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Abstract— In this paper a novel LPV controller synthesis
approach to design fixed-structure LPV controllers in input
output (IO) form is presented. The LPV-IO model and the
LPV-IO controller are assumed to depend affinely as well
as statically on the scheduling variable. By using an implicit
representation of the system model and the controller, an
exact representation of the closed-loop behavior is achieved.
Using Finsler’s Lemma, novel stability conditions are derived
in the form of linear matrix inequalities (LMIs). Based on
these conditions a quadratic performance synthesis approach is
introduced in form of bilinear matrix inequalities (BMIs) and
solved using a DK-iteration based approach.

I. INTRODUCTION

Linear parameter-varying (LPV) systems and LPV con-

troller design have been the subject of numerous publications

over the last decades, see e.g. [1], [2], [3], [4]. The signifi-

cance of the LPV approach lies in the fact that it allows to

address non-linear controller design in a framework which

has a strong resemblance to linear system theory. Thus, many

important concepts can be extended from the LTI to the LPV

theory.

While many techniques have been reported for LPV con-

troller design based on state-space representation of the sys-

tem behavior, only few results have been published regarding

synthesis of LPV controllers based on IO representations.

The importance of LPV-IO controller design techniques is re-

lated to the fact that most LPV system identification methods

are based on IO representation forms and exact state-space

realizations of the identified IO models often introduce un-

wanted complexity in the scheduling dependencies, a particu-

lar bottleneck in the state-of-the-art model based LPV control

[5], [6]. However, to the best of the authors’ knowledge,

all approaches which have been reported in the literature

on LPV-IO control design so far are based on closed-loop

expressions which are not exact. In [7], based on the theory

developed in [8], sufficient conditions for quadratic stabil-

ity and L2-performance have been derived. Although, the

problem of LPV-IO controller synthesis is addressed, so far

no systematic way to derive explicit closed-loop expressions
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which depend statically on the scheduling variable exists. In

[9], it is indicated that in general the closed-loop matrices

will depend dynamically on the scheduling variable, but

this dependence is neglected and assumed to be static such

that the basic approach of [7] can be applied. Another

drawback which results from approximated explicit closed-

loop expressions is, that even if the LPV-IO plant as well

as the LPV-IO controller depend affinely on the scheduling

variable, the closed-loop matrices do not. To overcome this

difficulty, in [10], additional scheduling variables have been

introduced, whereas the problem is addressed using polytopic

outer approximations in [9]. Both of the aforementioned

techniques increase the number of vertices of the surrounding

convex set significantly.

To overcome these obstacles, it is proposed to describe

the closed-loop LPV-IO system using an implicit system

representation which avoids explicit closed-loop expressions.

In contrast to the approaches presented in [7], [9], [10] this

results in an exact closed-loop LPV-IO model without any

approximation. Furthermore, this approach avoids inherent

difficulties which are the consequences of non-commutative

matrix products, since products of system, controller or

filter matrices do not occur. Based on the implicit system

representation, Finsler’s Lemma [11] is applied to formulate

stability as well as quadratic performance conditions. Due to

the fact that fixed-structure controller synthesis is addressed,

the main contribution of this work is a novel LMI based

stability condition and BMI conditions which are exact

with respect to the LPV-IO synthesis problem for quadratic

L2-performance. Since the derived BMI conditions are non-

convex, an approach based on DK-iteration is proposed

to compute feasible solutions with guaranteed performance

using an initial stabilizing LPV-IO controller.

This paper is organized as follows: Section II states

the problem of LPV-IO controller synthesis and reviews

obstacles which have so far prevented LPV-IO controller

synthesis based on exact LPV-IO models. In Section III,

a novel LMI stability condition using an implicit system

description is presented. This result enables the synthesis of

LPV-IO controllers based on a BMI condition. Subsequently,

in Section IV, a joint condition for stability and guaranteed

quadratic performance is derived. Illustrative examples are

given in Section V and conclusions are drawn in Section VI.

