any finite subcollection of random variables has a
multivariate Gaussian distribution [25]. Consider a standard
Gaussian process regression model as [25]

y(k) = F(x(k) + e(k), (5)

where x(k) is input vector, F is the function value, y(k) is
the observed target value and e(k) is an i.i.d. noise process
with e(k) ~ N(0,02). It is also assumed that the function
F(.) is a particular realization of a multivariate process with
a zero-mean Gaussian distribution as

F(.)~GP(0,K(.,.), (6)

with a symmetric positive semidefinite covariance function
K(.,.). Note that GP(.,.) denotes distribution as a Gaussian
process. The joint distribution of the observed target values
and the function value at a test point * under the assumed
prior can be written as

y K(X,X)+ 0% K(X,z*)
{ F* } N<O’[ K(z*, X) K(z*,z*) » (D
where X is a vector of input data. Note that if there are n
training points and one test point z*, then (X, 2*) denotes

bnb ]7
F=0,iny. (@
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an n X 1 matrix. The posterior distribution for Gaussian
process regression is as follows [25]

E[F*] = F* = 6* T (K(X, X) + 02I) "1y, (8)
cov[F*] = K(z*, 2%) — " (K(X, X) + 0*1)7'k*, (9)

where k* = K(x*, X).

Next, the Bayesian formulation is used for the identifi-
cation of LPV FIR models. Equation (3) can be rewritten
as

y(k) = filpk, 6i(k)) + e(k), (10)
i=1

where f;(pk, #i(k)) = ¢i(pr)¢pi(k) and for notation sim-

plicity, p(k) is denoted as pg. For each g;(.), the mean and

covariance for all p;, py € P are defined as

E[g:(pj)] = gi(pj), (11)
cov(gi(pr), 9:(p;)] = Elgi(pr)gi(p;)] = K (pk, pj), (12)

where it is assumed that a data set is given, called the
estimation data set Dy = {p(k), u(k), y(k)}fgvzl. Here K is
a positive semidefinite kernel function. The Gaussian kernel
is a commonly used one in non-parametric estimation and is
defined as [26]

2
i p, 7p
K (pjapk) = /\iexp (HJQkH) ,

N

13)

which is also referred to as Radial Basis Function (RBF) or
Gaussian kernel.

Note that the kernel function in (13) is written as a function
of the scheduling variable p. For this particular Gaussian
function, the kernel value is almost A\; between nonlinear
coefficients whose corresponding scheduling parameters are
very close (K'(pj,pr) =~ A, where p; is very close to
pr) and decreases as the distance in the scheduling vari-
able space increases. Let us define p* as a test point and
P = {p(1),....p(N)}, Y = {y(1),...y(N)} and U =
{w(1),...,u(N)}. Then, from equations (8) and (9) one can
obtain the posterior distribution for each g; as follows

N

E[g:(p)|p*, P, V.Ul =Y o (k)K' (p(k), p*), (14)
k=1

cov [g:(p*)Ip*, P, Y, U] = K*(p*, p*)—

> B (k) (p(k), p*),
k=1

15)

where oy, and ﬂ,i are the elements of /N-dimensional vectors

« and ' respectively, defined by
a=(K+o*I)7tY, (16)

and
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¢i(k)K* (p1,p")

6i(k)K (o p°)
(Kljn =Y K
=1

(K50 = ¢i(4) (K" (pj,pr)) ¢i(k).

Finally, the one-step-ahead prediction of the output of time
instant k& w.r.t data set Dy = {(a(k),ﬁ(k))}szl (different
from the estimator data reference) can be obtained as

9(k) = gi(B(k))a(k +1— ). (17)
i=1

It should be noted that in principle, LS-SVM approach
[13] and the proposed Bayesian method are similar. The
main difference is the availability of the estimation of the
covariance function (15). The Bayesian method computes
a posterior distribution over models, which is the main
difference between the Bayesian method and the LS-SVM
approach. Computation of the covariance function provides
a useful way to quantify the uncertainties of the estimated
model of the underlying dependency structure in the identi-
fication of an LPV model.