The following notation is used: for a symmetric matrix

X , X ≺ 0, X � 0 denote negative definiteness and semi-

negative definiteness and X ≻ 0, X � 0 denote positive

definiteness and semi-positive definiteness respectively. The

space of symmetric real matrices of size n is denoted by
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w(k) e(k) u(k) y(k)
K(θ(k), q−1) G(θ(k), q−1)-

Fig. 1. Closed-loop interconnection: reference tracking.

S
n. Moreover, Co(Z) represents the convex hull of a finite

set of points Z in the Euclidean space. The symbol I{n}
denotes the identity matrix of size n, 0{m,n} the zero matrix

of size m by n. The operator blkdiag(A,B) denotes the

block diagonal matrix with block diagonal elements A and

B.

II. PRELIMINARIES

Consider the discrete-time closed-loop system shown in

Fig. 1 which represents a standard feedback configura-

tion. The LPV plant, described by the transfer operator

G(θ(k), q−1), is represented by a parameter-varying (PV)

difference equation or so-called IO representation,

na∑

i=0

Ai(θ(k))y(k − i) =

nb∑

j=0

Bj(θ(k))u(k − j), (1)

where y(k) : Z → R
ny denotes the measured output signal,

u(k) : Z → R
nu represents the controlled input signal,

k ∈ Z denotes time and na ≥ nb ≥ 0. The coefficient

matrices Ai(θ(k)) ∈ R
ny×ny as well as Bi(θ(k)) ∈ R

ny×nu

depend statically and affinely on the time-varying scheduling

variable θ(k) = [θ1(k) · · · θnθ
(k)]⊤ ∈ Pθ with θi(k) ∈ R

for i = {1, · · · , nθ}. Furthermore, it is assumed that

the set Pθ ⊂ R
nθ is given by a convex set

Pθ := Co ({θv1 , · · · , θvL}), where each θvi ∈ R
nθ represents

a vertex of the polytope. In terms of the backward time-shift

operator q−1, the input output behavior of (1) is given by

A(θ(k), q−1)y(k) = B(θ(k), q−1)u(k),

where the calligraphic matrices denote polynomial matrices

in the backward time-shift operator.

To demonstrate the difference between LPV-IO and LTI-

IO representations, two SISO LPV-IO representations are

considered. Note that the input output behavior of the series

connection from w(k) to y(k) described by

C(θ(k), q−1)x(k) = D(θ(k), q−1)w(k), (2a)

E(θ(k), q−1)y(k) = F(θ(k), q−1)x(k), (2b)

is not given by

C(θ(k), q−1)E(θ(k), q−1)y(k)

= F(θ(k), q−1)D(θ(k), q−1)w(k).
(3)

That is, (2a) and (2b) do not describe the same dynamical

behavior as (3). To illustrate this, we consider the follow-

ing example. Let u(k) = sin(kT ), θ(k) = 0.5cos(3kT ),
T = 0.01s and

C(θ(k), q−1)=1+(−0.78+0.44θ(k))q−1, D(θ(k), q−1)=1,

F(θ(k), q−1)=(0.3+0.9θ(k))q−1, E(θ(k), q−1)=1.
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Fig. 2. Output response of (2a) and (2b): blue / Output response of (3):
red.

Fig. 2 depicts the output response of the system described

by (2a) and (2b) as well as the response of (3). It can clearly

be seen that the dynamical output behaviors are different.

This fact has dire consequences on the closed-loop behavior

of the considered tracking problem. The closed-loop transfer

operator in the LTI case is given by

G =
(
I +A−1BA−1

K BK

)−1
A−1BA−1

K BK. (4)

Provided that AK is chosen scalar, each product commutes

with respect to AK, thus (4) can be rewritten as

G = (AAK + BBK)
−1 BBK.

However, in the LPV case, even for a scalar AK, products are

not commutative as illustrated by the example. Consequently,

in contrast to the LTI case, it is more difficult to derive an

input output difference equation for the closed-loop config-

uration shown in Fig. 1. Thus, stability conditions cannot be

easily inferred from explicit closed-loop expressions and will

be obtained by other means.

The problem considered here can be stated as follows: find

an LPV controller K(θ(k), q−1) in the form of

nKa∑

i=0

AKi(θ(k))u(k − i) =

nKb∑

j=0

BKj(θ(k))e(k − j),

that stabilizes the closed-loop system shown in Fig. 1 and

achieves a desired performance. Moreover, it is required

that the controller design is not based on neglecting dy-

namic dependence of the closed-loop interconnection on

the scheduling variable. This will be achieved by using an

implicit system representation that avoids explicit closed-

loop expressions. For this purpose, the behavior of the

closed-loop interconnection shown in Fig. 1 is described as

given below

[
Ā(θ(k)) −B̄(θ(k)) 0
B̄K(θ(k)) ĀK(θ(k)) −B̄K(θ(k))

]




yE(k)
uE(k)
wE(k)



 = 0, (5)

where the signal vectors yE(k), uE(k) and wE(k) are given
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as

yE(k) =
[
y⊤(k) · · · y⊤(k − ndy)

]⊤
∈ R

nyE ,

uE(k) =
[
u⊤(k) · · · u⊤(k − ndu)

]⊤
∈ R

nuE ,

wE(k) =
[
w⊤(k) · · · w⊤(k − nKb)

]⊤
∈ R

nwE ,

with ndy = max(na, nKb) and ndu = max(nb, nKa). The

matrix functions Ā(θ(k)) to B̄K(θ(k)) are given as

Ā(θ(k)) =
[
A0(θ(k)) · · · Andy

(θ(k))
]

∈ R
ny×nyE ,

B̄(θ(k)) = [B0(θ(k)) · · · Bndu
(θ(k))] ∈ R

ny×nuE ,

ĀK(θ(k)) = [AK0(θ(k)) · · · AKndu
(θ(k))] ∈ R

nu×nuE ,

B̄K(θ(k)) =
[
BK0(θ(k)) · · · BKndy

(θ(k))
]

∈ R
nu×nyE .

Note, that in case of different orders of plant and controller

matrices, the matrix tails can be filled with zeros.

Clearly, (5) characterizes an implicit system description

which defines the dynamics. By writing this implicit system

representation as an equivalent first-order difference form

with state variable x, the represented linear system is asymp-

totically (input to state) stable if there exists a Lyapunov

function V (0) = 0 and V (κ) > 0, for κ 6= 0 such that, for

all feasible state trajectories x(k) and k ∈ Z
+
0 , if x(k) 6= 0,

then

∆V (x(k)) = V (x(k + 1))− V (x(k)) < 0.

Since Finsler’s Lemma plays a crucial rule when using (5)

to derive stability as well as performance conditions, the

relevant part of it is stated here:

Lemma 1 (Finsler’s Lemma [11])

Given Q ∈ S
n and B ∈ R

m×n such that rank(B) < n, the

following statements are equivalent:

i) x⊤Qx < 0, ∀x : Bx = 0, x 6= 0,

ii) ∃F ∈ R
n×m : Q+ FB +B⊤F⊤ ≺ 0. �

With regard to item (i) ∀x : Bx = 0 can be interpreted as

an implicit system description and all solutions to Bx = 0
lie in the null space of B, where x⊤Qx < 0 ensures

asymptotic stability in the sense of Lyapunov if a suitable

Q is chosen. Hence, item (ii) enables us to formulate a

matrix inequality (MI) using an implicit system description,

where implicit means that every subsystem of the closed-loop

interconnection is described by its own dynamic constraint

as in (5).

III. STABILITY

As mentioned before, well-known rules which hold for

LTI systems cannot be applied to LPV systems and stability

arguments are desirable which are not based on explicit

closed-loop expressions.