A. Bayesian Identification for LPV Systems with Dynamic
Dependency

In this section, the identification problem of LPV FIR
models where the nonlinear coefficient functions have dy-
namic dependency on the scheduling variables p is consid-
ered. In this case, Equation (3) with dynamic dependency
can be substituted by

ng

y(k) = > gi(Pk:Pr—1s oo Po—n)i(k) + e(k). (18)
=1

Here, it is assumed that the value of n (for physical systems,
n cannot be greater than ny,) to learn the underlying depen-
dencies of the model coefficients is available. Following a
similar approach to the one proposed in the previous section,
the main result can be written as

N
E [g:(p")[p", P, VU] = Y ads(k)K! (Picm, P*), (19)
k=1
cov [gl(p*)‘p*a Pv yvu} = ’Cz(p*a p*)i
N
> Bi(p*)6i(k)K (Prcn,P*)  (20)
k=1

where

2
' Pj,n — Pk,
/Cl(pj,n;pk,n) = )\iexp (_H,]nQn|Q> .

0;

and pxn = [pk,pk—1,~-~,pk—n]T and ||.||2 denotes the
vector 2-norm such that ||v]|s = Vv To.

B. Experimental Design

In this section, we explain one approach to choose the
input, scheduling variables and size of the training data
for identification of a given LPV system for the presented
approach. Consider a system defined in an LPV FIR form
with order of n, + 1 as

Np
y(k) =Y bi(pi)ulk = 5) + e(k). 2D
j=0
In this case, one choice for the input signal is a periodic
function with 7' = ny, + 1 as

1 k=1
“(k)_{ 0 k=2,...n,+1

so that one can separate the effect of each coefficient b; (px)
on the output y and hence the dependency structure can be
obtained easily as

y(1) = bo(p1), y(2) = b1(p2), ..., y(ny +1) = bn,, (pnb-i-l)'

(23)
However, it should be noted that with the choice of the input
signal as in (22), value of by(pg) for k& = 2,..,np + 1
cannot be identified. To overcome this problem, a periodic
scheduling parameter with period of 7' = n’ should be
considered such that remainder of division of n’ by (n, +1)
is 1 and the training data with size of N > n/ x (ny, + 1) is
needed. Therefore, all values of b;(py) for k =1,...,n can
be kept and observed in the output signal y.

(22)

III. SIMULATION STUDY

To illustrate the performance of the presented method, we
consider three examples. The first example is used to estimate
nonlinear coefficient functions of a given LPV system. In
the second example, we consider a case, where the order of
the estimated model is less than that of the true system. In
the last example, the effectiveness of the proposed algorithm
is examined in the identification of an LPV system with
dynamic dependency.

A. Example 1

The data-generating system is defined by the FIR structure

[13]
2

y(k) =" bi(pr—i)u(k — i) + eo(k), (24)
i=0
with P = [—1, 1] and
bo(pk) = —exp(—pk), bi(pr—1) =1+pk—1, (25

ba(pr—2) = tan™ ! (pr—2).

This I/O representation has a nonlinear dynamic dependence
on p and is in the FIR form. A data set Dy with N = 200
samples is generated by (24) using a periodic u(k) with T' =
3 as

k=1

“(k){ (1) k=23 (26)
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Fig. 1: Estimation results of the coefficient function bg.
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Fig. 2: Estimation results of the coefficient function b;.

and a scheduling trajectory py = sin(%lk) = sin(0.1030k).
The noise eg(k) is assumed to be i.i.d. and have a Gaussian
distribution A/(0,0%) with o > 0. To investigate the perfor-
mance at the presence of a noise e, the signal-to-noise ratio

(SNR) is set as SNR = 101log P—X = 10dB, where Py is the

average power of signal X, which is deterministic component
of y in (24). To characterize the nonlinearities in this system,
RBF kernels have been used with 0y = 03 = 09 = 0.7
and Ay = 1.5,As = A3 = 1 based on maximizing the
fitness score in (27). The obtained results with respect to the
estimation of the underlying coefficient functions are shown
in Figures 1 to 3. To quantify the model quality, the fitness
score or Best Fit Rate (BFR) is used [13]:

163 (k) — 638l )
A
o (F) — Bl @7

The obtained fitness score for functions by(p),b1(p) and
ba(p) are 96.85%, 98.63% and 97.69%, respectively.