To guarantee stability of the closed-loop interconnection

shown in Fig. 1 in the sense of Lyapunov, it suffices to

analyze stability of the autonomous part

H(θ(k))

[
yE(k)
uE(k)

]

= 0, (6)

i.e., w(k) ≡ 0 with k ∈ Z
+
0 and

H(θ(k)) =

[
Ā(θ(k)) −B̄(θ(k))
B̄K(θ(k)) ĀK(θ(k))

]

∈ R
ns×nr .

The implicit system representation (6) of the interconnected

system can be rewritten to the equivalent first-order form

(see [5])

R1(θ(k))qx(k)+R2(θ(k))x(k)+R3(θ(k))

[
y(k)
u(k)

]

=0. (7)

Consider the choice of x as

x(k) =
[

(Π1,1,yyE(k))
⊤

(Π1,1,uuE(k))
⊤
]⊤

∈ R
nx , (8)

where

Πi,j,y =
[
0{nyE

−iny,jny} I{nyE
−iny}

]
,

Πi,j,u =
[
0{nuE

−inu,jnu} I{nuE
−inu}

]
.

Defining the matrices

Πc
i,j,y =

[
I{nyE

−iny} 0{nyE
−iny,jny}

]
,

Πc
i,j,u =

[
I{nuE

−inu} 0{nuE
−inu,jnu}

]
,

it holds that

qx(k) =
[(
Πc

1,1,yyE(k)
)⊤ (

Πc
1,1,uuE(k)

)⊤
]⊤

, (9)

with qx(k) = x(k + 1). If we furthermore introduce the

matrices

Γy =
[
Πc⊤

ndy,ndy,y
0{nyE

,nyE
−2ny}

]
,

Γu =
[
Πc⊤

ndu,ndu,u 0{nuE
,nuE

−2nu}

]
,

and combine (6), (9) and (9), we obtain

R1 =





H(θ(k)) · blkdiag (Γy,Γu)
blkdiag (Π2,1,y,Π2,1,u)

0{ny+nu,nx}



 , R3 =

[
0{nx,ny+nu}

I{ny+nu}

]

,

R2 =





H(θ(k)) · blkdiag
(
Π⊤

1,1,y,Π
⊤
1,1,u

)

−blkdiag
(
Πc

2,1,y,Π
c
2,1,u

)

−Π∗



 ,

with Π∗ = blkdiag
(

Πc
ndy,ndy−1,y,Π

c
ndu,ndu−1,u

)

. The re-

sulting first-order form admits an equivalent state-space

realization (see [12]) and represents the autonomous part of

the behavior of the closed-loop system. Having chosen a

compatible state vector, asymptotic stability can be inferred

if there exists a Lyapunov function

V (x(k)) = x⊤(k)Px(k),

where P = P⊤ ≻ 0 and

∆V (x(k)) = x⊤(k + 1)Px(k + 1)− x⊤(k)Px(k) < 0

for all feasible (x(k), θ(k)) trajectories of (7) with

θ(k) ∈ Pθ, ∀k ≥ 0. By defining the following matrices

U(P ) := Π⊤
2 PΠ2 −Π⊤

1 PΠ1 ∈ R
nr×nr ,

Π1 :=

[
Π1,1,y 0
0 Π1,1,u

]

∈ R
nx×nr
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and

Π2 :=

[
Πc

1,1,y 0
0 Πc

1,1,u

]

∈ R
nx×nr

the following theorem can be stated.

Theorem 1 (Main Result 1)

The closed-loop system described by (6) is asymptotically

stable, if there exist a symmetric matrix P ∈ R
nx×nx and a

matrix F ∈ R
nr×ns such that

P ≻ 0, (12a)

U(P ) + FH(θ̄) +H⊤(θ̄)F⊤ ≺ 0, (12b)

∀θ̄ ∈ Pθ.

Proof: Asymptotic stability can be inferred if

i) V (x(k)) > 0,

ii) ∆V (x(k)) < 0 for all (x(k), θ(k)) satisfying (7),

with θ(k) ∈ Pθ. Defining the vector signal

ξ(k) :=
[
y⊤E (k) u

⊤
E (k)

]⊤
,

∆V (x(k)) can be written in terms of ξ(k) as

∆V (x(k)) = ξ(k)⊤
(
Π⊤

2 PΠ2 −Π⊤
1 PΠ1

)
ξ(k).

Asymptotic stability is guaranteed if

∆V (x(k)) < 0, ∀ξ(k) : H(θ(k))ξ(k) = 0, ξ(k) 6= 0

holds. Applying Finsler’s Lemma yields the LMI (12b) and

completes the proof. �

IV. QUADRATIC PERFORMANCE

Exact LMI stability conditions for the closed-loop system

have been presented in the previous section. In this section,

the performance objective is addressed, i.e., we search for

a controller which stabilizes the closed-loop and achieves

a desired performance level. More precisely, we want to

achieve
[
z(t)
w(t)

]⊤ [
Q S

S⊤ R

] [
z(t)
w(t)

]

≥ 0, (13)

for certain choices of Q ∈ R
nz×nz , R ∈ R

nw×nw and

S ∈ R
nz×nw , where w(t) ∈ R

ny denotes disturbance chan-

nels and z(t) ∈ R
nz represents performance channels.

L2-Performance

Subsequently, the L2-gain optimization problem is ad-

dressed, i.e., the matrices Q, R and S are chosen as

Q = I , R = −γ2I and S = 0. The closed-loop interconnec-

tion shown in Fig. 1 is augmented with a sensitivity shaping

filter as shown in Fig. 3 which represents a sensitivity loop-

shaping setting. For this type of closed-loop setting we have

z(t) = zs(k) ∈ R
nz and the filter Ws(θ(k), q

−1) is described

by the following difference equation

nsa∑

i=0

Asi(θ(k))zs(k − i) =

nsb∑

j=0

Bsj(θ(k))e(k − j). (14)

w(k) e(k) u(k) y(k)

zs(k)

K(θ(k), q−1) G(θ(k), q−1)

Ws(θ(k), q
−1)

-

Fig. 3. Closed-loop interconnection with a shaping filter.

Consequently, the IO behavior of the closed-loop is governed

by the following difference equations

ĀyE(k) = B̄uE(k), (15a)

ĀKuE(k) = B̄KeE(k), (15b)

ĀszsE(k) = B̄seE(k), (15c)

where eE(k) = wE(k) − yE(k) and the signals yE(k) and

uE(k) are given as in the previous section. Eq. (14) is written

in the form of (15c), where

wE(k) =
[
w⊤(k) · · · w⊤(k − ndy)

]⊤
∈ R

nyE ,

zsE(k) =
[
z⊤s (k) · · · z⊤s (k − nsa)

]⊤
∈ R

nzE ,

with ndy = max(na, nKb, nsb) and

Ās(θ(k)) = [As0(θ(k)) · · · Asnsa
(θ(k))] ∈ R

nz×nzE ,

B̄s(θ(k)) =
[
Bs0(θ(k)) · · · Bsndy

(θ(k))
]

∈ R
nz×nyE .

Defining the vector signal

ξ(k) :=
[
y⊤E (k) u

⊤
E (k) z

⊤
sE(k) w

⊤
E (k)

]⊤
,

the IO behavior described by (15a) to (15c) can be written

implicitly as

Hs(θ(k))ξ(k) = 0, (16)

where

Hs(θ(k)) :=





Ā(θ(k)) −B̄(θ(k)) 0 0
B̄K(θ(k)) ĀK(θ(k)) 0 −B̄K(θ(k))
B̄s(θ(k)) 0 Ās(θ(k)) −B̄s(θ(k))



 .

Consider the choice for the latent variable x as

x(k) = Π1ξ(k), where

Π1 :=







Π1,1,y 0 0 0
0 Π1,1,u 0 0
0 0 Π1,1,zs 0
0 0 0 Π1,1,w






∈ R

nx×nr .