BFR! = 100% X max (1 —

Now consider the case that we have p;, = sin(2%%) which
is a periodic function with T" = 7. Unlike the previous

scenario, we have only 7 points of scheduling parameters. As
the number of training examples decreases, the size of the
confidence region for prediction of the model grows to reflect
the increasing uncertainty in the model estimates. Here,

T
estimated
o true

0.5-

-1 -0.5 0 0.5 1

Fig. 3: Estimation results of the coefficient function bs.

95% confidence region
Estimated

® True

0.5¢

- -0.5 0 0.5 1
p
Fig. 4: 95% confidence region for predictions of the coeffi-

cient function by (pg)-

the confidence region is defined based on the covariance
function in Equation (20). Our aim is to find the 95%
confidence region for predictions of the model coefficient
ba(pr). As shown in Figure 5, one of the advantages of using
GP is the fact that one can compute an actual variance of
the estimated function and designate where more samples
are required to improve the estimation.

B. Example 2

In this example, we consider a case, in which an LPV
model with order less than the order of the original system is
identified using the proposed Bayesian estimation approach.
The actual LPV system is represented by

4
y(k) = > bi(pe—i)u(k — i) + eo(k), (28)
i=0
with P = [-1,1] and
bo(pk) = —exp(—pk), bi(pr—1)=1+pk—1, (29)

ba(pr—2) = tan™ ' (pk—2), b3(pk—3) = —Pr—3,
ba(pr—a) = —sin(pr_a).
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Fig. 5: True output and the predicted output by the estimated
model for k=10:40.

signals u(k) and pj are similarly generated as in Example
1 and eg(k) = 0 (noise-free measurement) is considered to
estimate an LPV-FIR model with order of 3. The true output
and the output generated by the identified third-order LPV
model ¢ are shown in Figure 5.

To quantify the model quality in this example, we consider
the BFR w.r.t the output prediction

BFR = 100% x max (1 — M, 0> , (30)
lly = 9lle,

where ¢ is the mean of y. The BFR in this example is
calculated to be 93.7%.

C. Example 3

In this example, the following LPV system with a dynamic
dependency is considered as

y(k) = Zbi(p(k—i,l))u(/ﬁ—i) + eo(k), (31)

with P = [-1,1] and

bo(p(k, 1)) = —exp(—pi) + Pk 1,
bi((p(k—1,1))) = 1+ pr_1 + Do, (32)
ba((p(k —2,1))) = tanil(pk—Q) + sin(pr_3).

A data set Dy with N = 200 is generated by (31) with u(k)
being periodic with T' = 3, u(l) = 1,u(2) = u(3) = 0,
pr = sin(0.1030k) and the noise eg(k) is assumed to be
i.i.d. which as Gaussian distribution A'(0,0?) with o > 0.
The SNR is set as 10dB. The obtained results with respect
to the estimation of the coefficient functions by, b; and b
are shown in Figures 6 to 8. The obtained BFR for the
functions by, by and by are calculated to be 95.60%, 97.20%
and 92.84%, respectively.
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IV. CONCLUSION

In this paper, a Bayesian formulation for identification of
LPV FIR models has been introduced. A Gaussian process
(GP) is used to describe the distribution over nonlinear
coefficient functions. Without a prior information about
parametrization of the underlying coefficient functions, the
proposed approach is capable of reconstructing the depen-
dency structure of the LPV model and providing confidence
bounds based on the posterior distribution. The posterior
distribution is the main difference between Bayesian method
and the LS-SVM approach, which provides a useful way to
quantify the uncertainties of the estimated model and the
coefficient functions.
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