Consequently, it follows that qx(k) = Π2ξ(k), where

Π2 :=







Πc
1,1,y 0 0 0
0 Πc

1,1,u 0 0
0 0 Πc

1,1,zs 0
0 0 0 Πc

1,1,w






∈ R

nx×nr .

The matrices Π1,1,zs , Π1,1,w and Πc
1,1,zs , Πc

1,1,w can be

chosen analogously to Π1,1,y, Π1,1,y and Πc
1,1,y, Πc

1,1,u.

Similarly to the previous section the matrix U(P )

U(P ) := Π⊤
2 PΠ2 −Π⊤

1 PΠ1 ∈ R
nr×nr ,
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Fig. 4. Step response of the closed-loop system - reference: blue; output
response y(kT ): red (Example 1).

is defined. The performance constraints (13) are rewritten to





η(k)
zsE(k)
wE(k)





⊤ 



0 0 0
0 QE SE

0 S⊤
E RE





︸ ︷︷ ︸

QP





η(k)
zsE(k)
wE(k)





︸ ︷︷ ︸

ξ(k)

≥ 0,

where η(k) =
[
y⊤E (k) u

⊤
E (k)

]⊤
, QE = blkdiag(Q, 0), RE =

blkdiag(R, 0) and SE = blkdiag(S, 0). Now, we are able to

state the following theorem.

Theorem 2 (Main Result 2)

The closed-loop system described by (16) is asymptotically

stable and satisfies the performance constraint (13), if there

exist a symmetric matrix P̃ ∈ R
nx×nx and a matrix

F ∈ R
nr×ns such that

P̃ ≻ 0, (17a)

U(P̃ ) +QP + FHs(θ̄) +H⊤
s (θ̄)F⊤ ≺ 0, (17b)

∀θ̄ ∈ Pθ.

Proof: Asymptotic stability can be inferred if

i) V (x(k)) > 0 ∀x(k) 6= 0,

ii) ∆V (x(k)) < 0 for all feasible (x(k), θ(k)) ,

with θ(k) ∈ Pθ . Assuming V (x(k)) = x⊤(k)Px(k),
∆V (x(k)) can be written as ∆V (x(k)) = ξ⊤(k)U(P )ξ(k).
Defining the set Pξ := {ξ(k) 6= 0 | Hs(θ(k))ξ(k) = 0}, then

by the S-Procedure,

∆V (x(k)) < 0, ∀ξ(k) ∈ Pξ,

whenever ξ⊤(k)QPξ(k) ≥ 0

⇔ ∃λ > 0 : ξ⊤(k) (U(P ) + λQP) ξ(k) < 0, ∀ξ(k) ∈ Pξ

⇔ ∃λ > 0 : ξ⊤(k)(U(P̃ ) +QP)ξ(k) < 0, ∀ξ(k) ∈ Pξ.

Applying Finsler’s Lemma and defining P̃ := P
λ

yields the

LMI (17b) and completes the proof. �

Minimizing the performance index γ over the unknown

controller parameters, over the matrix F and over the sym-

metric matrix P̃ renders the problem non-convex, since

(17b) becomes a BMI. This is however to be expected
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Fig. 5. Trajectory of the scheduling variable θ (Example 1).

when solving fixed-structure synthesis problems. The non-

convex synthesis problem can be solved, e.g., by using a

DK-iteration based approach (see Section V).

V. NUMERICAL EXAMPLES

In this section, the proposed method is applied to two

numerical examples. The performance objective is chosen as

the L2-performance, i.e, the L2 gain γ is minimized.

A. Example 1

To illustrate the proposed method, a simple academic

example is used which is taken from [13]. The plant is

defined by the following vectors

Ā(θ(k)) =
[
1 1− 0.5θ(k) 0.5− 0.7θ(k)

]
,

B̄(θ(k)) =
[
0 0.5− 0.3θ(k) 0.2− 0.3θ(k)

]
,

where θ(k) = 0.5cos(y(k − 1)) and θ(k) ∈ [0 0.5].
Furthermore, the filter Ws(θ(k), q

−1), shown in Fig. 3, is

defined by

Ās =
[
1 −1.367 0.368

]
, B̄s =

[
0 1.3 −1.237

]
.

A low-order and fixed-structure LPV-IO controller repre-

sented by

ĀK(θ(k)) =
[
1 −1

]
,

B̄K(θ(k)) =
[
bk00 + θ(k)bk01 bk10 + θ(k)bk11

]
,

is to be synthesized and the closed-loop interconnection is

defined as in (16). Optimizing γ yields an LPV-IO controller

which achieves γ = 1.864. Fig. 4 shows the controlled

output of the plant.

B. Example 2

Next, the proposed method is illustrated by a MIMO

LPV-IO model taken from [10]. The plant with ny = 2,

nu = 2 is represented in an LPV-IO form with

Ā(θ(k))=
[
I{2} (1 − 0.5θ(k))I{2} (0.5− 0.7θ(k))I{2}

]
,

B̄(θ(k))=
[
0{2,2} B1(θ(k)) B2(θ(k))

]
,
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(Example 2).

where

B1(θ(k))=

[
0.5−0.4θ(k) 0.2−0.1θ(k)
0.6−0.2θ(k) 0.1−0.4θ(k)

]

,

B2(θ(k))=

[
0.2−0.3θ(k) 0.4+0.1θ(k)
0.2−0.4θ(k) 0.3−0.4θ(k)

]

.

The range of the scheduling variable θ(k) is set to [0 0.5].
A fixed-structure MIMO LPV-IO controller in the form

ĀK(θ(k)) =
[
I{2} −I{2}

]
,

B̄K(θ(k)) =
[
Bk00 + θ(k)Bk01 Bk10 + θ(k)Bk11

]
,

is sought, where Bk00, Bk01, Bk10, Bk11 ∈ R
2×2. The sensi-

tivity function of the closed-loop system is shaped to achieve

desired properties (low rise time, good tracking). The filter

Ws(θ(k), q
−1) is taken as

Ās(θ(k)) =
[
I{2} −0.998I{2}

]
,

B̄s(θ(k)) =
[
0.01I{2} 0.01I{2}

]
.

Based on the conditions given in Theorem 2, minimizing

γ over the unknown controller parameters, the matrix F and

the symmetric matrix P̃ , yields a MIMO LPV-IO controller

that achieves γ = 0.104. The closed-loop simulation of the

LPV system is shown in Fig. 6 and zoomed in plots are

shown in Fig. 7, demonstrating good tracking of both outputs

at several levels of the operating region with small coupling

effect. The variation of the scheduling variable θ(k) is shown

in Fig. 8.

VI. CONCLUSION

In this work novel stability as well as quadratic perfor-

mance LMI (analysis) or BMI (synthesis) conditions have

been presented, which are based on exact implicit LPV-

IO system representations. By the framework of implicit

dynamic constraints, this approach offers a general method

to address the problem of LPV-IO fixed-structure controller

synthesis. The proposed method has been illustrated on two

numerical examples, one of them involving a MIMO LPV-IO

plant model.
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Fig. 7. Zoom in on the reference tracking trajectories (Example 2).
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Fig. 8. Trajectory of the scheduling variable θ (Example 2).
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[12] R. Tóth, J. C. Willems, P. S. C. Heuberger, and P. M. J. Van den Hof,

“The behavioral approach to linear parameter-varying systems,” IEEE

Trans. on Automatic Control, vol. 56, pp. 2499–2514, 2011.
[13] M. Ali, H. Abbas, and H. Werner, “Controller synthesis for input-

output LPV models,” in Proc. of 49th IEEE Conference on Decision

and Control, 2010, pp. 7694–7699.

2108


